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We determine the decomposition of the restriction of a length-one toral supercuspidal 
representation of a connected reductive group to the algebraic derived subgroup, in 
terms of parametrizing data, and show that this restriction has multiplicity one. As 
an application, we determine the smooth dual of the unit group of integers OD

× of a 
quaternion algebra D over a p-adic field F , for p �= 2, as a consequence of determining 
the branching rules for the restriction of representations of D× ⊃ OD

× ⊃ D1.
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1. Introduction

Let G be a connected reductive algebraic group defined over a local non-archimedean field F , and set 
G = G(F ). Under certain tameness assumptions, all irreducible supercuspidal representations of G may be 
constructed in a uniform way, starting from generic cuspidal G-data [1,19,12]. J. Hakim and F. Murnaghan 
[9] determined the equivalence classes of G-data which give rise to isomorphic supercuspidal representations. 
In this paper we consider the subset of generic toral cuspidal G-data of length one (here abbreviated: G-data) 
and their corresponding supercuspidal representations.

Let G1 denote the derived group of G; then this is a connected semisimple group over F . Set G1 = G1(F )
and note that this may be strictly larger than the commutator subgroup of G. Restricting a G-datum Ψ to 
G1 produces a datum Ψ1 for G1; in Proposition 2.2 we show that Ψ1 is in fact a G1-datum, and that the 
associated representation πG1(Ψ1) occurs in the restriction to G1 of the representation πG(Ψ). We deduce 
the full decomposition of the restriction of πG(Ψ) into irreducible (supercuspidal) representations of G1 in 
Theorem 5.2.

In particular the decomposition of these supercuspidals upon restriction to the derived group has mul-
tiplicity one, providing a large class of examples for which Conjecture 2.6 of [3] does hold (although there 
exist counterexamples to the conjecture in general [2]). In related work, recently K. Choiy [6] has studied 
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the multiplicities in the restriction to SL(n, D) of discrete series representations of GL(n, D), where D is a 
central division algebra over F .

Our results hold modulo certain hypotheses, which for a tamely ramified group are satisfied when p is 
sufficiently large. For example, the simple criterion of genericity that we use here requires p not to be a 
torsion prime for the dual root datum of G.

It should be possible to generalize these results to G-data of length greater than one using the results 
in [9] as here. The most difficult step of the construction, as outlined by J.K. Yu in [19] and done in full 
detail by J. Hakim and F. Murnaghan in [9], is the consistent choice of Heisenberg–Weil lift; this is a key 
step for the branching rules as well. On the other hand, the case of G-data of length zero reduces to the 
case of depth-zero representations, and hence to the analogous question of branching rules for cuspidal 
representations of Lie groups of finite type.

As an application, we consider the group D×, for D a quaternion algebra over a local non-archimedean 
field F of odd residual characteristic. The group of F -points of its algebraic derived group, which coincides 
with its commutator subgroup, is D1, the subgroup of elements of reduced norm 1. The representation 
theory of D× is well-known, having been determined by L. Corwin and R. Howe in [7,8,10]; that of D1 is 
described in [13] for example. We give the branching rules for the restriction of representations of D× to 
D1 in Section 7.

What is more interesting is the representation theory of the maximal compact open subgroup O×
D of 

D×, which coincides with the group of invertible elements of the integer ring of D. This is not a p-adic 
group, and as such, the methods of the classification of [1,19] do not apply. It is an open problem to classify 
representations of such groups, which are algebraic groups over local rings.

Using in part the branching rules for D× to D1 established above, we determine the full representation 
theory of O×

D. Furthermore, in Section 7.3 we prove a parametrization of these representations by equivalence 
classes of O×

D-data, in analogy with the classification for the p-adic groups D× and D1.
This paper is organized as follows. We set our notation and recall the notion of genericity for positive-

depth quasi-characters of tori in Section 2, where we relate these notions for G and G1. We discuss a key 
ingredient of the construction, the Heisenberg–Weil lift, in Section 3, following [9], and prove Proposition 3.2, 
which is essential to relating different G1-data in later sections.

In Section 4 we recall the construction of toral supercuspidal representations of length one, following 
[9,19]. We prove some additional properties of this parametrization in Lemma 4.4 and Proposition 4.5. 
Section 5 gives the branching rules for the restriction of toral supercuspidal representations of length one 
of G to G1, where the main result is Theorem 5.2.

We then turn to the case of G = D×. We recall known facts about G and G1, including their representation 
theory, and prove some needed technical results in Section 6. In Section 7 we apply the preceding to determine 
the branching rules of the restriction of representations of D× to each of D1 and O×

D. We use these results 
to give a classification of the irreducible representations of O×

D, up to equivalence, in Theorem 7.5.
An original motivation for considering the branching rules for the pair (D×, O×

D) was to compare them to 
those for the pair (GL(2, F ), GL(2, OF )) via the Jacquet–Langlands matching theorem. We conclude with 
some remarks on this point in Section 8.

2. Notation and genericity

Let F be a local nonarchimedean field with residue field f and residual characteristic p, with integer ring 
OF , prime ideal PF with uniformizer �, and valuation function val. We fix a character ψ of F which is 
trivial on PF but nontrivial on OF . When E is an extension field of F then valE is normalized to coincide 
with val on F , and we also choose an extension ψE of ψ to E, trivial on the prime ideal PE . Let μn ⊂ C×

denote the group of nth roots of unity.
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Let G be a connected reductive group defined and tamely ramified over F . Denote by G1 = [G, G] its 
derived group and set G = G(F ), G1 = G1(F ). Let Z denote the center of G.

We assume that p is sufficiently large for: the existence of generic elements in the Lie algebra (p must not 
be bad for G [19, §7]), the decomposition of the Lie algebra of G in the proof of Proposition 2.2 (p > k(G), 
the order of the kernel of the central isogeny Z(G) ×G1 → G); the work with the Heisenberg–Weil lift (p > 2
[9, §2.3]); and the construction of positive-depth toral supercuspidal representations to apply (G split over 
a tamely ramified extension of F ). We refer the reader to the excellent discussion in [4, §1]. For the case 
G = D× considered starting in Section 6, p > 2 suffices.

Let B(G, F ) denote the (enlarged) Bruhat–Tits building of G over F ; then the reduced building Bred(G, F )
is identified with B(G1, F ) = Bred(G1, F ). To each x ∈ Bred(G, F ) and r ∈ R≥0 we associate the correspond-
ing Moy–Prasad filtration subgroups Gx,r and Gx,r+ as in [15]. When T is a tamely ramified maximal torus 
of G, these give well-defined filtrations Tr of T = T(F ) and of its Lie algebra. For any extension field E
over which T is split and any x in the apartment A(G, T, E) of Bred(G, E) corresponding to T, we have 
filtrations Gα(E)x,r of each root subgroup Gα(E) of G(E) corresponding to (G, T). There are corresponding 
filtrations, for r ∈ R, of the Lie algebra and of its dual. We refer the reader to [9, §2.5], for example, for a 
summary of the many useful properties of these filtrations.

Recall that the depth of a representation ρ of G is defined to be the least r ∈ R≥0 such that for some 
x ∈ Bred(G, F ), ρ contains vectors invariant under Gx,r+.

Let T be a maximal torus of G with Lie algebra t = t(F ). For each r > 0 we have an isomorphism 
e: tr/tr+ → Tr/Tr+ and any character of tr/tr+ is given by X �→ ψ(〈X∗, X〉) for some X∗ ∈ t∗−r.

Choose an extension field E of F over which T splits, and let Φ = Φ(G, T, E) be the corresponding root 
system. For each α ∈ Φ, the coroot α∨: Gm → T is defined over E and has linearization at 1 the element 
Hα = dα∨(1) ∈ t(E)0. Thus for any X∗ ∈ t∗−r, one has valE(〈X∗, Hα〉) ≥ −r.

Definition 2.1. An element X∗ ∈ t∗−r is G(F )-generic of depth −r if for each α ∈ Φ, valE(〈X∗, Hα〉) = −r.

This definition is taken from [19, §8]. Genericity is closely related to the notion of a good element of the 
Lie algebra, defined in [1]; in this sense the following observation is the analogue of [4, Lemma 5.9].

Let T = T(F ) be a maximal torus of G and set S = T ∩G1. Then S = S(F ) = T ∩G1 is a maximal torus 
of G1 and for each r ≥ 0 Sr = Tr ∩G1. Let Z be the center of G. Denote their Lie algebras over F by the 
corresponding letters g, g1, t, s, z. By [4, Proposition 3.1] we have t = z ⊕ s and sr = tr ∩ g1 for all r ∈ R. 
We may identify s∗ with the set of X∗ ∈ t∗ which are trivial on z, and reciprocally for z∗; then we have a 
T -invariant decomposition t∗ = z∗ ⊕ s∗. We may thus uniquely write an element X∗ ∈ t∗−r as Z∗ +Y ∗, with 
Z∗ ∈ z∗−r and Y ∗ ∈ s∗−r. Now let E be a splitting field of T (or of S) and Φ = Φ(G, T, E) = Φ(G1, S, E). 
We have spanE{Hα | α ∈ Φ} = s(E). We observe as a consequence that X∗ is G-generic of depth −r if and 
only if Y ∗ is G1-generic of depth −r.

A character φ of T of positive depth r factors to a representation of Tr/Tr+ ∼= tr/tr+, where it is realized 
as

φ
(
e(X)

)
= ψ

(〈
X∗, X

〉)
for some X∗ ∈ t∗−r; we say φ is realized by X∗. Evidently many characters are realized by the same X∗. The 
character φ is called G-generic of depth r if X∗ is G-generic of depth −r.

Proposition 2.2. Let T be a maximal torus of G and T = T(F ). Then a character φ of T is G-generic of 
depth r if and only if its restriction to T ∩G1 is G1-generic of depth r.



3340 M. Nevins / Journal of Pure and Applied Algebra 219 (2015) 3337–3354
Proof. Suppose φ is a character of T of depth r and let X∗ ∈ t∗−r realize φ on Tr. Decompose X∗ = Z∗ +Y ∗

with Z ∈ z∗−r and Y ∗ ∈ s∗−r; then ResSr
φ is realized by Y ∗ since this decomposition is orthogonal. The 

result follows from the observation above. �
3. On Heisenberg p-groups and Weil representations

We summarize some essential components in the construction of supercuspidal representations from [9, 
§2.3].

Let (W, 〈, 〉) be a finite-dimensional symplectic vector space over Fp. Endow the set W × Fp with the 
group operation (w, z)(w′, z′) = (w +w′, z + z′ + 1

2 〈w, w′〉), and denote the resulting Heisenberg group W �.
For any choice of nontrivial central character, there is a unique corresponding irreducible representation 

τ of W � by the Stone–von Neumann Theroem. Because W � carries a natural action of Sp(W ), τ extends to a 
representation τ̂ = (τS , τ) of the group Sp(W ) �W �, called the Heisenberg–Weil lift of τ [9, Definition 2.17]. 
This extension is unique in all but one case (which occurs only if p = 3); in that case, a particular extension 
has been designated in [9, §2.4], attached to the choice of central character of τ .

An abstract p-Heisenberg group is a group H which is isomorphic to some W �. Given any such isomor-
phism, its restriction to the center Z of H induces a map μ: Z → Fp. Fixing an isomorphism

κ:μp ⊂ C× → Fp

allows us to factor μ uniquely as κ ◦φ, for some nontrivial character φ of Z. In this way φ alone determines 
the induced symplectic structure on H/Z, which is given on h, h′ ∈ H by 〈hZ, h′Z〉 = κ(φ([h, h′])).

Therefore conversely, given such a pair (H, φ), (H/Z)� is a Heisenberg group and there exist (many) 
isomorphisms ν: H → (H/Z)�. Following [9, Definition 2.29, Remark 2.33] we say the isomorphism ν is 
special if it takes the form ν(h) = (hZ, μ(h)) and the map μ: H → Fp restricts to the character κ ◦ φ

on Z. It follows that any two special isomorphisms differ by at most an Fp-valued character of H/Z. By [9, 
Lemma 2.35], any split polarization of H induces a special isomorphism.

Let Sp(H) denote the group of automorphisms of H which act by the identity on Z. Any isomorphism 
ν: H → W � induces an isomorphism ν∗: Sp(H) → Sp(W �). The natural inclusion Sp(W ) → Sp(W �) thereby 
induces an action of Sp(W ) on H depending on ν. This allows us to construct the semi-direct product 
Sp(W ) �ν H, which is a group isomorphic to Sp(W ) �W � via 1 × ν.

Now let T be a group equipped with a homomorphism f : T → Sp(H).

Definition 3.1. (See [9, Definition 3.17].) The isomorphism ν: H → W � is relevant for f if the image of the 
map ν∗◦f : T → Sp(W �) lies in the subgroup Sp(W ). In this case we write fν for the induced homomorphism 
fν : T → Sp(W ).

In other words, ν is relevant for f if and only if f induces a group homorphism fν×1: T�H → Sp(W ) �νH.
Now let ν: H → (H/Z)� be a special isomorphism corresponding to the central character φ and relevant 

for f : T → Sp(H). Let τ be an irreducible representation of the Heisenberg group H with central character φ. 
Then via ν there is a well-defined Heisenberg–Weil lift of τ to a representation τ̂ = (τS , τ) of Sp(H/Z) �νH. 
Pulling this map back via fν × 1 yields a representation ω of T �H, given by

ω(t, h) = τS
(
fν(t)

)
τ(h)

for all t ∈ T , h ∈ H. By [9, Lemma 3.21], the isomorphism class of ω depends only on the choices of φ and 
f and not on ν.
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Proposition 3.2. For i ∈ {1, 2} let Hi be a Heisenberg group with center Zi. Fix a nontrivial character 
φi of Zi and a corresponding special isomorphism νi: Hi → W �

i where Wi = Hi/Zi. Let Ti be a group 
and suppose further that νi is relevant for a homomorphism fi: Ti → Sp(Hi). Suppose we have a group 
isomorphism α: H1 → H2, inducing α: W1 → W2, and a group homomorphism δ: T1 → T2 such that the 
following diagrams commute:

H1
ν1

α

W �
1

α×id

T1
(f1)ν1

δ

Sp(W1)

inn(α)

H2
ν2

W �
2 T2

(f2)ν2 Sp(W2).

Then we have φ2 ◦α = φ1 on Z1 and α is a symplectic isomorphism, whence the maps in the diagram above 
are well-defined homomorphisms. Let (τ2, V ) be a Heisenberg representation of H2 with central character 
φ2. Then τ1 = τ2 ◦ α is a Heisenberg representation of H1 on V with central character φ1. Let ωi denote 
the pullback of the Heisenberg–Weil lift corresponding to νi of τi to Ti �Hi. Then for all t ∈ T1, h ∈ H1 we 
have

ω2
(
δ(t), α(h)

)
= ω1(t, h),

that is, the lifts coincide.

Proof. Since νi is special, restricting the first diagram to Z1 ⊂ H1 yields φ1 = φ2 ◦ α, and it follows that 
the symplectic forms on W1 and W2 agree via α. The commutativity of the first diagram of the hypothesis 
ensures that the induced map

inn(α) × α: Sp(W1) �ν1 H1 → Sp(W2) �ν2 H2

is a homomorphism. Since νi is relevant for fi, the commutativity of the second diagram of the hypothesis 
implies that the square in the following diagram commutes:

T1 �H1
(f1)ν1×id

δ×α

Sp(W1) �ν1 H1
τ̂1

inn(α)×α

T2 �H2
(f2)ν2×id

Sp(W2) �ν2 H2
τ̂2

GL(V ).

When the Heisenberg–Weil extension is unique, the commutativity of the triangle is immediate. When 
instead p = 3, we note that the compatibility of the choices of extensions of τi to Sp(Wi) �νi

Hi follows 
from their explicit dependence on the (compatible) central characters. The result follows. �
4. Toral supercuspidal representations of length one

We summarize the construction of irreducible supercuspidal representations of positive depth arising from 
toral generic G-data of length one. We assume throughout that the maximal torus T is tamely ramified 
over F . We follow the presentation in [9].

If p is sufficiently large to ensure all maximal tori of G are tamely ramified, then these representations 
may exhaust the set of supercuspidal representations. For example, when G is of rank one (over a separable 
closure), all irreducible supercuspidal representations of G of positive depth arise either in this way, or else 
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as a twist by a positive-depth character of G of a depth-zero representation. More generally, this is true of 
any connected reductive group whose longest tamely ramified twisted Levi sequence (in the sense of [19, §2]) 
has two factors, such as GLn, for n a prime.

4.1. The datum

A generic toral G-datum of length one (abbreviated: G-datum) consists of: T = T(F ), where T is a 
(tamely ramified) minisotropic maximal torus of G, defined over F ; a point y ∈ Bred(G, F ) ∩ A(G, T, E), 
where E is a splitting field of T ; a G-generic quasi-character φ of T of positive depth r; and a quasi-character 
χ of G which is either trivial or else of depth r̃ ≥ r.

Remark 4.1. In [19], the construction depends on the choice of y in the enlarged building, but by [9, 
Remark 3.10] we deduce that in the toral case it depends only on the image of y in Bred(G, F ), which in 
turn is uniquely determined by the minisotropic torus T .

We abbreviate such a datum as Ψ = (T, y, φ, r, χ). For g ∈ G we set gΨ = (gT, g · y, gφ, r, χ), where 
gT := gTg−1 and gφ is the corresponding representation of gT . Here and throughout we apply the convention 
that s = r/2.

4.2. The construction of ρ̃

The main step is the construction of a representation ρ̃ of TGy,s from the subset (T, y, φ, r) of the 
G-datum. We summarize it here, primarily following the detailed presentation in [9, §2.3 and 3.3].

Let E be a splitting field of T and set Φ = Φ(G, T, E). We consider y as an element of Bred(G, E). Define

J(E) =
〈
T(E)r,Gα(E)y,s

∣∣ α ∈ Φ
〉

and

J+(E) =
〈
T(E)r,Gα(E)y,s+

∣∣ α ∈ Φ
〉
.

Note that T(E)J(E) = T(E)G(E)y,s and T(E)J+(E) = T(E)G(E)y,s+.
The character φ of T is realized on Tr/Tr+ ∼= tr/tr+ by an element X∗ ∈ t∗−r, via the fixed additive 

character ψ of F . Extension of scalars from f to the residue field of E produces from X∗ a unique linear 
functional on t(E)r/t(E)r+ which via ψE ◦ e similarly defines a character φE of T(E)r/T(E)r+. The re-
striction of φE to Tr coincides with φ. We may extend φE trivially across the groups Gα(E)y,s+, α ∈ Φ, to 
produce the character φ̂E of J+(E).

If J(E) = J+(E) then let J = J(E) ∩G and φ̂ = ResJ φ̂E . Then it follows that φ and φ̂ together extend 
to a unique character of TJ = TGy,s, which we denote ρ̃. Note that in this case, one can equally define ρ̃
without passing to the splitting field [19, §4]. We evidently have ResT (ρ̃) = φ.

Now suppose that J(E) 
= J+(E). Set N(E) = ker(φ̂E). The index of N(E) in J+(E) is p, since this 
quotient is isomorphic to an additive group of characteristic p; in fact J+(E)/N(E) ∼= T(E)r/ ker(φE). 
One verifies that H(E) = J(E)/N(E) is an abstract Heisenberg group over Fp with center ZH(E) =
J+(E)/N(E). Since φ is generic, the construction of φE above ensures that the form 〈hZH(E), h′ZH(E)〉 =
κ(φE([h, h′])) is nondegenerate and we may set W (E) = (J(E)/J+(E), 〈, 〉), a symplectic vector space 
over Fp.

Since as symplectic vector spaces we have W (E) ∼= ⊕α∈Φgα(E)y,s/gα(E)y,s+, we may choose a polariza-
tion W (+) ⊕W (−) of W (E) where W (±) is spanned by the positive (respectively, negative) root spaces.
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These Lagrangian subspaces W (±) lift to subgroups of H(E), thus providing a well-defined splitting of 
H(E). This implies that each g ∈ H(E) may be factored uniquely as g = g+g−g0 with g± ∈ W (±) and 
g0 ∈ ZH(E) and thus the map

μ(g) = κ
(
φ̂E(g0)

)
+ 1

2 〈g+, g−〉

defines a special isomorphism νE : H(E) → W (E)� given by νE(h) = (hZH(E), μ(h)) [9].
Finally, let J, J+ and N denote the intersections with G of the corresponding groups over E. Set H = J/N , 

W = J/J+ and ZH = J+/N ∼= ZH(E). Since T is minisotropic, it acts by conjugation on J , preserving J+
and N . By [9, Lemma 2.32], the restriction ν of νE to H is a special isomorphism with W �, relevant for 
the map f ′: T → Sp(H) induced by conjugation, and independent of the choice of extension ψE. By [9, 
Lemma 3.18], the induced homomorphism fν : T → Sp(W ) coincides with the conjugation action f of T on 
W = J/J+.

Let τ denote a Heisenberg representation of H with central character φ, and let τ̂ = (τS , τ) denote its 
Heisenberg–Weil lift to Sp(W ) �ν H. Then the pullback representation of T �J is given on t ∈ T and j ∈ J

by

ω(t, j) = τS
(
f(t)

)
τ(j).

Set ρ̃(tj) = φ(t)ω(t, j); this is well-defined and is the representation of TJ = TGy,s we sought. Note that 
by [19, Theorem 11.5], ResT0+ ρ̃ is φ-isotypic; but in general this is not true of ResT0 ρ̃ due to the presence 
of the term τS(f(t)).

4.3. The representation πG(Ψ)

Let Ψ = (T, y, φ, r, χ) be a G-datum. Construct the representation ρ̃ of TGy,s from the subset (T, y, φ, r)
as above. Then

ρG(Ψ) = χρ̃

is a representation of TGy,s. The following is a special case of results in [1,19].

Theorem 4.2. The representation

πG(Ψ) = c- IndG
TGy,s

ρG(Ψ)

is an irreducible supercuspidal representation (of depth r if χ is trivial, else of depth equal to that of χ).

We omit the subscript G on π and ρ where there is no possibility of confusion.

4.4. Properties of the parametrization

J. Hakim and F. Murnaghan [9] determined when two G-data give rise to equivalent supercuspidal 
representations, modulo a hypothesis called C(�G), which is satisfied in the toral case. We summarize their 
results for the particular G-data we consider here.

Proposition 4.3 (Hakim–Murnaghan). Let Ψ = (T, y, φ, r, χ) and Ψ ′ = (T ′, y′, φ′, r′, χ′) be two (toral, length-
one, generic) G-data. Then
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(1) If T = T ′, r = r′ and χφ = χ′φ′, then ρ(Ψ) ∼= ρ(Ψ ′).
(2) We have π(Ψ) ∼= π(Ψ ′) if and only if there exists g ∈ G such that T ′ = gT , r = r′ and χ′φ′ = g(χφ) as 

characters of T ′.

The first statement is an example of refactorization, and thus follows from [9, Proposition 4.24]. The 
second, incorporating G-conjugacy, is [9, Corollary 6.10]. The proofs of these results involve a detailed 
and complex analysis of the construction of ρ vis-à-vis defined notions of elementary transformations, 
refactorization and G-conjugacy.

Note that from the first statement one may also deduce that if χ is a character of G of depth less than r, 
then ρ̃(T, y, (ResT χ)φ, r) = χρ̃(T, y, φ, r). By our choice of definition of G-datum, we always incorporate a 
twist by a central character into the toral character when its depth is smaller; this shows there is no loss of 
generality in doing so.

We note the following additional properties of the construction.

Lemma 4.4. Let Ψ = (T, y, φ, r, χ) be a G-datum.

(a) The center Z acts by the character χφ in ρ(Ψ), and in π(Ψ).
(b) If Ψ ′ = (T, y, φ′, r, χ′) is another G-datum such that ResTr

φ = ResTr
φ′ then the corresponding pullbacks 

of the Heisenberg–Weil representation are the same, that is, ω = ω′.
(c) If Ψ ′ = (T, y, φ′, r, χ′) is another G-datum such that ResT0 φ = ResT0 φ

′ then ResT0Gy,s
ρ̃(Ψ) =

ResT0Gy,s
ρ̃(Ψ ′).

(d) If γ ∈ G then γΨ is a G-datum and γρ(Ψ) ∼= ρ(γΨ).

Proof. We adopt the notation of Section 4.2. To see that the restriction of ρ(Ψ) to Z ⊆ T is χφ-isotypic 
is immediate from the construction if TGy,s = TGy,s+. Otherwise, since the conjugation action of Z on J
and hence on W is trivial, τS ◦ f is trivial on Z. Part (a) follows. For part (b) we assume TGy,s 
= TGy,s+. 
Note that if φ and φ′ are characters of depth r coinciding on Tr, then they restrict to the same character of 
Tr/Tr+. Thus part (b) is the observation that the dependence of ω on φ is limited to the restriction of φ to 
this quotient. Part (c) follows immediately from part (b), and the definition of ρ̃.

Part (d) is implicit in [9]. That γΨ is a G-datum is immediate. For the rest, it suffices to show that the 
corresponding pullbacks of the Heisenberg–Weil representations to γT �γJ coincide, which we do here using 
Proposition 3.2.

We use a subscript γ to denote an object in the construction corresponding to the datum γΨ . Since 
Jγ(E) = γJ(E) and Jγ+(E) = γJ+(E), the result is immediate if J(E) = J+(E).

So suppose J(E) 
= J+(E). The character (̂φE)γ of γJ+(E) coincides with γ φ̂E , whose kernel is N(E)γ =
γN(E). Similarly, we have H(E)γ = γH(E) and W (E)γ = γW (E). Moreover, the symplectic form on 
W (E)γ is given by

〈
γx, γy

〉
γ

= κ
(
γ φ̂E

([
γx, γy

]))
= κ

(
φ̂E

(
[x, y]

))
= 〈x, y〉.

It follows that the polarization used in the construction of νγ is W (±)γ ∼= γW (±). Thus for any h ∈ H(E)
we have μγ(γh) = μ(h), yielding

(νE)γ
(
γh

)
=

(
γhZγH(E), μγ

(
γh

))
=

(
γ(hZH(E)), μ(h)

)
.

Descending now to F , this implies that conjugation by γ gives isomorphisms α: H → Hγ and α: W → Wγ

such that the first of the following diagrams
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H
ν

α

W �

α×id

T
f

δ

Sp(W )

inn(α)

Hγ

νγ

W �
γ

γT
fγ

Sp(Wγ)

commutes. Next, letting δ: T → γT denote the conjugation map, we see directly that the second diagram 
commutes, all maps being the expected conjugations.

Thus Proposition 3.2 applies. Let (τγ , V ) be a Heisenberg representation of Hγ with central character 
γφ; then τ = τγ ◦ α is a Heisenberg representation of H with central character φ. Let ωγ and ω denote the 
pullbacks of the Heisenberg–Weil lifts of τγ and τ , respectively. We conclude that for all t ∈ T and h ∈ H, 
ωγ(γt, γh) = ω(t, h), whence ωγ = γω. Recalling that any other choice of τ with the given central character 
gives a representation isomorphic to ω, the result follows. �
Proposition 4.5. Let Ψ = (T, y, φ, r, χ) be a G-datum. Set S = G1 ∩ T , φ1 = ResG1 φ and χ1 = ResG1 χ. 
Define

Ψ1 =
{

(S, y, φ1, r, χ1) if the depth of χ1 is at least r, and
(S, y, χ1φ1, r, 1) otherwise.

Then Ψ1 is a generic toral length-one G1-datum, called the restriction of Ψ to G1, and ResSG1
y,s

ρG(Ψ) ∼=
ρG1(Ψ1).

Proof. First note that S = T ∩G1 is a minisotropic maximal torus of G1 associated to the same point y of 
Bred(G1, F ) = Bred(G, F ). Setting S = S(F ), the character φ1 := ResS φ is also G1-generic of depth r, by 
Proposition 2.2. If χ1 = ResG1 χ has depth less than r then ResSr

χ1φ1 = ResSr
φ1, so this character is also 

generic of depth r. Thus in each case Ψ1 is a (toral, generic, length-one) G1-datum.
By the remarks following Proposition 4.3, it suffices to prove that ResSG1

y,s
ρG(Ψ) ∼= ρG1(Ψ1) when χ = 1.

Let E be a splitting field of T and S, and denote the groups arising in the construction for G1 with the 
superscript 1. Since for each root α, Gα(E)y,s = G1

α(E)y,s, the groups J1(E) and J1
+(E) are defined as for 

G but with T(E)r replaced by S(E)r. It follows that J1 ⊆ J and ResJ1
+
φ̂ = φ̂1. Since J1 = J1

+ if and only 
if J = J+, the result follows directly in this case.

So suppose J 
= J+. Since J+ ∩ J1 = J1
+ and J1J+ = J , the inclusion ι: J1 → J induces an isomorphism 

β: W 1 → W . Since ResJ1
+
φ̂ = φ̂1, the symplectic forms on W 1 and W coincide under β, so β is a symplectic 

isomorphism. Moreover, since ker φ̂1 = ker φ̂ ∩ J1
+, we have N1 = N ∩ J1

+ = N ∩ J1, whence ι induces also 
an isomorphism α: H1 → H such that β = α. Finally, since ν and ν1 arise from the same polarization of 
W ∼= W 1, we deduce that the diagram

H1 ν1

α

W 1�

β×id

H
ν

W �

commutes. The conjugation action of S on W 1 and on W being the same, the second hypothesis of Propo-
sition 3.2 is also satisfied, whence we deduce as before that ResS�J1 ω ∼= ω1, and the result follows. �
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5. On restrictions of representations of G to G1

By [18], the restriction of any irreducible representation of G to ZG1, and hence to G1, decomposes as 
a finite direct sum of irreducible representations.

Let Ψ = (T, y, φ, r, χ) and let Ψ1 denote the restriction of Ψ to G1. We omit the subscripts G and G1

from the representations. From Proposition 4.5 we deduce the irreducible representation π(Ψ1) occurs in 
ResG1 π(Ψ). Since G1 is normal in G, the remaining summands each have the form γπ(Ψ1), for some γ ∈ G. 
On the other hand by Proposition 4.3, π(Ψ) ∼= π(γΨ), so it follows that π((γΨ)1) also occurs as a summand 
of ResG1 π(Ψ).

Lemma 5.1. Let Ψ1 be the restriction to G1 of a G-datum Ψ . Then for each γ ∈ G we have (γΨ)1 = γ(Ψ1)
and

γπ
(
Ψ1) ∼= π

(
γΨ1).

Proof. Let Ψ = (T, y, φ, r, χ) be a G-datum; we may assume without loss of generality that χ = 1. Let γ ∈ G, 
which normalizes G1, and write Ψ1 = (S, y, φ1, r). As γT ∩G1 = γS, we have ResγS γφ = γφ1. Therefore the 
restriction of γΨ = (γT, γ · y, γφ, r, χ) to G1 coincides with the twisted datum γΨ1 = (γS, γ · y, γφ1, r). By 
Lemma 4.4, γρ(Ψ) ∼= ρ(γΨ), so by Proposition 4.5, restricting to G1 yields γρ(Ψ1) ∼= ρ(γΨ1). It now follows 
that

γπ
(
Ψ1) = γ

(
c- IndG1

SG1
y,s

ρ
(
Ψ1)) ∼= c- IndG1

(γS)G1
γ·y,s

γρ
(
Ψ1) = π

(
γΨ1). �

Theorem 5.2. Let Ψ be a G-datum and let Ψ1 denote its restriction to G1. Then π(Ψ) decomposes with 
multiplicity one upon restriction to G1 as

ResG1 π(Ψ) ∼=
⊕

γ∈G/TG1

π
(
γΨ1).

Proof. By Lemma 5.1 and the remarks preceding it, we may apply Mackey theory to deduce that

ResG1 π(Ψ) = ResG1 c- IndG
TGy,s

ρ(Ψ)

∼=
⊕

γ∈G1\G/TGy,s

c- IndG1

G1∩γ(TGy,s)
γρ(Ψ)

∼=
⊕

γ∈G1\G/TGy,s

π
(
γΨ1).

As G1 is normal in G, and for s > 0, TGy,s = TG1
y,s ⊆ TG1, the given decomposition follows.

To conclude that the summands are distinct, let Ψ1 = (S, y, φ1, r) be the restriction of Ψ = (T, y, φ, r, χ)
and suppose γ ∈ G is such that π(γΨ1) ∼= π(Ψ1). By Proposition 4.3 there is some u ∈ G1 such that 
setting g = uγ we have gS = S, g · y = y and gφ1 = φ1. Since r > 0, we have Tr = ZrSr; thus gTr = Tr

and gJ+ = J+. It also follows that gφ = φ on Tr, whence their trivial extensions to J+ coincide; call this 
character φ̂.

A key step in the proof of the irreducibility of πG(Ψ) ([19, Theorem 9.4], also called property SC10) is 
the assertion that any g ∈ G intertwining φ̂ must lie in JTJ . Thus we conclude that g ∈ TJ = TGy,s and 
so γ ∈ TG1, whence the summands are distinct. �
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6. Application to the multiplicative group of the quaternion algebra over F

Let D be the quaternionic division algebra over F . We give a self-contained summary of the groups D×

and D1 and recast their (well-known) representation theory in the language of the preceding sections. A key 
reference is [5, §53, 54]. We assume p > 2; this satisfies all the hypotheses in Section 2.

6.1. Notation and background on D×

Let ε denote a nonsquare in O×
F . Then the quaternion algebra D = D(F ) over F can be realized as the 

F -algebra with presentation

〈
1, i, j, k

∣∣ i2 = ε, j2 = �, k2 = −ε�, ij = k = −ji
〉
.

Given z = a + bi + cj + dk in this presentation, the anti-involution z �→ z = a − bi − cj − dk defines the 
(reduced) trace as Tr(z) = 2a and the (reduced) norm as nrd(z) = a2−b2ε −c2�+d2ε�, both taking values 
in F . The ring OD = {z ∈ D | nrd(z) ∈ OF } is a maximal compact open subring with unique maximal 
ideal PD = ODj. We normalize our valuation in F so that val(�) = 1 and extend it to a valuation on D or 
any algebraic extension field of F . In particular note that valD(j) = 1

2 .
The map nrd is algebraic over F , and the derived group of D× is D1 = ker(nrd). The groups D× = D×(F )

and D1 = D1(F ) ⊆ OD
× are both compact mod center. The Lie algebra of D× is D whereas that of D1

consists of elements of trace zero. One has [D×, D×] = D1 [11, Lemma I.4.1] and [D1, D1] = D1 ∩ (1 +PD)
[17, §5]. The center of D× is Z = F×; via the norm map ZD1 has index equal to |F×/F×2| = 4 in D×.

Each quadratic extension E of F can be embedded in D, uniquely up to D×-conjugacy, and the restriction 
of the anti-involution · to E coincides with the action of the nontrivial Galois element. Furthermore, for each 
such E there is some σ ∈ D× such that σz = z for all z ∈ E; then D = E⊕σE. Note that E1 := E×∩D1 is 
given by {ββ−1 | β ∈ E}. The maximal tori of D× are exactly the groups E×, for E a quadratic extension 
of F ; there are thus three conjugacy classes. For each maximal torus T of D×, it follows from the norm map 
that TD1 has index 2 in D× and that the normalizer in D× of T is ND×(T ) = T � Tσ.

One may choose explicit representatives as follows. Denote by L the unramified extension field F [i]
contained in D; then one may take σ = j. Fix μ ∈ L× satisfying nrd(μ) = ε. Then the two nonconjugate 
ramified extensions of F in D are represented by F [j] and F [μj]; in these cases one may take σ = i.

Lemma 6.1. There are three conjugacy classes of maximal tori of D1 when −1 ∈ (F×)2. Otherwise, for each 
ramified torus T of D×, the tori D1 ∩ T and D1 ∩ μT are not D1-conjugate, and there are a total of five 
D1-conjugacy classes.

Proof. For each maximal torus S of D1 there is a maximal torus T of D× such that S = T ∩D1. For fixed T , 
the set of D1-conjugacy classes of tori in {γT ∩D1 | γ ∈ D×} is parametrized by γ ∈ D×/ND×(T )D1. This 
group is nontrivial if and only if T is ramified and −1 /∈ F×2, in which case it has order two and a set of 
representatives is {1, μ}. �

One deduces that all maximal tori in D1 are self-normalizing.

6.2. Genericity of quasi-characters of tori

The homomorphism ϕ: D× → GL2(L) determined by ϕ(i) =
[ i 0

0 −i

]
, ϕ(j) =

[ 0 1
� 0

]
is an embedding. Its 

image in GL2(L) is the set of fixed points under the involution Θ(g) = ϕ(j)−1gϕ(j). Thus we can realize 
the reduced building Bred(D, F ) of D× as the unique fixed point x in Bred(GL2, L) of the automorphism Θ. 
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For this choice of ϕ, the diagonal split torus is Θ-stable, and x lies in the corresponding apartment A ⊂
Bred(GL2, L), where it is the barycenter of the fundamental chamber. We can and do omit the subscript x
from our notation in this case. For G ∈ {D×, D1} the Moy–Prasad filtration subgroups are simply given by 
Gr = {g ∈ G | valD(g) ≥ r} and Gr+ = {g ∈ G | valD(g) > r}. Note that D×

0 = O×
D and D1

0 = D1.
We note in passing that the notion of a generic character of a maximal torus of D× coincides with the 

original notion of an admissible character, due to R. Howe [10], as follows.

Lemma 6.2. Any nontrivial quasi-character of a maximal torus of D1 is D1-generic. For T a maximal torus of 
D×, the quasi-character φ of T of positive depth r is D×-generic if and only if r = min{depth(χφ): χ ∈ F̂×}
where χφ := (χ ◦ nrd) ⊗ φ.

Proof. Let φ be a quasi-character of a maximal torus T of D× of depth r > 0 and let S = T ∩D1. As Lie(S)
is one-dimensional over F , every nontrivial character of S is D1-generic; therefore by Proposition 2.2, φ is 
D×-generic if and only if ResS φ also has depth r. It thus suffices to prove that ResSr

φ = 1 if and only if 
there exists χ ∈ F̂× such that ResTr

χφ = 1.
As ResSr

φ = ResSr
χφ, one direction is clear. For the other, note first that z = F ⊂ D. Thus e(zr) =

1 +P�r	
F , on which the norm map is the squaring map, which is bijective when r > 0. Thus every character of 

zr/zr+ is realized as χ ◦nrd◦e, for some character χ of F× of depth r. Choose χ such that χ ◦nrd◦e = φ−1◦e
on zr/zr+. Since each of these characters is trivial on sr, it follows that they are equal on tr as well, whence 
χφ = (χ ◦ nrd)φ is trivial on Tr, as required. �
6.3. Depths of generic quasi-characters of tori

Let G ∈ {D×, D1}.

Proposition 6.3. Let T be a maximal torus of G. If T is unramified then its G-generic characters have integral 
depth, whereas if T is ramified then its G-generic characters have depth in 1

2 + Z.

Proof. Each maximal torus T of D× has the form F [β]× ⊂ D×, for some β ∈ D \ F ; we may without loss 
of generality assume β has trace 0. The Lie algebra of S = T ∩ D1 is s = Fβ. Thus the values r ∈ R for 
which sr 
= sr+ occur for r ∈ valD(β) + Z, which are integers if T is unramified, and elements of 1

2 + Z if T
is ramified. The result for S and T now follows from Lemma 6.2 and Proposition 2.2, respectively. �
Corollary 6.4. Let T be a maximal torus of G and φ a G-generic quasi-character of T of depth r. Set s = r/2. 
Then TGs = TGs+ unless T is unramified and r is odd.

Proof. We note that Gs = Gs+ unless s ∈ 1
2Z, and therefore by Proposition 6.3, the equality follows for T

a ramified torus. If G = D× and T is unramified then we may without loss of generality assume T = L×

and decompose g = t ⊕ tj. Since val(j) = 1
2 , for each integral s we have D×

s /D
×
s+

∼= Ts/Ts+, whence 
TD×

s = TD×
s+. The same argument holds for G = D1 and T = S = T ∩ D1, by noting the analogous 

decomposition g = s ⊕ tj. Finally, since T ∩ D×
s = T�s	 it follows for s ∈ 1

2 + Z that D×
s 
= D×

s+ ensures 
TD×

s 
= TD×
s+, and also SD1

s 
= SD1
s+. �

6.4. Smooth representations of D× and D1

The smooth irreducible representations of D× and D1 are well-known (and are evidently all supercusp-
idal), see [7,10,5] and [13] respectively. We present the complete list for the case of p 
= 2 (the tame case) 
here; the case p = 2 for includes more representations and for D× is treated in, for example, [5, Ch. 13]. For 
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simplicity, we reserve “representation of depth �” for the subset of those of degree greater than one (that is, 
excluding the quasi-characters).

6.4.1. Characters
Since D×/[D×, D×] ∼= D×/D1 ∼= F× the one-dimensional smooth representations of D× are in bijection 

with characters of F× via the nrd map. On the other hand, as [D1, D1] = D1 ∩ (1 + PD) = D1
0+, every 

character of D1 factors through D1/D1
0+

∼= L1/L1
0+, so they are in bijection with the q+1 distinct depth-zero 

characters of L1.

6.4.2. Depth-zero representations
Since D1 = D1

0, the depth-zero representations of D1 are those which factor through D1/D1
0+, namely 

its characters, so by our convention we will say D1 has no representations of depth zero.
In contrast D× admits depth-zero representations, whose construction we summarize from [5, §54.2] as 

follows. A depth-zero generic or admissible character of L× (see [10]) is a quasi-character θ of L× of depth 
zero which does not factor through the norm map, or equivalently, such that θ 
= θ where θ(z) = θ(z). Two 
distinct admissible characters θ′ and θ are called F -equivalent if θ′ = θ.

Given a depth-zero admissible character θ of T = L×, extend it trivially across D0+ to give a quasi-
character θ of TD×

0+. Then

π(θ) = IndD×

TD×
0+

θ

is an irreducible representation of D× of depth zero. Moreover, isomorphism classes of depth-zero represen-
tations of D× are in bijection with F -equivalence classes of depth-zero admissible characters of L×.

Remark 6.5. Since TD×
0+ = L×(1 +PD) = L×D1, we see D×/TD×

0+ is represented by {1, σ = j}. Thus π(θ)
has degree 2 and its restriction to TD×

0+ is exactly θ ⊕ θ.

6.4.3. Positive-depth representations
Let G ∈ {D×, D1}. There are two kinds of representations of positive depth of G. The first are those of 

the form π = χπ0, where π0 is any representation of depth zero and χ is any character of positive depth.
The second kind are parametrized by generic toral G-data Ψ = (T, y, φ, r, χ) of length one, as in Section 4. 

For simplicity, we omit y, as it is the unique point x in Bred(G, F ). Similarly, we may omit χ when G = D1, 
because all characters of D1 are of depth zero and hence are subsumed in φ. As always, we identify a 
character χ of D× with a character of F× via nrd.

7. Relating representations of D×, D1 and O×
D

In this section we apply the results of Section 5 to determine the restrictions and decomposition into 
irreducible representations of each of the representations of D× to OD

× and to D1. The restriction to D1 has 
presumably been known to experts. The restriction to O×

D is new and leads to the datum-type classification 
of positive-depth representations of O×

D in Section 7.3.

7.1. Branching rules for the restriction of representations of D× to D1

Lemma 7.1. The restriction of any character of D× to D1 is trivial. All nontrivial characters of D1 occur 
in the restriction of a depth-zero representation of D×.
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Proof. The first statement follows from D1 = [D×, D×]. Let θ be a depth-zero admissible character of T =
L× and π(θ) be the associated depth-zero representation of D×. Set ϑ = ResD1∩L× θ; then by Remark 6.5
ResD1 π(θ) = ϑ ⊕ ϑ. As D1 ∩ L = L1 = {zz−1 | z ∈ L×}, the admissibility of θ is equivalent to ϑ 
= 1. �

In particular, the restriction of π(θ) to D1 decomposes with multiplicity one except when ϑ2 = 1, when 
the multiplicity is two.

For a D1-datum Ψ1 = (S, φ1, r) set Ψ1 = σΨ1 = (S, φ1, r).

Proposition 7.2. Let Ψ be a D×-datum and let Ψ1 denote its restriction to D1. Then ResD1 π(Ψ) decomposes 
as a direct sum of two inequivalent representations. When Ψ is unramified, or when −1 ∈ F×2, we have

ResD1 π(Ψ) ∼= π
(
Ψ1)⊕ π

(
Ψ1

)
whereas otherwise

ResD1 π(Ψ) ∼= π
(
Ψ1)⊕ π

(
μΨ1).

Proof. It suffices by Theorem 5.2 to note that D×/TD1 is represented by {1, σ} except in the case that T
is ramified and −1 /∈ F×2, where it is represented by {1, μ}. �
7.2. Branching rules for the restriction of representations of D× to O×

D

Note that the center of O×
D is O×

F . Since O×
FD

1 has index two in O×
D, and F×O×

D has index two in 
D×, each restriction, from D× to O×

D, or from O×
D to D1, is either irreducible or else a direct sum of two 

inequivalent irreducible representations. We may thus deduce many of the branching rules for O×
D from the 

results of the preceding section. We begin with the characters.

Lemma 7.3. Each character of O×
D may be uniquely written as χθ := (χ ◦ nrd)θ, with χ ∈ Ô×

F and θ either 
trivial, or else the inflation of an admissible depth zero character of O×

L to O×
D.

Proof. Each character ϕ of O×
D occurs in the restriction of some representation π of D×. Its further re-

striction to D1 being a character implies by the preceding section that π = χπ(θ) for some χ ∈ F̂× and 
admissible character θ of the unramified torus L×. Set χ0 = ResO×

F
χ and identify θ with a depth-zero 

character of O×
D via O×

D/(1 +PD) ∼= L×
0 /L

×
0+. Then by Remark 6.5 ResO×

D
χπ(θ) = χ0θ ⊕ χ0θ. The unicity 

is immediate. �
We now turn to the restrictions of representations of positive depth of D× (of the second kind).

Proposition 7.4. Let Ψ = (T, φ, r, χ) be a D×-datum. Then if T is unramified

ResOD
× π(Ψ) ∼= IndO×

D

T0D
×
s
ρ(Ψ) ⊕ IndO×

D

T0D
×
s
ρ(Ψ) (7.1)

is a decomposition into irreducible inequivalent representations of O×
D whereas if T is ramified, then

ResOD
× π(Ψ) ∼= IndO×

D

T0D
×
s
ρ(Ψ) (7.2)

is irreducible.
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Proof. If T is unramified then OD
×\D×/TD×

s = {1, σ} so by Mackey theory

ResOD
× π(Ψ) ∼= IndO×

D

T0D
×
s
ρ(Ψ) ⊕ IndO×

D

T0D
×
s

σρ(Ψ)

where we have used that OD
× ∩ TGy,s = T0D

×
s and that σ normalizes this group. Since there are two 

factors, they must be irreducible. Note that

ResD1 IndO×
D

T0D
×
s
ρ(Ψ) ∼= πD1

(
Ψ1)

so their inequivalence follows from Proposition 7.2, for example. Applying Lemma 5.1 yields (7.1).
If T is ramified then D× = O×

DT , whence (7.2). By Proposition 7.2 its further restriction to D1 decomposes 
as a sum of two invariant subspaces πD1(Ψ1) ⊕ πD1(γΨ1), where γ = σ if −1 ∈ (F×)2 and γ = μ otherwise. 
In either case, γ ∈ O×

D, whence it follows from Mackey theory that neither subspace can be invariant under 
O×

D. Thus ResO×
D
π(Ψ) is irreducible. �

It follows from the proof that for Ψ = (T, φ, r, χ), ResD1 IndO×
D

T0D
×
s
ρ(Ψ) is irreducible if and only if T is 

unramified.

7.3. Classification of irreducible representations of O×
D

Recall the equivalence relation on G-data defined by Proposition 4.3. In this section we provide its 
analogue for the group O×

D.
Say that two D×-data Ψ = (T, φ, r, χ) and Ψ ′ = (T ′, φ′, r, χ′) are O×

D-equivalent, written Ψ ≡O×
D

Ψ ′, if 
there exists a g ∈ O×

D for which gT = T ′, r = r′ and ResT ′
0
g(χφ) = ResT ′

0
χ′φ′. Let Ψ0 = (T0, φ0, r, χ0) where 

φ0 and χ0 are the corresponding characters restricted to T0 and O×
F , respectively. We call Ψ0 an O×

D-datum
and say that Ψ0 and Ψ ′

0 are equivalent if there exists g ∈ O×
D such that gT0 = T ′

0, r = r′ and g(χ0φ0) = χ′
0φ

′
0. 

Note that for g ∈ D×
0 = O×

D, gT = T ′ is equivalent to gT0 = T ′
0. It follows that O×

D-equivalence classes of 
D×-data are in bijection with equivalence classes of O×

D-data.
Given a D×-datum Ψ , let

πO×
D

(Ψ) = IndO×
D

T0Gs
ρ(Ψ),

which is irreducible by Proposition 7.4. The following theorem implies πO×
D

(Ψ) depends only on the equiva-
lence class of Ψ0, in analogy with Proposition 4.3, whence a datum-type classification of the representations 
of positive depth of O×

D.

Theorem 7.5. The irreducible representations of OD
× are:

(1) the distinct characters: χθ := (χ ◦ nrd)θ, where χ ∈ Ô×
F and θ is either trivial or the inflation to OD

×

of an admissible depth-zero character of L× ⊂ OD
×;

(2) the representations of degree greater than one: πO×
D
(Ψ), for a D×-datum Ψ = (T, φ, r, χ).

Moreover, πO×
D

(Ψ) ∼= πO×
D

(Ψ ′) if and only if Ψ ≡O×
D
Ψ ′.

Proof. The first point is Lemma 7.3. That the list in the second point is exhaustive follows from the 
classification of representations of D× and Proposition 7.4. We have only to prove the last statement.
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First suppose Ψ ≡O×
D

Ψ ′. Since ρ(gΨ) ∼= gρ(Ψ) for each g ∈ D×, it follows easily that for any g ∈ O×
D, 

πO×
D

(gΨ) ∼= πO×
D

(Ψ). Therefore without loss of generality we may replace Ψ ′ with an O×
D-conjugate of the 

form (T, φ′, r, χ′) such that ResT0 χφ = ResT0 χ
′φ′.

Set ϕ = χ′φ′(χφ)−1; since this is a character of T trivial on T0, we deduce that Ψ ′′ := (T, ϕφ, r, χ) is 
also a D×-datum. Since χ(ϕφ) = χ′φ′, Proposition 4.3 implies ρ(Ψ ′′) ∼= ρ(Ψ ′), whence their restrictions 
to T0Gs are equivalent. On the other hand, since ResT0 ϕφ = ResT0 φ and Ψ ′′ and Ψ share the same 
D×-character χ, it follows from Lemma 4.4 that ResT0Gs

ρ(Ψ) = ResT0Gs
ρ(Ψ ′′). Consequently πO×

D
(Ψ) ∼=

πO×
D

(Ψ ′), as required.
Now suppose πO×

D
(Ψ) ∼= πO×

D
(Ψ ′). Let Ψ1 and Ψ ′1 denote the restrictions of Ψ and Ψ ′ to D1, respectively.

By the proof of Proposition 7.4, if ResD1 πO×
D

(Ψ) is irreducible then πD1(Ψ1) ∼= πD1(Ψ ′1), whereas if it 
is reducible then

πD1
(
Ψ1) ∈ {

πD1
(
Ψ ′1), πD1

(
μΨ ′1)}.

Since μ ∈ O×
D, we may replace Ψ ′ by an O×

D conjugate if necessary to assume πD1(Ψ1) ∼= πD1(Ψ ′1) in this 
case as well.

Thus we may replace Ψ ′ by a D1 ⊆ O×
D conjugate to assume that S = T ∩ D1 = T ′ ∩ D1, r = r′ and 

φ1 = φ′1. In terms of D×-data, it follows that T = T ′ and ResS φ = ResS φ′. On the other hand, comparing 
central characters and using Lemma 4.4 yields ResZ0 χφ = ResZ0(χ′φ′). Thus χφ and χ′φ′ agree on Z0S. 
When T = E× is ramified, then Z0S = O×

FE
1 = E× ∩ O×

D = T0 so we may conclude Ψ ≡O×
D
Ψ ′.

When T is unramified, then Z0S is of index two in T0. Choose a character ξ of T which restricts on T0

to the nontrivial character of T0/Z0S; then ResT0 χ
′φ′ ∈ {ResT0 χφ, ResT0 ξχφ}.

Suppose for the purpose of contradiction that ResT0 χ
′φ′ = ResT0 ξχφ. Then Ψ ′ ≡O×

D
Ψ ′′ where Ψ ′′ =

(T, ξφ, r, χ). Since ξ is of depth zero Lemma 4.4 implies that the pullbacks ω, ωξ of the Heisenberg–Weil lifts 
corresponding to φ and ξφ, respectively, coincide. Since ξ is trivial on Gs, ρ̃′′ = ξρ̃ whence ρ(Ψ ′′) = ξρ(Ψ). 
To derive a contradiction it suffices by Mackey theory to show that for all γ ∈ O×

D,

Hγ := HomT0Gs∩γT0Gs

(
ξρ(Ψ), γρ(Ψ)

)
= {0}. (7.3)

This is true for γ ∈ T0Gs. For γ /∈ T0Gs, we may without loss of generality assume that T = L× and by 
scaling by an element of T0 = O×

L , that γ = 1 + zj, with z ∈ OL, valD(zj) = m < s. For any δ ∈ O×
L , we 

have

γδ = nrd(γ)−1((δ −�zzδ) + (δ − δ)zj
)
,

which lies in T0Gs if and only if δ ∈ Z0Ts−m ⊆ Z0T0+. Thus T0Gs ∩ γT0Gs ⊆ Z0T0+Gs, on which ρ and ξρ
agree. Thus for γ /∈ T0Gs, we have

Hγ = HomT0Gs∩γT0Gs

(
ρ(Ψ), γρ(Ψ)

)
= {0},

since the irreducibility of πO×
D

(Ψ) implies that only γ ∈ T0Gs can support an intertwining operator. Conse-
quently (7.3) holds for all γ ∈ O×

D, our contradiction. �
We deduce that the representations of degree greater than one are parametrized by O×

D-conjugacy classes 
of O×

D-data Ψ0 = (T0, φ0, r, χ0) where these each represent the restriction of a D×-datum to O×
D.
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8. Remarks on the matching of types

The Jacquet–Langlands correspondence asserts a bijection between the irreducible representations of D×

and the irreducible square-integrable representations of GL(2, F ), characterized by a matching of L-functions 
and ε-factors, or simply by a matching of characters on the regular elliptic sets of the two groups (which 
are in natural correspondence) [5, §56]. The representations of GL(2, F ) which occur are (up to twisting by 
characters of GL(2, F )), precisely: (a) the supercuspidal representations, which are determined by characters 
of tori, and (b) the Steinberg representation.

For p 
= 2, the correspondence is simply stated; see [14, §3] or [5, §56]. The Steinberg representation of 
GL(2, F ) corresponds to the trivial representation of D×. Each torus of GL(2, F ) or of D× corresponds to 
a quadratic field extension of F , up to conjugacy, so they are in natural correspondence and we abusively 
use the same letter T to denote corresponding tori. To an unramified torus T and a generic character θ
of depth zero, one associates the depth-zero supercuspidal representation of GL(2, F ) obtained by inflating 
the Deligne–Lusztig cuspidal representation RT (θ) to GL(2, OF ) and compactly inducing this to GL(2, F ). 
Through the Jacquet–Langlands correspondence it is identified with π(θ). On the other hand, to any torus 
T and character φ of positive depth r, there is a small correction factor: one associates πGL(2,F )(T, y, φ, r, χ)
with πD×(T, φη, r, χ), where in each case χ ∈ F̂×, and η is the quadratic unramified character of D× defined 
by η(x) = (−1)2valD(x).

It is known that the Jacquet–Langlands correspondence does not descend to a correspondence of repre-
sentations of the derived groups. For example, SL(2, F ) admits an L-packet with four elements whereas we 
saw in Section 7.1 that all representations of D1 occur in packets of size one or two. It is also unreasonable to 
expect the correspondence to descend to one of the associated maximal compact open subgroups, since, for 
example, the supercuspidal representations of GL(2, F ) decompose into infinitely many components upon 
restriction to GL(2, OF ), some of which are common to all representations of the same central character (as 
may be deduced from [16]).

On the other hand, it is expected [5, §56] that the correspondence preserves types. This is trivial for 
the trivial-Steinberg pair, and follows directly in the depth-zero case from properties of Deligne–Lusztig 
cuspidal representations. In the positive-depth cases, each of GL(2, F ) and D× contain a unique maximal 
compact open subgroup K up to conjugacy, and each type can be realized as the inducing datum for an 
irreducible representation of least depth occurring in the restriction of a representation to K. In the case of 
GL(2, F ), the restriction to GL(2, OF ) has a unique component of minimal depth; in the case of D×, there 
are two if the torus is unramified. In this latter case, we have shown the inducing data are D×-conjugate. 
Thus the correspondence is well-defined.
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