
MAT3343: Applied Algebra
An introduction to codes and cryptography

Monica Nevins

Copyright © 2022 Monica Nevins

LATEX TEMPLATE: LEGRAND ORANGE BOOK

Licensed under the Creative Commons Attribution-NonCommercial 4.0 License (the “License”). You
may not use this file except in compliance with the License. You may obtain a copy of the License
at https://creativecommons.org/licenses/by-nc-sa/4.0. Unless required by applicable law
or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
for the specific language governing permissions and limitations under the License.
Images by Ralph Nevins, Photography. Used with permission.
First printing, December 2022

https://www.latextemplates.com/template/legrand-orange-book
https://creativecommons.org/licenses/by-nc-sa/4.0

Contents

Acknowledgements . 7

Preface . 9

I Codes

1 Introduction . 13

2 Algebraic structures . 17

2.1 Groups . 17

2.2 Finite Fields . 18

2.3 Vector spaces . 20

2.4 Exercises . 21

3 Linear codes . 23

3.1 Definitions and examples of linear codes . 23

3.2 Binary symmetric channels . 25

3.3 Maximum-likelihood decoding . 26

3.4 Hamming weight and Hamming distance . 27

3.5 The minimum distance of a code . 30

3.6 Error-correction and error-detection . 31

3.7 Hamming bound . 34

3.8 Exercises . 35

4 Towards a systematic construction of codes . 39

4.1 Equivalent codes . 39
4.2 Systematic codes . 40
4.3 Exercises . 43
4.4 The dual code . 44
4.5 Dot products over a finite field . 44
4.6 Parity check matrices . 46
4.7 Exercises . 48

5 Decoding . 49

5.1 The idea : cosets . 49
5.2 The Standard Array and Coset Leaders . 51
5.3 Syndromes . 52
5.4 Exercises . 55
5.5 Hamming codes . 55
5.6 The search for perfect codes . 57
5.7 Another desirable structure: cyclic codes . 58
5.8 Exercises . 61

II Linear codes from polynomial rings

6 Rings . 65

6.1 Definition of a ring . 65
6.2 Polynomial rings over fields . 66
6.3 Greatest common divisor . 68
6.4 Irreducible polynomials . 69
6.5 Exercises . 70
6.6 Ideals . 70
6.7 Quotient rings . 73
6.8 Writing elements of a quotient of the polynomial ring explicitly 74
6.9 Exercises . 76

7 Cyclic codes, revisited . 79

7.1 Cyclic codes as subspaces of F [x]/〈xn−1〉 . 79
7.2 Factors of xn−1 over Q: cyclotomic polynomials . 84
7.3 Another constraint on cyclic codes over Zp . 85
7.4 Exercises . 87
7.5 A first generator matrix for a cyclic code . 88
7.6 Parity check matrices for cyclic codes . 89

7.7 Alternate generator matrix . 91
7.8 Encoding cyclic codes with shift registers . 94
7.9 Exercises . 96

8 Finite fields, beyond Zp . 97

8.1 Looking for other finite fields . 97
8.2 Using quotient rings to construct fields . 98
8.3 Exercises . 101
8.4 Representing elements of a finite field in two ways . 101
8.5 Application: minimal polynomials . 103
8.6 Exercises . 105
8.7 Main theorems about finite fields . 106
8.8 Proof of the primitive element theorem . 107
8.9 Exercises . 109

9 BCH codes and Reed-Solomon Codes . 111

9.1 The Vandermonde determinant . 111
9.2 The BCH theorem . 113
9.3 Designed distance codes or BCH codes . 115
9.4 A new kind of parity check matrix for BCH codes . 117
9.5 Reed-Solomon codes . 118
9.6 Decoding BCH codes: the theory . 119
9.7 Decoding BCH codes: examples . 123
9.8 Further topics of interest . 126
9.9 Exercises . 127

III Cryptography

10 Public-Key Cryptography . 131

10.1 Perfect secrecy: the one-time pad . 132
10.2 New directions in cryptography . 133
10.3 Diffie–Hellman key exchange and the discrete logarithm 134
10.4 The ElGamal public-key cryptosystem . 135
10.5 Exercises . 136
10.6 Post-quantum cryptography . 136

11 NTRU . 139

11.1 NTRU algorithm . 139
11.2 Analysis of NTRU . 142

6

11.3 The NTRU Lattice . 144
11.4 Conclusions . 145
11.5 Exercises . 145

12 Code-based cryptography . 147

12.1 McEliece cryptosystem . 147
12.2 Niederreiter cryptosystem . 149
12.3 Classic McEliece . 151
12.4 Information set decoding . 153
12.5 Attacking McEliece . 157

13 Cryptography from errors . 159

13.1 Learning with Errors (LWE) . 159
13.2 Crystals Kyber . 162
13.3 Exercises . 165
13.4 Final thoughts . 165

IV Appendix

A Mathematical background . 169

A.1 The Euclidean algorithm and Extended Euclidean Algorithm 169
A.2 Working in base n . 171
A.3 Working mod n . 172
A.4 Permutations . 174
A.5 Exercises . 176

B Elliptic curves over finite fields . 177

B.1 Definitions . 177
B.2 The group law on E(K) . 179
B.3 ECC: Elliptic Curve Cryptography . 181

C Solutions . 185

C.1 Section 2.4 . 185

Bibliography . 187

Index . 191

Acknowledgements

This volume grew from my lecture notes developed for MAT3343 and MAT3743 over the years.
Each time I teach this course, I seem to cover a different set of topics; the subset here covers only
error-correcting codes and cryptography, and is probably still more than will be covered in a single
course!

My first lecture notes were heavily influenced by those of my colleague Peter Campbell, and on the
treatment of groups and codes in the lovely book by Keith Nicholson [Nic12]. Further iterations have
also been enriched by the lecture notes for this course at the University of Ottawa by my colleague
Michael Newman, and by the lecture notes for a related course at Carleton University taught by Daniel
Panario. It is a pleasure to thank these people.

Your corrections to the text are quite welcome!

Monica Nevins
mnevins@uottawa.ca

Preface

Applications of algebra abound! There is a reason that much of 20th century mathematics was
devoted to the development of such fruitful areas as algebraic geometry, algebraic topology, algebraic
combinatorics, algebraic number theory... really, algebraic anything.

In this text, we focus on applications relating to error-correcting codes, and to cryptography. Our
treatment is meant to give a taste of each of these subjects, with enough depth to appreciate the power
of the algebraic tools we bring to bear on the problems in the field. While these applications are the
focus, an equally important goal is to help the reader deepen their knowledge of algebra by seeing how
it can be used in unexpected ways.

Each chapter includes one or more sections labeled “Exercises". As every math student knows, it is by
solving problems that one really learns the material. The exercises generally reflect the preceding few
sections in order, and generally increase in level of difficulty — but this is not a rule! Do browse them
all.

The text is organized as follows. In Part I, after a brief recap of some key tools from group theory
and linear algebra, we define linear error-correcting codes, and establish the key notions of the
field, including Hamming distance, error-correction, generator matrices, parity check matrices and
syndromes.

With some appreciation that it is difficult to construct good codes, we then turn to cyclic codes in Part
II. Here, we need to develop the theory of polynomial rings over a finite field, including ideals and
quotient rings, in order to classify all cyclic codes. We then dive further into the theory of quotient
rings and construct finite fields beyond Z/pZ (for p a prime). The exploration of their structure leads
to the celebrated BCH theorem and the construction of BCH and Reed–Solomon codes: an infinite
class of codes that we can construct to suit our specifications for length and error-correction capability.

Finally, in Part III we switch gears to discuss another problem in communication theory, namely that of
ensuring the privacy of communication using cryptography. We quickly focus on public-key encryption
and set it in the context of post-quantum cryptography. We present three major “post-quantum"

10

cryptographic systems: NTRU, Classic McEliece and Kyber (based on LWE), all of which relate to the
themes and tools of the first two parts.

The appendices include some samples of mathematical background expected from prerequisite courses,
and an additional section on elliptic curves over finite fields (with a focus on Elliptic Curve Cryptogra-
phy). Although Appendix C purports to have solutions, only a handful have been written.

The text concludes with a bibliography of all references cited, for your independent reading and
research, as well as a detailed index to allow you to quickly find the definitions of key terms.

We hope you are inspired by what you find here, and explore further!

Monica Nevins
University of Ottawa
April 2023

I Codes

The word “code” evokes two
essentially opposite ideas:

• increasing the clarity of
a message (so that the
recipient can decode it,
even when the message
is damaged in transmis-
sion)

• obfuscating a message
(so that none but the in-
tended recipient can de-
code it)

Both are key important prob-
lems in communications the-
ory, and we will study both
in this course. The first is
the domain of error-correcting
codes; the second is cryptog-
raphy .

1 Introduction . 13

2 Algebraic structures 17
2.1 Groups . 17
2.2 Finite Fields . 18
2.3 Vector spaces . 20
2.4 Exercises . 21

3 Linear codes . 23
3.1 Definitions and examples of linear codes 23
3.2 Binary symmetric channels 25
3.3 Maximum-likelihood decoding 26
3.4 Hamming weight and Hamming distance 27
3.5 The minimum distance of a code 30
3.6 Error-correction and error-detection 31
3.7 Hamming bound . 34
3.8 Exercises . 35

4 Towards a systematic construction of
codes . 39

4.1 Equivalent codes . 39
4.2 Systematic codes . 40
4.3 Exercises . 43
4.4 The dual code . 44
4.5 Dot products over a finite field 44
4.6 Parity check matrices 46
4.7 Exercises . 48

5 Decoding . 49
5.1 The idea : cosets . 49
5.2 The Standard Array and Coset Leaders 51
5.3 Syndromes . 52
5.4 Exercises . 55
5.5 Hamming codes . 55
5.6 The search for perfect codes 57
5.7 Another desirable structure: cyclic codes . . . 58
5.8 Exercises . 61

1. Introduction

The word “code” evokes two essentially opposite ideas:

• increasing the clarity of a message (so that the recipient can decode it, even when the message is
damaged in transmission)

• obfuscating a message (so that none but the intended recipient can decode it)
Both are key important problems in communications theory, and we will study both in this course. The
first is the domain of error-correcting codes; the second is cryptography. A reference for the material
on codes is [Nic12, Chapter 2.11] and [Nic12, Chapter 6.4].

So let us start with codes. The setting is as follows.

Alice

message
m

Bob

received
message m′

Channel

transmission

Figure 1.1: A sender transmitting message m to a receiver.

A sender (Alice) has a message m which is to be conveyed to a recipient (Bob). The process of
conveying the message, which we’ll call transmission could take the form of, for example,

• voice in the air,
• written text on paper,
• keystrokes typed in a computer,
• electrical impulses along a wire, or

14 Chapter 1. Introduction

• modulated radio waves through the air
among hundreds of other possibilities. The means of conveyance (such as air, paper, keyboard, or wire)
is called the channel. This would be represented in Figure 1.1.

But suppose the channel is noisy, meaning that it can distort the transmission; can we nonetheless
ensure accurate communication? That is, we may add an additional step, as in Figure 1.2.

Alice

message m

codeword c

Bob

received message m′

received word c′

Noisy Channel

transmission

encoding decoding

Figure 1.2: The message m is first encoded to the codeword c, which is transmitted. What is received
is c′, which is c+n, where n is some noise. Decoding c′ yields a message m′. The communication is
successful if m = m′.

So the sender has a message m. We could think of it as a block of text, or a computer file. The sender
encodes the message to produce the encoded message c, which is a codeword (or may be several
codewords, if we have broken our long message into several blocks). The codeword is transmitted
through the channel, and is picked up by the receiver. What the receiver collects is called the received
word c′; if the channel was noisy then it is possible that the received words are not identical to the sent
codewords. The receiver then decodes the received word (which involves, roughly, guessing which
codeword was sent) and then translates the codeword back to the corresponding message m′.

The problem of error-correcting codes is to provide a code, which is a set of codewords, and a decoding
algorithm, which gives a maximal likelihood of success of accurate transmission of a message (that is,
that m = m′), under given circumstances. We are thus most interested in codes which can detect if there
was an error in transmission (error-detecting codes) or, even better, can correct an error in transmission
(error-correcting codes).

So for example, if the communication is voice in the air: noise could correspond to noise in the
environment. Possible codes include: repeating long words, or using longer sentences, or switching to
a language that stands out better against the background1

1Speaking more loudly is equivalent to amplifying the signal to drown out the noise; technically possible in all systems
but usually at some cost (in this case, dignity). Using sign language or gestures is another possible solution; this corresponds
to switching to a different, less noisy, channel.

15

If it’s typing on a computer keyboard, maybe the noise issue is about the possibility of mistyping
numbers (transposition errors); if it’s transmission on a wire or on radio waves, it can be about
interference from other sources. How does this interference cause errors in a digital message? In fact,
if the message is a sequence of 0s and 1s, then this could be converted into a square wave pattern with a
well-defined frequency, as in Figure 1.3. When this is transmitted, the square wave loses power over

Time t

Voltage V

Figure 1.3: Digital data transmitted as a square wave (at a given frequency, with periods indicated
by vertical dashed lines). Each high represents a 1, each low represents a 0. This message is the byte
011010.

long distances and noise at the modulation frequency will be added to the signal. The result is that the
received wave is no longer square; the receiver uses thresholds to guess if the signal is high or low
on each time period. Without the use of error-correcting codes, digital transmission would have no

Time t

Voltage V

Figure 1.4: Transmission degrades digital signals.

advantage over analog transmission (where you just accept the noise into your received signal: hiss,
crackle, pop). This is the case for AM/FM radio for example.

For the first part of the course, we will make the assumption that the errors are randomly distributed
and occur with small probability; for example, we might expect at most one error per codeword. Much
later, we will discuss codes that are more suitable under conditions of “bursts” of errors (where several
consecutive bits may be destroyed, for example).

� Example 1.1 ASCII is a code for converting messages which are letters or characters into binary
numbers, which can then be transmitted. For example, the messge ’a’ corresponds to the codeword
1100001. However, if one bit is damaged, for example:

• 1110001 = ’q’
• 1100101 = ’e’
• 0100001 = ’1’

16 Chapter 1. Introduction

then we wouldn’t know, except from the context of the message, that an error had occured2. So ASCII
is not error-detecting. �

� Example 1.2 Morse code is a code for converting messages which are letters into sequences of dots
and dashes, which can be transmitted by light or electrical signals. For example, the message ’`’ is
the codeword .− .. (dot-dash-dot-dot). If an error occurs in the third symbol, you get .−−., which
corresponds to ’p’. But if the error occurs in the last symbol, you get .− .− which is not a codeword
(that is, it does not correspond to any letter). So Morse code exhibits some error detection. �

� Example 1.3 Suppose the message is already a binary number. We could encode it by repeating it
twice: the message 011 becomes the codeword 011011. Then if one bit is damaged in transmission,
the receiver will immediately detect an error, because the first three bits would not be identical to the
second three bits. So the receiver can detect all single errors (but can only detect some double errors).
However, the receiver can’t correct the error; it has no way to deciding which of the two halves of the
message are correct. �

� Example 1.4 In the same setting as above: suppose the message is a single bit 0 or 1, and the
corresponding codeword is obtained by repeating it THREE times. So 0 is encoded as 000 and 1 as
111. Then the receiver can detect and correct a single error, by using a majority vote on which bit the
message should be. �

2And now imagine that the message itself was encrypted — then you wouldn’t even have the context to tell you there was
an error. This is why we emphasize the case where the receiver can work out the error detection/correction on a word-by-word
basis.

2. Algebraic structures

Our codes will have algebraic structure — these structures are what will provide patterns, regularity,
designability, efficiency, and much more. In this chapter, we give a brief introduction to some familiar,
and less familiar, algebraic structures that we’ll need.

2.1 Groups

The fundamental algebraic structure is that of a group, which is a set with one operation, like addition,
or multiplication. Since the notation looks quite different in these two cases, we define them separately,
but note that the axioms are the same!

Definition 2.1 An additive group is a set G equipped with an operation denoted + satisfying the
following axioms:
closure: ∀a,b ∈ G, a+b ∈ G;
commutativity: ∀a,b ∈ G, a+b = b+a;
associativity: ∀a,b,c ∈ G, (a+b)+ c = a+(b+ c);
identity: ∃z ∈ G such that ∀a ∈ G, a+ z = a — so we write z = 0 for this element;
inverse: ∀a ∈ G,∃b ∈ G such that a+b = 0 — so we write b =−a for this element.

� Example 2.2 We know many additive groups:

• Z, the integers;
• Z/nZ, the integers mod n, for any n > 1;
• any vector space V ;
• the set of m×n matrices, for any m,n≥ 1.

�

� Example 2.3 In contrast, N, the set of natural numbers is not a group, because we are missing the
additive inverses. �

18 Chapter 2. Algebraic structures

We can also write groups with multiplicative notation. In this case, by convention, we do NOT
automatically assume that the multiplication is commutative.

Definition 2.4 A group is a set G equipped with an operation (denoted · or by juxtaposition)
satisfying the following axioms:
closure: ∀a,b ∈ G, ab ∈ G;
associativity: ∀a,b,c ∈ G, (ab)c = a(bc);
identity: ∃u ∈ G such that ∀a ∈ G, ua = a = au — so we denote this element by 1 or e;
inverse: ∀a ∈ G,∃b ∈ G such that ab = 1 = ba — so we denote this inverse by b = a−1.
If in addition the operation satisfies
commutativity: ∀a,b ∈ G, ab = ba
then it is called an abelian group.

� Example 2.5 The set R× of nonzero real numbers is an abelian group. The set of invertible 2×2
matrices over R is a nonabelian group. �

A subgroup of G is a subset H that is also a group under the same operation. It suffices to verify that H
is closed under the operation and under taking inverses. (Exercise)

2.2 Finite Fields

What about two operations? It will turn out (see Chapter 6) that there is a huge variety of interesting
axioms we could ask about a set equipped with two operations (traditionally denoted + and ·), but the
simplest is that of a field.

Definition 2.6 A field is a set F equipped with two operations, addition and multiplication, such
that

1. F is an additive group, with identity element 0;
2. F× := F \{0} is an abelian group under multiplication; and
3. multiplication distributes over addition, that is, ∀a,b,c ∈ F , a(b+ c) = ab+ac.

� Example 2.7 The set of real numbers R is a field, as are the complex numbers C and the rational
numbers Q. �

� Example 2.8 The set of integers Z is not a field, since 2 has no multiplicative inverse in Z, so Z\{0}
is not a group under multiplication. �

� Example 2.9 The set of 2×2 matrices is not a field, since there are nonzero elements which are not
invertible (and since multiplication is not commutative!)1. �

� Example 2.10 The set R2 = R×R, with componentwise addition and multiplication, is not a field,
because there exist non-zero elements, like (0,1), which are not invertible. �

The most important examples of fields for coding theory are the finite ones.

� Example 2.11 The set Z2 = {0,1} with addition and multiplication mod 2, is a field, called the
binary field. It is in fact the smallest possible field (since every field contains 0 and 1 and we have

1This latter transgression can be forgiven if all other properties hold, in which case we insist on distributivity in both
directions and call it a skew field. The quaternions are an example.

2.2 Finite Fields 19

0 6= 1). �

Theorem 2.12 Let p be a prime number. Then the set Zp, with addition and multiplication mod p,
is a field.

Proof. We know that Zp is an additive group, with identity 0. Distributivity of multiplication over
addition follows from that in Z, since a(b+ c) = ab+ac in Z implies a(b+ c)≡ ab+ac mod p.

Now set Z×p = {1,2, · · · , p− 1}. We first need to show that multiplication is well-defined on Z×p .
Clearly the product mod p gives a result in Zp; we need to prove that if neither a nor b is zero then
ab 6= 0 as well. Let a,b ∈ Z×p . We have

ab≡ 0 mod p⇔ p divides ab

⇔ p divides a OR p divides b

⇔ a≡ 0 mod p OR b≡ 0 mod p.

Note that we used the theorem on uniqueness of prime factorization to prove this; you can see where it
would fail if p were not prime. Therefore ab ∈ Z×p , and Z×p is closed under multiplication mod p.

The unit is 1, which lies in Z×p ; and multiplication mod p in Zp is associative and commutative since
multiplication is associative and commutative in Z.

For inverses: recall that the extended Euclidean algorithm says that if gcd(a,b) = d then there exist
integers x,y such that

ax+by = d. (2.1)

Here, set b = p and a ∈ Z×p ; then d = 1. Hence we have x,y so that

ax+ py = 1;

taking this equation mod p yields ax≡ 1 mod p, or equivalently, x≡ a−1 mod p. We conclude that
every element of Z×p has an inverse, so this is a group; it follows that Zp is a field. �

Corollary 2.13 If n > 1 is not prime, then Zn is not a field.

Proof. If n is not prime, then n = ab for some 1 < a,b < n. Thus n does not divide either a or b, so
neither is 0 mod n, but their product is. Thus Zn \{0} is not closed under multiplication. �

R A natural question is: what other finite fields are there? We’ll answer this in Chapter 8,
when we want to design codes based on finite fields beyond Z2 and Zp.

20 Chapter 2. Algebraic structures

2.3 Vector spaces

Now how about THREE operations? That’s asking a lot; but vector spaces come close.

Definition 2.14 Let F be a field. A vector space over F is a set V equipped with scalar multiplication
by elements of F and vector addition such that

1. V is an additive group;
2. ∀a,b ∈ F,∀v,w ∈V , we have av ∈V and

• (a+b)v = av+bv;
• (ab)v = a(bv);
• a(v+w) = av+aw;

3. ∀v ∈V , 1v = v.

� Example 2.15 The set of column vectors of length n, Rn, is a vector space over R. The set of
polynomials of degree n, Pn = {a0 +a1x+a2x2 + . . .+anxn|ai ∈ R}, is a vector space over R. �

� Example 2.16 In the same vein: for any field F (such as F =Z2), the set Fn = {(a1,a2, · · · ,an) | ai ∈
F} is a vector space over F , as are the set of polynomials Pn = {a0 +a1x+a2x2 + . . .+anxn | ai ∈ F}.
�

Recall that a subspace is a subset of a vector space that is a vector space in its own right. The subspace
test is: if a subset W of a vector space V satisfies the three conditions:

• W is closed under addition;
• W is closed under scalar multiplication;
• W is nonempty;

then W is a subspace.

� Example 2.17 Let W = {(x,y,z) ∈ Z3
7 | x+ y+ z = 0}. By the subspace test (Exercise), this is a

subspace of Z3
7, hence a vector space over Z7. �

We will use many familiar facts about vector spaces in this course — but always applied to vector
spaces over finite fields. Some examples (stated for a vector space V over a field F) include:
Linear independence: a set {v1, · · · ,vn} of vectors in V is linearly independent if and only if the only

solution to the equation a1v1 + · · ·+anvn = 0, with ai ∈ F , is the trivial solution a1 = a2 = · · ·=
an = 0.

Span: a set {v1, · · · ,vn} of vectors in V spans V if and only if every element w ∈V can be written as
w = ∑i aivi in at least one way, with ai ∈ F .

Basis: a basis for V is a maximal linearly independent set of vectors; or a minimal spanning set of
vectors; or any spanning set that is linearly independent.

Dimension: Every vector space has a basis. When the basis is finite, its cardinality is the dimension of
V and is independent of the choice of basis. (We will only consider finite dimensional vector
spaces in this course.)

Matrices: A linear map T : V →W between vector spaces may be represented by a matrix M, as
follows. Choose a basis {e1, · · · ,en} of V and a basis B = { f1, · · · , fm} of W . Then M is the
m×n matrix whose ith column is the coordinate vector of T (ei) with respect to B.

These properties are proven in any introductory linear algebra text, such as [GJN21], for vector spaces
over the real numbers. The proofs go through unchanged for vector spaces over other fields.

2.4 Exercises 21

Notation for vector spaces If p is a prime then we saw Zn
p is an n-dimensional vector space over

Zp. Let’s write
v1v2 · · ·vn instead of (v1,v2, · · · ,vn)

for elements of Zn
p, when convenient. So for example, 0011 represents the vector (0,0,1,1) in Z4

2.

In particular, note that
0011+0101 = 0110 NOT 1000.

That is to say: remember that when we add vectors, the addition is XOR (componentwise), not the
addition of numbers in base 2 with carrying.

2.4 Exercises

1. Choose a set of representatives for Z5 and write down its addition and multiplication tables.
2. Show that Z6 is an additive group. Show that Z6 is not a group under multiplication, by

identifying all elements that do not have a multiplicative inverse mod 6.
3. Show explicitly that Z3, with addition and multiplication mod 3 is a field, but that Z4 is not.
4. Suppose we define F = {0,1,x,1+ x} with addition of polynomials with coefficients in Z2, and

multiplication as for polynomials except we declare that x2 = 1+ x, so the answer is again in F .
Prove this is a field with 4 elements. Prove that F 6∼= Z4.

5. Prove that in a field F , we have for all a ∈ F that a(−1) =−a. Here, −1 is the additive inverse
of 1, and −a is the additive inverse of a.

6. Prove that if n = ab is a proper factorization of n, then neither a nor b has a multiplicative inverse
mod n. Hint: try an argument by contradiction.

7. Prove that the usual 10 axioms which define a vector space over a field are equivalent to the
shortened version given in Definition 2.14.

8. Find a basis for W = {(x,y,z) ∈ Z3
7 | x+ y+ z = 0}. What is dim(W)?

9. How many vectors are there in a vector space of dimension n over a finite field with q elements?
10. Suppose F ⊂ E are fields with the same operations. Prove that E is a vector space over F . This

has profound and very practical implications!

3. Linear codes

In our discussion of coding, we saw that if we wish to have error-detection in our codes, then our valid
codewords should only be a subset of all possible received words (with the hopes that an error is likely
to turn a valid codeword into something invalid that we can therefore detect).

3.1 Definitions and examples of linear codes

So a code is a set of points in Fn, where F is some alphabet of symbols. Let us give this more structure,
and make this more formal and more algebraic, with the following definition.

Definition 3.1 A linear block code (or just: linear code) over the finite field F is a subspace C
of Fn. Each element c ∈C is called a codeword. If dim(C) = k, where k ≤ n, then it is called an
(n,k)-code over F . If |F |= q then C is called a q-ary linear code. The length of the code is n. The
size of C is the number of codewords in C. Its code rate is R = k/n, a measure of the efficiency of
encoding.

R We say “binary” in place of 2-ary and “ternary” in place of 3-ary.

In this model, the process of encoding is the process of assigning a codeword for each message. We
would commonly think of breaking our message into smaller blocks, and encoding each block one at a
time, and transmitting it as soon as we’ve encoded it1.

� Example 3.2 ASCII consists of all 7-bit codewords in Z7
2. So this is a (7,7) binary code. It is full

rate. It cannot detect any errors. �

1Note that block codes are only one possible model for communications; other coding schemes may require the entire
message to be encoded before any part is transmitted; or may use the previously transmitted blocks to help encode the current
block. That said, the block model is the fastest and most popular method for coding in use.

24 Chapter 3. Linear codes

� Example 3.3 ASCII with parity check is the set

C = {v ∈ Z8
2 |

7

∑
i=1

vi = v8}

(where of course the sum is mod 2). Since the equation defining elements of C is linear, we deduce that
C is a subspace of Z8

2; since there is only one (nontrivial) linear equation, we deduce that dim(C) = 7.
Thus this is an (8,7) binary code and its rate is 7/8.

A message is an ASCII character, which is encoded by appending its parity check bit. For example, to
encode the message m =′ e′, we first look up its ASCII code, which is 1100101. These are v1v2 · · ·v7.
Their sum is 4 = 0 mod 2; thus the parity check bit is 0 and our codeword is 11001010.

This code is single error detecting because if exactly one bit is changed (from a 0 to a 1 or vice versa)
then it will no longer be true that the sum of the digits is 0 mod 2, so the result will not be a codeword.
Ergo: an error occurred. �

R The parity check code could also detect 3 errors, or any odd number of errors, but since it
can’t detect 2 errors that’s a strict upper bound and we say it’s only single-error-detecting.

� Example 3.4 The repetition code C = {000,111} is a one-dimensional subspace of Z3
2, so is a (3,1)

binary code. We saw that this code is single error correcting. It has rate 1/3. �

� Example 3.5 ISBN code (International Standard Book Number): this is a 10-digit number (although
some are longer) where:

• the first digit represents the country;
• the next three represent the publisher;
• the next 6 represent the book;
• the last is a check digit.

Figure 3.1: An example of a 10-digit ISBN code.

Here, C is defined as the subspace of Z10
11 consisting of all vectors a = (a1, · · · ,a10) which satisfy

10

∑
i=1

iai ≡ 0 mod 11.

This is a (10,9) linear 11-ary code. When we write an element of Z11, we use X in place of 10, so that
Z11 = {0,1, · · · ,9,X}. In practice, we don’t use X except as a last digit.

3.2 Binary symmetric channels 25

Let’s check that 080481905X ∈C. We compute

1×0+2×8+3×0+4×4+5×8+6×1+7×9+8×0+9×5+10×X

= 0+16+0+16+40+6+63+0+45+100

= 0+5+0+5+7+6+(−3)+0+1+1 simplifying mod 11

= 22

≡ 0 mod 11

as required.

We can see from examples that this code detects one error, just as the parity check code does (and we
can prove this algebraically). But it does a little more than the parity check code does: it can detect
transposition errors. That is, if two digits are swapped in the course of entry, then their weighted sum
will no longer be 0. This particularly kind of error detection is an important one in this context!

That said, it cannot correct errors: you can create two different ISBNs that give the same result after a
single error (in different locations). �

� Example 3.6 Consider the following subset of Z6
2:

C = {000 000, 001 110, 010 101, 100 011, 011 011, 101 101, 110 110, 111 000}.

We claim this is a linear code. Since the field is just Z2, it would suffice to check that this set is closed
under addition, since vector spaces over Z2 are just additive groups (that is, the action by scalars is
trivial). But it’s handier to think of vector spaces.

Namely, every k-dimensional vector space over Z2 has 2k elements. Thus, if C is a vector space,
we must have k = 3. This tells us any basis must have 3 vectors, so we need to find three linearly
independent vectors.

The first three vectors (after the zero vector) are clearly linearly independent (look at the first three bits).
To prove they form a basis, it suffices to verify that the remaining 4 vectors are the various sums of
these basis vectors, which they are.

Wasn’t that a lot easier than applying the subspace test?

This is a (6,3) binary linear code. We’ll explore it in more detail in a bit. �

This formalizes the notion of a code, and encoding a message. But what are we looking for in codes?
What about the channel and decoding?

3.2 Binary symmetric channels

We assume that we are using a binary symmetric channel, which assumes that we communicate digitally
and errors occur randomly and independently on each bit, with a small probability p. In particular, if
our code is not a binary code, then there is another step (which we treat as a black box and will always
ignore) that converts our codeword to a binary sequence, and then converts the received vector from
binary to our alphabet.

26 Chapter 3. Linear codes

Claude Shannon2 defined the field of information theory, and established the main theorems of it, in
a paper published in 1948 [Sha48]. In this paper, he precisely quantified the notion of “how much
information is contained in a message" as the (probabilistic) entropy of the corresponding random
variable X . This is something like the uncertainty on X . When you condition this variable on the
random variable of what you receive, Y , your entropy decreases and the difference is called the mutual
information — it tells you how much about the input is conveyed by the output. The channel capacity
is the maximum over X ,Y of the mutual information; it’s a value between 0 and 1.

For our binary symmetric channel with error rate p, with X uniformly distributed across all bit strings,
the entropy on X is defined as

H2(p) =−(p log2(p)+(1− p) log2(1− p)). (3.1)

and in the end the channel capacity comes down to

C = 1−H2(p) = 1+ p log2(p)+(1− p) log2(1− p).

(For more details, see [Mac03].)

Finally: we have seen that a good decoding algorithm has some built-in redundancy that can mean that
you recover your original message even in the presence of noise on the channel. We call it a block error
if the decoding algorithm does not recover the original message (on a given block).

The major theorem, first proven by Shannon, that ties this to codes is the following [Mac03, 10.1].

Theorem 3.7 — Noisy channel coding theorem. Given a channel with capacity 0 < C ≤ 1, a
value ε > 0, and a target rate of R < C , then for large enough n, there exists a code of length n and
rate at least R, and a decoding algorithm, such that the probability of block error is less than ε .

That’s a lot to unpack: but basically: test your channel and estimate p, the probability of bit error; this
lets you calculate the entropy H2(p) and thus the channel capacity C . Choose a target code rate R < C
that is acceptable to you. If you want 99.999% reliability, then you set ε = 0.00001. The theorem says:
ok, no problem, there does exist an error-correcting code that will meet these specifications!

That’s a fantastic result! Where’s the loophole? Well, the code exists but we don’t know how to
construct it. Moreover, the code length n may be extraordinarily large. Ergo: there is a lot of value in
analysing codes, and there are some pretty amazing codes out there, somewhere.

3.3 Maximum-likelihood decoding

So on a binary symmetric channel, in an n-bit codeword, a 1-bit error occurs with probability

P(1 error) = p(1− p)n−1

but any 2-bit error occurs with probability

P(2 errors) = p2(1− p)n−2 =

(
p

1− p

)
P(1 error)� P(1 error),

2https://en.wikipedia.org/wiki/Claude_Shannon

https://en.wikipedia.org/wiki/Claude_Shannon

3.4 Hamming weight and Hamming distance 27

and so on. Thus we use a maximum-likelihood decoder (ML), which means: if we receive a vector w
then we should decode it to the codeword in C which has the most bits in common with w.

In a linear code, we can make this more precise. We model the introduction of errors by adding an
error vector to the codeword; that is, the codeword c was transmitted, but the vector x = c+ z, for
some error vector z, is received at the receiver. Then ML decoding can be formalized as identifying the
“closest" codeword to x, or “shortest" possible error vector z ... and to do this, we need a new notion of
distance for this context.

3.4 Hamming weight and Hamming distance
Definition 3.8 The Hamming weight of a vector x ∈ Fn is defined by

wt(x) = #{i | xi 6= 0},

the number of nonzero components of x.

� Example 3.9 In Z8
2, we have wt(00100111) = 4.

In Z6
5 we have wt(310124) = 5. �

Note that two vectors have the same Hamming weight if and only if they have the same number of
nonzero components; the actual values of these nonzero components is irrelevant.

The Hamming weight is the analogue of the norm of a vector, which measures its size. If we can
measure size, then we should be able to measure distance, as well!

Definition 3.10 The Hamming distance between vectors x,y ∈ Fn is defined by

d(x,y) = wt(x− y) = #{i | xi 6= yi},

that is, the number of components in which x and y differ.

� Example 3.11 In Z3
3 we have d(121,101) = 1 and d(012,120) = 3. �

This is an unusual notion of distance, as compared with the usual Euclidean distance on Rn. However,
it is essentially the only meaningful one! (See the exercises.)

What is amazing is that this primitive notion of distance is actually a metric.

Lemma 3.12 The Hamming distance is a metric on Fn. Moreover, it satisfies

∀x ∈ Fn,wt(x) = d(x,0).

Recall: a metric d on a set M is a function d : M×M→ R which satisfies, for all x,y ∈M, that
(i) d(x,y)≥ 0;

(ii) d(x,y) = 0 iff x = y;
(iii) d(x,y) = d(y,x); and

28 Chapter 3. Linear codes

(iv) for all z ∈M, d(x,y)≤ d(x,z)+d(z,y) (the triangle inequality).

Proof. The first three properties of a metric are immediate from the definition. To show the last
one, suppose x,y,z ∈ Fn, and that d(x,y) = d. That is, x and y differ in exactly d components; say
Tx,y = {i | xi 6= yi}.

Suppose d(x,z) = d1 and d(z,y) = d2. Let Tx = {i | xi 6= zi} and let Ty = { j | y j 6= z j}. Set T = Tx∪Ty,
this has at most d1 +d2 elements (but could have fewer, if the sets intersect).

If k /∈ T , then xk = zk and zk = yk, so xk = yk. Therefore k /∈ Tx,y. The contrapositve says: Tx,y ⊂ T . So
|Tx,y| ≤ |T |, which implies d ≤ |T | ≤ d1 +d2, as required.

Finally: d(x,0) = wt(x−0) = wt(x); this is just a restatement of the definition. �

Once we have a metric, we can apply our favourite tools from topology.

Definition 3.13 Let x ∈ Fn. The open ball of radius r centered at x is

Br(x) = {y ∈ Fn | d(x,y)< r}.

The closed ball of radius r centered at x is

Sr(x) = {y ∈ Fn | d(x,y)≤ r}.

Note that if F = R and d(x,y) = ‖x− y‖, then this is the usual notion of an open ball or closed ball.
With a discretely valued metric such as the Hamming distance, however, the distinction between “open”
and “closed” vanishes, and the radius is a bit flexible. They also don’t really look like “balls" with a
“centre". Basically, no part of the phrase “open ball of radius r centered at x” retains its meaning from
R!

� Example 3.14 Over Z2:

B2(000) = {000,001,010,100}= B1.5(000) = S1(000) = S1.5(000).

So this set of 4 points is an open ball of radius 2, or 1.5; it is also a closed ball of radius 1, or 1.5. We
draw this in Figure 3.2. �

Figure 3.2: The closed ball of radius 1 centered at (0,0,0) (in red) in Z2 is indicated by the red and
green dots. Each green dot is a distance of exactly 1 from the red dot; each blue dot is at a distance
of ≥ 2 from the red dot.

3.4 Hamming weight and Hamming distance 29

� Example 3.15 Over Z3, as depicted in Figure 3.3:

B2(000) = {000,001,010,100,002,020,200}= S1(000).

�

Figure 3.3: The closed ball of radius 1 centered at (0,0,0) (in red) in Z3 is indicated by the red and
green dots (connected by a green line as a visual aid). Each green dot is a Hamming distance of
exactly 1 from the red dot; each blue dot is at a Hamming distance of ≥ 2 from the red dot.

Note that if C is a code, and x is a received word, then C∩S1(x) consists of all those codewords which
differ from x in at most one position. This gives us our decoding strategy!

Algorithm 3.16 — Maximum-Likelihood Decoding Algorithm. The standard ML decoding
algorithm for a code C ⊂ Fn is:

• Suppose we receive the vector x ∈ Fn.
• If x ∈C, then set y = x.
• Otherwise, if C∩S1(x) 6= /0, then choose y ∈C∩S1(x).
• If C∩S1(x) = /0, then repeat with C∩S`(x), for `= 2,3,4, · · · until a codeword y is found.
• Return the decoded value y.

We note some potential issues, however. For example, it would be best if C∩S1 = {y} was a single
codeword; if there is more than one choice, then we don’t know which one is the correct codeword.

It turns out that the best way to address this issue is to turn the question around slightly, and consider
the open balls centered on the codewords.

� Example 3.17 Consider the ternary code C = {000,111,222}. Instead of trying to picture all the
codewords on a cube, as in Figure 3.3, we could draw the connections that interest us as a graph for
more clarity.

Figure 3.4 is a graph with the elements of the code (in small circles) together with all the elements of
the balls of radius 1 centered on codewords (large circles). Edges connect vectors differing in a single
bit (Hamming distance 1). Not all vectors of Z3

3 appear in the graph; one example a vector equidistant
from two codewords is shown.

It is clear from this graph that no received word can come from two different codewords through a
single error, so the ML decoding algorithm will succeed whenever x results from at most one error. �

30 Chapter 3. Linear codes

Figure 3.4: A graph of the ternary code in Example 3.17. Image from course notes by Mike Newman.

3.5 The minimum distance of a code
Definition 3.18 Let C be a code in Fn, for some finite field F . The minimum distance of C is

d(C) = dmin := min{d(x,y) | x,y ∈C,x 6= y}

that is, this is the minimum Hamming distance between distinct codewords.

Although this definition applies to any code, it is most interesting in the case of linear codes, in part
due to the following lemma.

Lemma 3.19 If C is a linear code, then its minimum distance can also be computed as

dmin = min{wt(x) | x ∈C,x 6= 0}.

The proof is left as an exercise. Note that the lemma makes it much simpler to compute the minimum
distance of a code: we just need to look at the weights of all the (nonzero) codewords.

� Example 3.20 The (8,7) ASCII parity check code has no codewords of weight 1, since if v has only
one nonzero entry, say in position j, then ∑

8
i=1 vi = v j 6= 0. But 10000001 ∈C and this has weight 2.

So the minimum distance is 2. �

� Example 3.21 The (3,1) repetition code C = {000,111} has d(C) = 3. �

� Example 3.22 The (10,9) ISBN code C cannot contain any vectors of Hamming weight 1, but we
can easily produce elements in C of Hamming weight 2. So dmin = 2. �

� Example 3.23 The (6,3) code of Example 3.6 has (by inspection of the weights of its nonzero
elements), dmin = 3. �

3.6 Error-correction and error-detection 31

How big can dmin be?

Theorem 3.24 — Singleton Bound. Let C be an (n,k) linear code. Then dmin ≤ n− k+1.

Proof. Let C be an (n,k) code and set d = dmin. Define a map

π : C→ Fn−d+1

by the projection onto the first n−d +1 coordinates. That is,

π(a1 · · ·an) = a1 · · ·an−d+1.

This is a linear map; it’s just the usual projection map. What is its kernel? Well, if x ∈ ker(π) then
π(x) = 0. This means that the first n−d +1 coordinates of x are all zero. Thus it has at most d−1
nonzero coordinates, so wt(x)< d; but this is impossible (by Lemma 3.19) unless x = 0. Therefore the
only element of the kernel is the zero vector, and therefore π is injective.

Now we can bound the size of C. If |F |= q, then |C|= qk and |Fn−d+1|= qn−d+1. Injectivity implies

|C| ≤ |Fn−d+1|

which yields qk ≤ qn−d+1 or k ≤ n−d +1, which gives the result we needed. �

What makes dmin interesting and useful? A good way to think about dmin is: if d = d(C) then for any
x ∈C, we have

Bd(x)∩C = {x} (or Sd−1(x)∩C = {x}).

Our next step is to relate this to the error-detecting and error-correcting capabilities of the code.

3.6 Error-correction and error-detection

We begin by giving a concrete definition of error-detection and error-correction. Our perspective: if
x ∈C is sent but y ∈ Fn is received, then the difference z = y− x is called the error vector. That is, we
think of the process of an error occurring in transmission as being realized algebraically as “adding
the error vector z". Any vector can thus be an error vector (including 0, which is no error at all); given
x,y,z as above, we say x is the codeword, z is the error vector and y is the received word.

Definition 3.25 A code C is said to detect t errors, or be t-error detecting, if for all x ∈C, and all
possible nonzero vectors z of weight t or less, x+ z /∈C.

A code C is said to correct t errors, or be t-error correcting, if for all x ∈C, and all possible vectors z
of weight t or less, x is closer to w = x+ z than is any other codeword in C, that is, d(x,w)< d(x′,w)
for all x′ ∈C, as illustrated below.

32 Chapter 3. Linear codes

x w

z

x′

Note that we insist that ALL possible errors of the given weight must be detectable or correctable; in
general a code may also detect more than t errors, or correct more than t errors, in special cases, but we
are only interested in the general (worst!) case.

Let us first understand the condition of error-correction better.

Lemma 3.26 A code C can correct t errors if and only if

∀x ∈C,∀w ∈ St(x), St(w)∩C = {x}. (3.2)

The setup is illustrated in Figure 3.5.

x w

w′

x′

Figure 3.5: The black circle represents the ball of radius t around a codeword x. The vectors w and
w′ are in St(x). The balls St(w) (red) and St(w′) (blue) contain no other elements of C besides x.

Proof. Suppose first that the condition in the statement labelled (3.2) holds. Let x ∈C be arbitrary,
and let z be any error vector such that wt(z)≤ t. Then w = x+ z is at a distance of at most t from x.
Since St(w)∩C = {x}, there are no other codewords x′ such that d(x′,w)≤ t, so x is the unique closest
codeword to w. Thus C is t-error correcting.

Now suppose that C can correct t errors and suppose to the contrary that (3.2) fails. That is, there exists
some x ∈C and some w ∈ St(x) such that St(w)∩C 6= {x}. Now since d(x,w)≤ t and x ∈C we know
that x ∈ St(w)∩C, so inequality means that there exists another codeword x′ ∈C, x′ 6= x, such that
x′ ∈ St(w). So we have d(x,w)≤ t and d(x′,w)≤ t. 3 We illustrate this setup in the following picture.

3Note that these inequalities do not imply that d(x′,w)< d(x,w), which would be an immediate contradiction.

3.6 Error-correction and error-detection 33

x w x′

We can interpret this in two ways:

• If x was the sent word, then z = w−x is the error; since wt(z)≤ t, the fact that C corrects t errors
promises that d(w,x)< d(w,x′);

• If x′ was the sent word, then z′ = w− x′ is the error; since x′ ∈ St(w), wt(z′)≤ t. Thus e-error
correction promises instead d(w,x′)< d(w,x).

This is a contradiction; no such x′ can exist. So (3.2) holds. �

We can now give a wonderfully simple criterion for error detection and error correction.

Theorem 3.27 Suppose C is an (n,k) code over F . Then
1. C can detect t errors if and only if t < d(C).

2. C can correct t errors if and only if t≤ d(C)−1
2

.

Proof. For the first part: A code C can detect t errors if and only if for each x ∈C, there is no y ∈C
such that d(x,y)≤ t (that is, t errors aren’t enough to turn one codeword into another; they can only
turn a codeword into a non-codeword). This latter condition is equivalent to saying that dmin > t.

For the second part, by the lemma, we will be done if we show that (3.2) holds if and only if
2t+1≤ d(C).

First suppose that d(C)≤ 2t. Then there exists some x,y ∈C, x 6= y, such that d(x,y)≤ 2t. Construct
(exercise) a vector w such that d(x,w)≤ t and d(y,w)≤ t. Then this w contradicts (3.2). We conclude
that if d(C)≤ 2t, C is not t-error correcting. Equivalently, if C is t-error correcting, then d(C)≥ 2t+1.

Conversely, suppose d(C)≥ 2t+1, and let’s show that (3.2) holds. So let x ∈C and w∈ St(x). Suppose
to the contrary that there exists y ∈C∩St(w), y 6= x. Then by the triangle inequality (of the Hamming
metric) we’d have

d(x,y)≤ d(x,z)+d(z,y)≤ t+ t = 2t,

contradicting that the minimum distance of this code is greater than 2t. So (3.2) cannot fail (it must
hold). �

� Example 3.28 We see that neither our parity check nor our ISBN code have dmin ≥ 3, which is the
minimum for correcting at least one error; but they can each detect 1 error since dmin = 2. On the other
hand, our repetition code has dmin = 3 so t = 1 and t = 2. �

� Example 3.29 Our (6,3) code has dmin = 3 so t = 1, and so this code can correct all single errors.
Notice that the rate on this code is 3/6 = 1/2, which is better than the repetition code, for the same
error-correcting capability. �

34 Chapter 3. Linear codes

We can visualize this theorem with our usual pictures of closed balls. The code is t-error-detecting if
one can fit balls of radius t around each codeword without meeting other codewords; the code is t-error
correcting if the balls of radius t centered at all codewords are disjoint.

3.7 Hamming bound

Remembering that we are working over finite fields, and that all these sets are finite, leads us to a
more interesting relationship between n,k and dmin than the Singleton Bound. The following result was
proven for the case p = q = 2 in 1950 by Richard W. Hamming. Because of the method of the proof,
others call it simply the Sphere-packing bound.

Theorem 3.30 — Hamming bound (when q = p = 2); Sphere-packing bound (when q > 2). If
C is an (n,k) linear q-ary code which can correct t errors, then

t

∑
i=0

(
n
i

)
(q−1)i ≤ qn−k.

Proof. We just discussed that C is t-error-correcting iff the closed balls of radius t centered at elements
of C are disjoint. Let’s count how many elements of Fn lie in each of these open balls. It is clear that
they are all of the same cardinality, so it suffices to look at the zero codeword.

Recall that St(0) = {x ∈ Fn | d(x,0)≤ t}. Enumerating the vectors in this set according to the number
of bits in which they differ from x yields

|St(0)|=
(

n
0

)
+

(
n
1

)
(q−1)+

(
n
2

)
(q−1)2 + · · ·+

(
n
e

)
(q−1)t.

We have |C|= qk such balls. Since they are disjoint, we have

|C|× |St(0)| ≤ |Fn|

which gives

qk

(
t

∑
i=0

(
n
i

)
(q−1)i

)
≤ qn.

�

The case of q = 2 is an important one, as it yields a fundamental identity relating t, k and n:(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
t

)
≤ 2n−k. (3.3)

This arises so frequently (due to the popularity of binary codes) that we call it the Hamming bound.

We now have two inequalities that constrain the dimension k of a linear code of length n and minimum
distance d:

• the Singleton bound (Theorem 3.24) which says that k ≤ n−d +1; and

3.8 Exercises 35

• the Hamming bound (Theorem 3.30), which says that

qk ≤ qn

b d−1
2 c

∑
i=0

(
n
i

)
(q−1)i

−1

.

We say that a code meets a bound if the inequality becomes an equality for that code.

Definition 3.31 A code C which meets the Singleton bound, that is, for which

dmin = n− k+1

(equality) is called a maximum distance separable or MDS code. A code which meets the Hamming
or sphere-packing bound, that is, for which

b d−1
2 c

∑
i=0

(
n
i

)
(q−1)i = qn−k

(equality) is called a perfect code.

� Example 3.32 Our parity check, ISBN and repetition codes are all MDS since dmin = n−k+1 in all
cases. Since the parity check and ISBN codes have t = 0, they cannot be perfect (since the left hand
side of (3.3) is 1). But in fact, the repetition code has n = 3, t = 1, k = 1 which yields

1+n = 4 = 23−1 = 2n−k

so this code is perfect. �

� Example 3.33 Our (6,3) code is not MDS, since it does not meet the Singleton bound (that is,
dmin 6= n− k+1). Is is also not perfect, since the left side of the Hamming bound formula (3.3) adds to
7 whereas the right side is 23 = 8.

In fact, it’s immediately clear that no (6,3) code could ever be perfect! �

3.8 Exercises

1. Prove that if 0≤ p≤ 1 then 0≤H2(p)≤ 1. Compute the capacity of a channel if p = 0, p = 1/2
or if p = 1. What does the case p = 1 represent and how is this consistent with the answer you
get for the capacity of such a channel?

2. Suppose you have a binary symmetric channel with a bit error rate of p = 0.1. For a single-error
correcting code of length n = 32, what is the expected block error rate? What is the maximum
rate R of a code on this channel? To what value of k (dimension of the message space) does this
correspond?

3. Find a book with a 10-digit ISBN and verify that this number lies in the ISBN code, as defined in
Example 3.5. Show that it can detect a single error in any position, as well as a transposition
error.

4. Let C denote the ISBN code.
(i) Prove that if a ∈C and b satisfies d(a,b) = 1 then b /∈C.

(ii) Prove that if a ∈C and b is the result of swapping two digits of a, then b /∈C.

36 Chapter 3. Linear codes

(iii) Thinking about how you proved the properties in parts (i) and (ii), explain why the ISBN
code is mod 11, instead of the more convenient mod 10. Give examples to justify the
superiority of 11 over 10.

5. Show that the set C of all vectors in Zn
2 of even weight is a subspace of Zn

2 , and is therefore a
code. Show that as a subgroup of Zn

2 it is of index two; or equivalently, that its dimension is n−1.
Hint: over Z2, the map x 7→ wt(x) is a homomorphism.

6. Let C be the set of all vectors in Zn
3 whose weight is even. Show that this is not a subspace of Zn

3,
and so is not a code.

7. Prove Lemma 3.12.
8. (For students who’ve seen some topology) The open balls defined by the Hamming metric suffice

to define the open sets of a topology on Fn. If you have encountered this notion in your other
courses, then answer: what is this topology? Does the Hamming metric on Rn induce the usual
Euclidean topology?

9. Explore trying to adapt the Euclidean metric to Zn
3, that is, by associating elements of Z3 with

real numbers and then using the formula ‖x‖=
√

x2
1 + x2

2 + x2
3 (so that d(x,y) = ‖x− y‖). What

kinds of problems arise when you try to verify the definition?
10. Describe the “shape" of a closed ball of radius 1 in Z2

p and Z3
p when we embed Z3

p into R3 by
mapping elements of Zp to integers in {0,1, . . . , p−1} (as in the pictures in this chapter). What
is the shape of a closed ball of radius 2?

11. Is |Sr+1(x)|> |Sr(x)| always true? Discuss.
12. The Hamming weight is a norm that extends the trivial absolute value on the finite field. That is,

for all x,y,z ∈ Fn:
(i) wt(x)≥ 0 and wt(x) = 0 iff x = 0;

(ii) wt(cx) = wt(x) for any nonzero scalar c ∈ F ;
(iii) wt(x+ y)≤ wt(x)+wt(y).
(But for those of you who have seen more rings and fields: this is not the same thing as an
algebraic norm.... same spirit, different definition, different uses!)

13. Prove Lemma 3.19.
14. Show that if C is an (n,k) code of minimum distance d, then you can erase any selection of

`≤ d−1 coordinates and the result will be an (n− `,k) code. That is, the size of the code does
not change. On the other hand, prove that erasing `= d coordinates produces an (n−d,k′)-code
with k′ < k.

15. Suppose that d(x,y)< 2t. Show how to explicitly create w such that w is at a Hamming distance
of at most t from each of x and y.

16. The Luhn algorithm was patented in the 1950s as a quick way to create a check digit which
would allow the detection of single errors as well as the detection of transposition errors. It is
currently used on credit cards as well as Canadian social insurance numbers. The algorithm is:
take your card number and reverse it:

x16x15 · · ·x3x2x1,

where each xi ∈ {0,1, . . . ,9}. For each i, define

• y2i = the sum of the digits of 2x2i;
• y2i+1 = x2i+1.

Then the card number is a valid codeword iff
16

∑
i=1

yi = 0 mod 10.

3.8 Exercises 37

(i) Verify your own credit card number and 9-digit SIN with this algorithm. Keep this
calculation private, please, as these numbers should always remain confidential.

(ii) Let C denote the set of valid credit card numbers; this is a subset of Z16
10 (for most credit

cards). Explain why C cannot be a linear code, as per our definition. Explain further why C
is not a subset of a linear code in Zn

11, as was the case for 10-digit ISBN numbers.
(iii) Show that the Luhn algorithm will detect all single errors. Find a transposition error which

the Luhn algorithm does not detect.
17. Newer ISBN numbers have 13 digits: x0x1 · · ·x12. The checksum is calculated as

6

∑
i=0

x2i +3
5

∑
i=0

x2i+1 ≡ 0 mod 10.

In particular, since we are no longer working modulo 11, the extra symbol X is not required.
(i) Expanding to 13-digit ISBNs instead of 10-digit ISBNs significantly increases the number

of valid ISBNs. Suppose instead they had decided to allow X to occur in any digit of a
10-digit ISBN, instead of only the check digit. Estimate the sizes of these three codes
(13-digit, 10-digit, expanded 10-digit).

(ii) This code is no longer linear, since we’re not working over a field. Show that it is single-
error-detecting but not single-error-correcting. Find a also transposition error that it cannot
detect.

(iii) Could we have replaced 3 by 2 as a coefficient in the sum? Why 3?
18. This exercise explores some results related to the existence of good codes.

(i) Prove the (named for independent discoverers E. N. Gilbert (1952) and R. R. Varšamov
(1957)): the maximum possible size of a code in Fn

q of minimum distance d is at least

qn

∑
d−1
j=0

(n
j

)
(q−1) j

.

This bound would feel meaningless except they went on to prove that there exist linear
codes over Fq satisfying this bound — but by arguing that a random linear code of minimal
distance d would satisfy this bound with high probability, which did not yield a construction
of such codes.

(ii) Verify if this bound is satisfied by the linear codes we have seen. Codes surpassing this
bound are sometimes called capacity-approaching because of the relation to Shannon’s
channel capacity bound.

4. Towards a systematic construction of codes

How many “different” error-correcting codes are there? How can we classify them, and eventually,
figure out which ones are “best" by a given measure? A good place to start is to ask ourselves: when do
we consider two codes “different" or “the same"?

4.1 Equivalent codes

We have defined a linear (n,k) code as a k-dimensional subspace of Fn. However, the category of
codes is not the same as the category of subspaces! Namely, any two k-dimensional subspaces are
isomorphic; but since we care about the weights of the codewords, we do not consider any two (n,k)
codes to be “isomorphic”. We can have fundamentally different codes of the same size, with the same
values of n and k!

But to classify codes, we need a precise definition of when we consider them to be equivalent1. Recall
that the group of permutations Sn acts on Fn by permuting the coordinates (see Appendix A.4).

Definition 4.1 Let Ci be an (ni,ki) code over Fi, for i = 1,2. Then C1 is equivalent to C2, written
C1 ∼C2, if n1 = n2, k1 = k2, F1 = F2 and there exists a permutation σ ∈Sn such that σ(C1) =C2.

� Example 4.2 Consider the following three (4,2) binary codes.

C1 = {0000,1100,0011,1111}
C2 = {0000,1010,0101,1111}
C3 = {0000,1100,0110,1010}

The permutation (23) takes C1 onto C2 (and vice versa, since (23) has order 2). But since any
permutation of 1111 is 1111, there is no permutation taking C1 (or C2) to C3. Therefore C1 and C2 are
equivalent, but C3 in not equivalent to either of them. �

1We will not use “isomorphic" and reserve that for vector spaces.

40 Chapter 4. Towards a systematic construction of codes

Lemma 4.3 If C1 ∼C2 then d(C1) = d(C2).

Proof. Let σ ∈ Sn. Then since σ just permutes the coordinates of a vector c, in particular c and σ(c)
have the same number of nonzero coordinates. Thus wt(c) = wt(σ(c)). Applying this to elements of
least positive weight in each code yields the lemma, since these weights are the minimum distances of
their respective codes. �

Example 4.2 shows that the converse is not true.

R Many authors use a broader definition of scaled equivalence for q-ary codes: C1 ∼C2 if
there is a permutation matrix P and an invertible diagonal matrix D such that {DPc | c ∈
C1}=C2. For binary codes, this is exactly equivalence as defined above.

� Example 4.4 The two ternary codes C1 = {00,11,22} and C2 = {00,12,21} are not equivalent, but
they are scaled-equivalent since with

D =

[
1 0
0 2

]
we have DC1 =C2. �

4.2 Systematic codes

Now that we have a notion of equivalence of codes, we may proceed towards a classification. The first
step is to introduce the generator matrix of a code.

Definition 4.5 Let C be a linear (n,k) code over the field F . Choose an encoding function, that is,
an injective linear transformation

ϕ : Fk→ Fn

whose image is the subspace C. Then the standard matrix of this transformation is called a generator
matrix for C.

� Example 4.6 Binary repetition code: The map sends 1 to 111 so and the corresponding generator
matrix is

G =

1
1
1

. �

The encoding function takes a message, which is a vector in Fk, and converts it into a codeword
c ∈C ⊆ Fn. In terms of the generator matrix, this just means that the message m is converted into the
codeword Gm, where this is matrix multiplication.

! In the coding literature, it is very common to transpose the generator matrix, so that GT

is k×n rather than n×k. Then to encode a row vector mT , you multiply by the matrix on
the right, that is, compute mT GT instead. Since mT GT = (Gm)T , this comes out to the
same thing.

4.2 Systematic codes 41

Lemma 4.7 If C is a linear code with generator matrix G, then the columns of G form a basis for C.
Conversely, any basis for C determines a generator matrix G.

Proof. This follows from the definition and linear algebra. Let ϕ : Fk→ Fn be an injective linear map
with matrix G. Then the columns of G are precisely {ϕ(ei) | 1≤ i≤ k}, where {ei | 1≤ i≤ k} is the
standard basis for Fk. Since ϕ is injective, this is a basis for the image ϕ(Fk) =C.

Conversely, given a basis {c1, . . . ,ck} for C, specify a linear transformation ϕ : Fk→ Fn by defining
ϕ(ei) = ci for each 1≤ i≤ k and extending by linearity to a function on Fk. Then the corresponding
matrix G has columns equal to this basis. �

� Example 4.8 Binary parity check (3,2) code: C = {000,101,011,110}. Then we have several

possible generator matrices, including G1 =

1 0
0 1
1 1

 and G2 =

1 1
1 0
0 1

. We note that G1 has the nice

property that a message x1x2 is encoded as x1x2 p where p is the parity check bit, that is, the message
occurs as the first part of the codeword. This is not true of G2, where for example 11 is encoded as

G
[

1
1

]
=

0
1
1

= 011. �

Generator matrices in standard form [
Ik
A

]
for some n−k×k matrix A, are particularly appealing because for any message u ∈ Fk, the correspond-
ing codeword is

Gu =

[
u

Au

]
.

Definition 4.9 A linear code is called a systematic code if it has a generator matrix which is in
standard form.

� Example 4.10 One generator matrix of the (6,3) code of Example 3.6 is

G =

1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

so this code is systematic. �

� Example 4.11 The (3,2) code C2 = {000,101,110,111} defined earlier is not systematic, since
there are no codewords starting with the string 01. This is impossible in a (n,2) systematic code. �

42 Chapter 4. Towards a systematic construction of codes

Theorem 4.12 Every linear code is equivalent to a systematic code.

Proof. Since equivalence is defined by permuting coordinates, we see that what we have to show is
that there is a basis for C and a set of k coordinates such that each basis vector has a 1 in exactly one of
these coordinates, and zeros in the rest. That is, we want a really nice, simple basis for C — which is
exactly what we learned to do in linear algebra, using row reduction. Row reduction reduces a matrix
in such a way that the rowspace is unchanged, but the resulting basis for the rowspace is as simple as
possible (in precisely the sense that we require here).

So let G be any generator matrix for C. Then the rowspace of GT is equal to C. Row reduce GT using
Gauss-Jordan elimination. Since dim(C) = k, the rank of GT is k, and so in the reduced row echelon
form RT of GT , there are precisely k leading ones, with zeros above and below. Since the rowspace of
GT equals that of RT , we deduce that R is another generator matrix for C.

Now let σ ∈Sn be such that the k leading ones of RT are rearranged to be the indices 1,2, . . . ,k. Then
σ(C) is a systematic code. �

� Example 4.13 Let’s apply the argument of this proof to find a systematic code equivalent to

C = {00000,10201,20102,02120,01210,11111,22222,21012,12021}.

First, we choose a basis; this is a (5,2) ternary code so any two vectors which are not scalar multiples
will do. We could look carefully and make a good choice; but for the sake of argument let us choose

G =

2 1
0 1
1 1
0 1
2 1

 .
Now row reduce GT :[

2 0 1 0 2
1 1 1 1 1

]
∼ R1 +R2→ R2;2R1 ∼

[
1 0 2 0 1
0 1 2 1 0

]
which is (as expected) another basis for the code — and in standard form, no less.

If instead we had begun with

G =

2 2
0 1
1 0
0 1
2 2

then we might have realized that rows 2 and 3; or rows 3 and 4, satisfy the requirements for giving a
standard matrix after permutation. If we choose σ = (1324), for example, then

σ(G) =

1 0
0 1
0 1
2 2
2 2

4.3 Exercises 43

which is a standard generator matrix, not for C, but for the equivalent code σ(C). �

This gives us one answer to the classification question we began with: every equivalence class of codes
contains at least one matrix in standard form. So if we wish to generate many different codes, it suffices
to generate many standard matrices of the size we desire.

Unfortunately, none of this discussion has shed any light on the minimum distance of such codes. This
is our next goal.

4.3 Exercises

1. Imagine we wanted to exhaustively search among all possible codes of length n and dimension k
to find the one with the highest dmin. To get a sense of the size of this calculation, show that the
number of 3-dimensional binary codes of length n is

(2n−1)(2n−1−1)(2n−2−1)
21

.

(Hint: count the number of ways of choosing 3 linearly independent vectors, then quotient by the
number of bases of a 3-dimensional subspace.) Find a formula for the number of (n,k) codes.

2. Prove that if C1 ∼C2, then C2 ∼C1. (This needs proving since the definition is asymmetric.) In
fact, show that ∼ is an equivalence relation.

3. Prove that a linear map ϕ : Fk→ Fn is injective if and only if the image under φ of any basis of
Fk is a basis for im(ϕ).

4. Let us recall why the rowspace of a matrix A equals that of its reduced row echelon form R. Row
reducing A implies multiplying A on the left by a matrix B; so BA = R. The rowspace of A is the
span of the rows of A, or equivalently, the span of the columns of AT ; thus it is the image of the
linear transformation corresponding to AT . Explain why the image of AT (that is, the rowspace
of A) equals that of RT ; this is linear algebra.

5. Apply the argument of the proof of Theorem 4.12 to the code C = {0000,1100,0011,1111} to
determine an equivalent systematic code C and generator matrix G in standard form.

6. Find the minimum distance of the code with generator matrix

G =

1 0 0
0 1 0
0 0 1
1 1 1
1 1 1
1 1 1
1 1 1

.

In general, is it true that d(C) is equal to the minimum weight of the column vectors of a generator
matrix G? Discuss.

7. Classify all (3,1) binary codes up to equivalence, as follows.
(i) Begin by finding out how many there are, and writing down a generator matrix for each of

them.
(ii) Then write down all standard generator matrices for systematic binary (3,1) codes.

44 Chapter 4. Towards a systematic construction of codes

(iii) By our theorem, every code is equivalent to one of these; but it is also possible for two
standard matrices to correspond to equivalent systematic codes. Determine all equivalence
classes, and which equivalence classes have a unique systematic representative.

8. For the codes of the preceding exercise, verify that dmin is an invariant of the equivalence classes.
9. Give an estimate of (or: lower and upper bounds for) the number of (n,k) codes up to equivalence.

(This question is open-ended, inviting you to use whatever tools you have at hand, or to specialize
to any particular sub-case you find amenable to analysis.)

4.4 The dual code

Although generator matrices permit us to exhaustively enumerate all codes up to equivalence, they
don’t particularly answer the question: how “good" is the code (i.e. what is dmin?). For this, and other
important questions, we need a related tool.

Definition 4.14 Let C be an (n,k) linear code over F . Then the dual code is the set

C⊥ := {v ∈ Fn | v ·w = 0 ∀w ∈C}

where v ·w = ∑
n
i=1 viwi.

� Example 4.15 Let C = {000,111} be the binary repetition code. Then

C⊥ = {x ∈ Z3
2 | x ·w = 0∀w ∈C}

= {x ∈ Z3
2 | x ·111 = 0}

= {x ∈ Z3
2 | x1 + x2 + x3 = 0}

= {000,101,011,110}

which is the binary (3,2) parity check code. �

We can show, using the bilinearity of the dot product, that C⊥ is a subspace of Fn, hence itself a code
(exercise). To determine its size, we need to develop a bit further the theory of bilinear forms over
arbitrary fields.

4.5 Dot products over a finite field

We are familiar with the dot product over R; it is a positive definite inner product there. So if W is
a subspace of Rn, then W⊥ is the orthogonal complement of W in Rn, whence W⊥ is a subspace of
dimension n− k that intersects W only in {0}.

However, the dot product is only a symmetric bilinear form over Fn. One of the major differences is
the existence of non-zero self-orthogonal vectors over a finite field. For example, in the vector space
(Z2)

3, we have
110 ·110 = 0.

Therefore, in general it will not be true that W ∩W⊥ = {0}. Although it isn’t quite right to think of
vectors v and w as being orthogonal if v ·w = 0, this is the terminology we inherit from R.

4.5 Dot products over a finite field 45

More accurately, we can think of the dot product as giving us a way of mapping vectors in Fn to vectors
in the dual vector space (Fn)∗ of linear functionals on Fn2, as follows.

Lemma 4.16 The map
ψ : Fn→ (Fn)∗

defined by: for each v ∈ Fn, we declare ψ(v) to be the linear functional on Fn given by

ψ(v)(w) = v ·w.

This is a well-defined linear isomorphism.

Proof. We leave linearity (in both v and w) and well-definedness as an exercise.

Since dim(Fn) = dim(Fn)∗ = n and ψ is linear, it suffices to show that ψ is injective. Note that
ψ(v) = 0 if and only if ψ(v)(w) = 0 for all w∈ Fn. But ψ(v)(ei) = vi, the ith coordinate of v. So this is
zero for all ei if and only if v = 0. So ker(ψ) = {0} meaning ψ is injective, hence an isomorphism. �

This is not the only isomorphism between these two spaces (by any means!). Let B = {v1,v2, . . . ,vn}
be a basis of Fn. Then we can define B∗ = { f 1, f 2, . . . , f n} of (Fn)∗ by setting each f j to be the unique
linear functional which takes value 1 on v j and 0 on each vi, i 6= j. The map ρB : Fn→ (Fn)∗ which
sends vi to f i for each i is another isomorphism of the two spaces.

These isomorphisms hold for any field F . Over R, however, if B is an orthonormal basis then ψ(B) =B∗.
The preponderance of orthonormal bases then makes the rest easy. Even though we do not usually have
orthonormal bases over finite fields, nonetheless, what we have for arbitrary F is enough.

Proposition 4.17 Suppose W ⊆ Fn is a k-dimensional subspace and set

W⊥ = {x ∈ Fn | x ·w = 0 ∀w ∈W}.

Then
1. W⊥ is a subspace of Fn of dimension n− k.
2. If H is a matrix whose rowspace is W , then its nullspace is W⊥.
3. (W⊥)⊥ =W .

Proof. That W⊥ is a subspace is an exercise; let us show it has the given dimension.

Choose a basis BW = {v1,v2, . . . ,vk} for W and extend it to a basis B = {v1,v2, . . . ,vk,vk+1, . . . ,vn} for
Fn. Let ρB(B) = B∗ = { f 1, . . . , f n} be the dual basis. For each j = k+1, . . . ,n, set

w j = ψ
−1(f j)

and define W ′ = span{wk+1, . . . ,wn}. Since ψ is an isomorphism and the f j are linearly independent,
dim(W ′) = n− j.

2This is where the term “dual codes” comes from.

46 Chapter 4. Towards a systematic construction of codes

Note that by definition, ψ(w j) = f j so w j · v = f j(v) for all v ∈ V . Since all these functions f j, for
j ∈ {k+1, . . . ,n}, are zero on W , this means each w j is orthogonal to every vector in W , so lies in W⊥.
This gives the inclusion W ′ ⊆W⊥.

Conversely, suppose x ∈W⊥. Then x ·w = 0 for all w ∈W , implying that ψ(x)(w) = 0 for all w ∈W .
Write ψ(x) = ∑

n
i=1 ci f i for some coefficients ci. Since for all j ∈ {1, . . . ,k} we have

0 = ψ(x)(w j) =
n

∑
i=1

ci f i(w j) =
n

∑
i=1

ciδi j = c j,

we infer that ψ(x) ∈ span{ f k+1, . . . , f n} so x ∈W ′. Thus W ′ =W⊥ and this space has dimension n−k.

For the second part, note that if H is a matrix whose rowspace is W , then the rows hi of H span W . The
nullspace is therefore

Null(H) = {v | Hv = 0}= {v | hi · v = 0∀i}=W⊥.

(Some intermediate steps are left as an exercise.)

We leave the proof of the third part as a fun exercise. �

Note that if a matrix A represents the linear transformation T , then Null(A) = ker(T). We thus also
sometimes write ker(A) for the nullspace of A.

4.6 Parity check matrices
Definition 4.18 Let C be a linear (n,k) code. Then any (n− k)×n matrix H such that C = ker(H)
is called a parity check matrix for C.

Note that since dim(C) = k, this condition forces a parity check matrix for C to have rank equal to
n− k.

By Proposition 4.17, if C is an (n,k) code, then the dual code C⊥ is an (n,n− k) code. This gives us an
immediate way to generate a parity check matrix for C.

Proposition 4.19 Let C be a linear (n,k) code. Denote by G⊥ a generator matrix for C⊥. Then
H := (G⊥)T is parity check matrix for C.

We leave the proof as an exercise.

� Example 4.20 Let C be the (3,1) binary repetition code. By Example 4.15 we know C⊥ and see that
may take

G⊥ =

1 0
0 1
1 1

so that a parity check matrix for C is

H =

[
1 0 1
0 1 1

]
.

4.6 Parity check matrices 47

By construction, the rows of H span C⊥; in particular, C = Null(H). �

The key property of the parity check matrix is that it gives a very easy way to decide if w ∈C or not. It
is so important that we’ll state it as a theorem, even though it is just a restatement of the definition.

Theorem 4.21 Let C be a code with parity check matrix H. Then w ∈C if and only if Hw = 0.

For systematic codes, it’s even easier to create a parity check matrix. Suppose C is a systematic code

and G =

[
Ik
A

]
is a generator matrix for C. Then

H =
[
−A In−k

]
is a parity check matrix for C since the equality

HG =
[
−A In−k

][Ik
A

]
=
[
−A+A

]
= 0

shows that the columns of G lie in ker(H); thus C ⊂ ker(H) and by dimension we must have equality.

� Example 4.22 Suppose C is a binary code with generator matrix

G =

1 0
0 1
− −
1 1
1 0
0 1

 .

This is in standard form so a parity check matrix for C is

H =

1 1 | 1 0 0
1 0 | 0 1 0
0 1 | 0 0 1

 .
�

� Example 4.23 Suppose C is a ternary code with generator matrix

G =

1 0
0 1
2 2
0 1
1 0

 .
This is in standard form. Recall that −2 = 1 and −1 = 2 over Z3, so a parity check matrix is

H =

1 1 | 1 0 0
0 2 | 0 1 0
2 0 | 0 0 1

 .
�

48 Chapter 4. Towards a systematic construction of codes

4.7 Exercises

1. The oddities are not restricted to the binary field: construct self-orthogonal vectors in Z2
3, Z3

3 and
Zn

5, for any n > 1.
2. (If you have taken a course in Number Theory) Let p be a prime number. Construct a self-

orthogonal vector in Zn
p, for any n > 1.

3. Show that the dot product is bilinear. Use this to show that W⊥ is a subspace of Fn, that ψ(v) is
in (Fn)∗, and that ψ is a linear map.

4. Prove that if {w1, · · · ,w`} span W then W⊥ = {v | wi · v = 0 ∀i}. That is, it suffices to check
orthogonality on a spanning set. This was needed in the proof of Proposition 4.17.

5. Show that (W⊥)⊥ =W .
6. Prove Proposition 4.19.
7. Find a generator matrix and a parity check matrix for the ASCII (8,7) binary code.
8. Let C = {000,111,222}, a ternary (3,1) repetition code. Find a generator matrix for C in

standard form, and the corresponding parity check matrix. Find another, distinct, parity check
matrix.

9. Give a generator matrix G for C and a generator matrix G⊥ for the the dual code C⊥, where C is
the (6,3) code of Example 3.6.

10. Row reduce the following matrix to reduced row echelon form in two cases: (a) supposing the
field over which we are working is Z5, and (b) if the field is Z7. Compare the rank and nullity of
the matrix in the two cases:

A =

2 1 3 4 2
2 4 1 3 0
1 1 0 3 2
0 2 3 0 3

11. If G is a generator matrix for C, and H is a parity check matrix, then show that HG = 0. Is

GH = 0? Suppose H ′ is another matrix, of any size such that H ′G is well-defined and H ′G = 0.
Do the rows of H ′ span the dual code to C? Does H ′ satisfy Theorem 4.21?

12. Suppose C∼C′, via the permutation σ . Then if G is a generator matrix for G, then we can choose
G′ = Pσ G as a generator matrix for C′, where Pσ is the n×n permutation matrix representing the
permutation σ . If H is a parity check matrix for C, what is a parity check matrix for C′? Prove
your answer.

13. We can define scaled equivalence of q-ary codes as follows: C ≡C′ if there exists a permutation
matrix P and an invertible diagonal matrix D such that C′ = {DPc | c ∈C}. Give an expression
for a generator matrix and a parity check matrix for C′ in terms of D, P, G and H (where G is a
generator matrix for C and H is a parity check matrix for C).

5. Decoding

Let us take a moment to consider how to efficiently decode a message. Given a received word v, we
need to identify the codeword c which is closest to v. The method we have used thus far — comparing
v to each c and choosing the one of minimum distance — is quite slow if the code is large. For an (n,k)
q-ary code, we would need to calculate qk differences, each with n bits, for a total of nqk operations —
plus storage and sorting of the answer.

The standard answer in computer science to “what’s efficient?” is : use a look-up table. Each possible
received word indexes an entry in the table, and that entry determines the decoding. So far, so good.

But how do we create such a table? There are qn possible received words; decoding each one ahead of
time involves qn(nqk) operations, which isn’t horrible for off-line use, but is pretty tedious nonetheless.
There must be a better way.

5.1 The idea : cosets

Let C be an (n,k) q-ary linear code over F . Then C is a subspace, and in particular a subgroup, of Fn.
Recall that a coset of the subgroup C of Fn is a set of the form

x+C = {x+ c | c ∈C}.

Here are some basic properties of cosets of a subgroup.

Lemma 5.1 Suppose C is a subgroup of a finite group V . Then
1. for any v ∈V : v+C =C if and only if v ∈C, in which case we call this the trivial coset;
2. |v+C|= |C| for all v ∈V ;

50 Chapter 5. Decoding

3. if v,w ∈V then

(v+C)∩ (w+C) =

{
v+C if w ∈ v+C
/0 otherwise;

(5.1)

4. the number of distinct cosets of C in V is [V : C] = |V |/|C|.
It follows that V is the disjoint union of the distinct cosets of C.

Proof. We only prove (5.1), and leave the rest as an exercise.

Let v,w ∈C. Suppose first that w ∈ v+C. This means there exists a c ∈C such that w = v+ c. But
then v = w− c, and −c ∈C because C is a subgroup. So v ∈ w+C.

On the other hand, suppose w /∈ v+C, and suppose to the contrary that there exists some z ∈ (v+
C)∩ (w+C). Then this z can be written as z = v+ c for some c ∈C as well as z = w+ c′ for some
c′ ∈C. But then we have w = v+(c− c′). Since C is a subgroup, c− c′ ∈C, so this says w ∈ v+C, a
contradiction. So no such z exists; the intersection is empty. �

Let us illustrate the lemma with an example that in which you can easily verify the calculations and
conclusions.

� Example 5.2 If C = {000,111} then its nontrivial cosets in V = Z3
2 are

100+C = {100,011}= 011+C

010+C = {010,101}= 101+C

001+C = {001,110}= 001+C

So there are four cosets in all, each with two elements. We see directly that every vector in Z3
2 lies in

exactly one of these cosets. �

Thus, if C is an (n,k) code, then by the lemma, Fn is the disjoint union of cosets

Fn =
⋃
e∈R

(e+C)

where R is a set of coset representatives; such a set R is not unique. We have that |R|= |Fn|/|C|= qn−k.

� Example 5.3 Consider C = {000,111}, the binary repetition code. By Example 5.2, we can
enumerate the cosets as

• 000+C =C
• 100+C = {100,011}
• 010+C = {010,101}
• 001+C = {001,110}

so this corresponds to a choice of R = {000,100,010,001}. These representatives R that we chose are
in fact the smallest vectors in each coset. We call them coset leaders because they define the error
pattern which is most likely to have occurred if our received word is either of the vectors in that coset
(check!). �

5.2 The Standard Array and Coset Leaders 51

5.2 The Standard Array and Coset Leaders

By Lemma 5.1, any element of a coset is a representative for the coset. Therefore, for each coset of C
in Fn, we may always choose as representative a coset leader, which is an element e of that coset with
minimal Hamming weight. (It may not be unique.)

Now create a table, called the standard array, where the rows are the cosets of C, with the coset leaders
as the first column.

� Example 5.4 Suppose C = {00000,00111,11100,11011}. This is a linear (5,2) binary code, with
dmin = 3. To form the standard array, we simply start with vectors of weight 1; since dmin > 1, none of
these are in C; since dmin > 2, no two of these vectors could be in the same coset.

00000 00111 11100 11011
10000 10111 01100 01011
01000 01111 10100 10011
00100 00011 11000 11111
00010 00101 11110 11001
00001 00110 11101 11010
10010 10101 01110 01001
10001 10110 01101 01010

Once we’d exhausted the weight one vectors, we chose any vectors of weight 2 which did not appear in
any previous coset. However, since dmin < 5, the coset leaders are no longer unique. �

Lemma 5.5 If v ∈ e+C, where e is the coset leader, then v can decode as v− e, and this is the
unique closest codeword to v if every other element of e+C has strictly higher Hamming weight.

Proof. Since v ∈ e+C, we know v−e ∈C, so it is a codeword, and the distance between v and v−e is
wt(e). If c′ ∈C is any other codeword, then v− c′ ∈ v+C = e+C. By our choice of coset leader, the
weights of all elements of the coset are at least the weight of the coset leader, so wt(v− c′)≥ wt(e).
Thus v− e is a closest codeword. If e is the unique lowest weight vector in its coset, then v− e is the
unique closest codeword to v. �

We can think of coset decoding as sorting the received words by the most common patterns of errors.

R Suppose our code is e-error correcting. If our received word is the result of more than e
errors, then it probably cannot be decoded uniquely. Therefore, in some applications, we
may prefer not to try to decode it at all, but rather ask for it to be retransmitted. Under
these circumstances, it suffices to build the standard array only for coset leaders of weight
e and less, which is very easy to do. Any vector not occurring in the table is the result of
too many errors.

52 Chapter 5. Decoding

5.3 Syndromes

A useful by-product of how the parity check matrix easily identifies elements of the code is the
following.

Proposition 5.6 Let C be a code with parity check matrix H. Then Hw = He if and only if w and e
lie in the same coset of C.

The proof is left as an exercise.

Definition 5.7 Let C be an (n,k) code over F with parity check matrix H. Then for any w ∈ Fn, the
element Hw ∈ Fn−k is called the syndrome of w.

A consequence of the proposition is that syndromes give us a more efficient implementation of coset
decoding. Instead of computing the standard array of a code (which has qn entries), we just need to
compute the syndromes of all the coset leaders (of which there are qn−k, or sometimes fewer, if we
choose to store only the syndromes of errors we can correct), and instead of searching for w in the
entire standard array, we search for Hw in the set of syndromes. Then to decode w we compute w− e,
as before.

Note that if we store the pair (e,He) for all coset leaders e, then this table has 2qn−k entries, which is
in general much smaller than the size of the standard array. The cost of this decrease in storage is one
matrix product Hw for each call to the decoder.

� Example 5.8 Consider the code C and parity check matrix H of Example 4.22:

H =

1 1 | 1 0 0
1 0 | 0 1 0
0 1 | 0 0 1

 .
We compute some of its syndromes: H0 = 0,

He1 =

1
1
0

 ,He2 =

1
0
1

 ,He3 =

1
0
0

 ,He4 =

0
1
0

 ,He5 =

0
0
1

 ,
which are in fact just the 5 columns of H, since our coset leaders are just the standard basis vectors in
this case.

Now the set of syndromes must equal all of Z3
2, since H is of full rank n− k so its image is all of

Fn−k = F3. We don’t have them all; we are missing some syndromes, namely 011 and 111. But the
beauty of this parity check matrix is that it’s easy to find the missing coset leaders:0

1
1

=

0
1
0

+
0

0
1

= He4 +He5 = H(e4 + e5)

so that this is the syndrome of the coset leader 00011. Similarly we deduce that the syndrome 111
corresponds to the coset of e1 + e5 = 10001, which is the coset leader since it has weight 2 (and all
cosets with coset leaders of weight 1 have already been accounted for).

5.3 Syndromes 53

So if we receive w = 10111, we compute Hw = 001, which is the syndrome of e5 = 00001. Therefore
we decode w as w− e = 10110, which is clearly in C.

If we received w = 10101, then Hw = 011, which is the syndrome of 00011, so we would decode it as
10110 also. However, there is another weight 2 error vector with syndrome 011, namely e = 11000;
if we had chosen it as our coset leader instead we’d have decoded w as 01101. This ambiguity is a
reflection of the fact that C is only single error correcting, and more than one error occcurred in the
transmission which led to w. �

The binary case is a bit special: the one-bit errors are exactly the n standard basis vectors. Over a field
with q > 2 elements, there are (q−1)n vectors with Hamming weight 1. But this does not significantly
add to the complexity, as we can see from an example.

� Example 5.9 Let C be the ternary code from Example 4.23, whose generator and parity check
matrices are

G =

1 0
0 1
2 2
0 1
1 0

 and H =

1 1 | 1 0 0
0 2 | 0 1 0
2 0 | 0 0 1

 .
We have previously seen (in an exercise) that d(C) = 3 so this is a single-error correcting code. What
are all the possible single-bit errors? We can list them:

10000,20000,01000,02000,00100,00200,00010,00020,00001,00002.

In the previous example, which was a binary code, the syndromes corresponding to single bit errors
were precisely the columns of H; here, the error ei gives Hei equal to the ith column of H, while the
syndrome of 2ei is H(2ei) = 2Hei is twice the i column of H.

Suppose we receive the codeword w = 11201. Then Hw = 120 which is just the second column of H.
Thus the error was e = e2 = 01000, and we decode w− e = 10201; it’s a codeword.

Now suppose w = 00210. Then Hw = 210, which is twice the second column of H. Thus the error was
e = 2e2 = 02000, and we decode w− e = 00210−02000 = 01210; it’s a codeword.

Now suppose w = 11111. Then Hw = 000, so w is a codeword, and there was no error.

Finally, if we receive w = 00110, then Hw = 110, which is not 0, or a column of H, or twice a column
of H. Thus it is not a codeword, nor is it the result of a single error in transmission. �

We can summarize some of what we discovered in these examples in a lemma.

Lemma 5.10 Suppose H is a parity check matrix for a code C such that H has no zero columns. If
the syndrome of a received word w is equal to a times the ith column of H, then we decode

w−aei

where ei ∈ Fn is the ith standard basis vector.

54 Chapter 5. Decoding

The proof of this lemma amounts to showing that w−aei ∈C and recognizing that d(w,w−aei) = 1
(unless a = 0, in which case w = w− aei ∈ C) so it is a codeword of minimum distance from w
(exercise).

However, what is more important for our purposes is the following theorem, which gives us another
tool for finding dmin of a code (besides writing out all the codewords!).

Theorem 5.11 The minimum distance d of a linear code C is the size of the smallest dependent set
of columns of H.

What this means is: given a code C, write down a parity check matrix H. If H has a zero column, then
d(C) = 1, since {0} is a dependent set of columns of H. If two columns of H are scalar multiples of
one another, then d(C) = 2. But if no two columns of H are scalar multiples of one another, then the
minimum set of dependent columns is at least 3, so d(C)≥ 3, and C is at least single error correcting!

Proof. Let hi denote the ith column of H. If d(C) = d then there exists a c ∈C such that wt(c) = d.
Since c ∈C, we have Hc = 0 by Theorem 4.21. Writing this out as an equation on the columns of H
gives ∑cihi = 0; the number of nonzero coordinates of c is the number of vectors appearing in this
dependence relation. So there exists a set of d dependent vectors among the columns of H.

Conversely, given any dependence relation ∑cihi on the columns of H, we can write this as Hc = 0 for
the corresponding vector of coefficients c. By our fundamental theorem about parity check matrices
(Theorem 4.21), we deduce that c ∈C. Further: wt(c) is exactly the number of terms appearing in this
relation. �

� Example 5.12 The binary (3,1) repetition code has parity check matrix

H =

[
1 1 0
1 0 1

]
.

Every pair of columns is linearly independent, but since the columns lie in Z2
2, the three must be

dependent. Thus dmin = 3, as we knew. �

� Example 5.13 The binary (3,2) parity check code has parity check matrix H =
[
1 1 1

]
since

it’s the dual of the repetition code. The first two columns (indeed, any pair of columns) are linearly
dependent, so dmin = 2, as we knew. �

� Example 5.14 Consider a ternary code with basis {1010,0101}. So we can take G =

[
I2
I2

]
, which is

in standard form. Thus

H =

[
2 0 | 1 0
0 2 | 0 1

]
is a parity check matrix for C. The first and third columns of H are dependent, so dmin = 2. �

� Example 5.15 Consider the following parity check matrix of our (6,3) binary code from Example 3.6:

H =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

5.4 Exercises 55

No two columns are scalar multiples of one another, but the first plus the second equals the third, so the
first 3 are dependent. Thus dmin = 3. �

5.4 Exercises

1. Prove Proposition 5.6: If C is a code with parity check matrix H, then Hw = He if and only if w
and e lie in the same coset of C.

2. Prove Lemma 5.10.
3. Create a standard array and identify coset leaders for the (6,3) code of Example 3.6.
4. Create a standard array and identify coset leaders for the following (5,2) ternary code:

C = {00000,10201,20102,02120,01210,11111,22222,21012,12021}

(Just kidding. How many elements would such a table have?) How many vectors of weight 1 are
there in Z5

3? What is dmin and how many errors can this code correct?

5. Let G =

1 0
0 1
1 2
1 1

. This gives a (4,2) ternary linear code C. Find H and dmin. Make a list of all

coset leaders. Use syndrome decoding to decode w = 2221. Verify that your answer lies in C.
6. Estimate the computational cost of setting up a standard array, and compare this with the

naive method of searching to decode each vector. Now estimate the computational cost of
coset decoding, and compare with the naive search method. Finally, compare these costs with
syndrome decoding. For simplicity, you may assume the codes are perfect.

7. The (7,4) Hamming code1 is the binary code C with generator matrix

G =

[
I4
A

]
, where A =

0 1 1 1
1 0 1 1
1 1 0 1

 .
(i) Find a parity check matrix for C and use it to determine dmin. Is C perfect? MDS? What is

its rate?
(ii) Shannon proposed the following decoding algorithm. Define

a = 0001111,b = 0110011,c = 1010101.

Given a received word w, calculate x1 = w · a, x2 = w · b and x3 = w · c. Let x = x1x2x3,
viewed (!!) as a binary number (that is, 0 ≤ x ≤ 7). If x is not zero, then w is the result
of a single error in the xth bit. Show that this works for w = 1110110. Apply the usual
syndrome decoding to verify the decoding.

(iii) Prove that Hamming decoding (that is, the procedure outlined in this exercise) works.

5.5 Hamming codes

Hamming codes are an important class of perfect single-error correcting codes.

1This was the first “nontrivial” example of an error-correcting code, presented by Shannon in 1948.

56 Chapter 5. Decoding

Definition 5.16 Let `≥ 2 be an integer and let F be a finite field with q elements. Set

n =
q`−1
q−1

.

An (n,n− `) q-ary code is a Hamming code if the columns of its parity check matrix are pairwise
linearly independent.

Note that if the columns of H are pairwise linearly independent, then dmin ≥ 3, by Theorem 5.11.
Another way to say the columns are “pairwise linearly independent" is to say that no two columns are
scalar multiples of one another — so this is an easy condition to check.

� Example 5.17 Take `= 2 and q = 2. Then n = (22−1)/(2−1) = 3 so this is a (3,1) code. A parity
check matrix H will be of size 2×3. None of its columns can be equal (q = 2), so up to ordering, the
matrix must be

H =

[
1 1 0
1 0 1

]
which yields the (3,1) repetition code. �

� Example 5.18 The (7,4) code of Exercise 7 is a binary Hamming code, with `= 3, q = 2 and thus
n = (8−1)/(2−1) = 7. �

Proposition 5.19 Every nonzero vector of Fn−k occurs, up to scalar multiple, as a column of H, so
the columns of the parity check matrix of a Hamming code form a maximal set of pairwise linearly
independent vectors. In consequence, the minimal distance of a Hamming code is exactly 3.

Proof. The parity check matrix is size (n− k)×n = `×n. Thus its columns are vectors in F`. There
are thus q`−1 possible nonzero columns. Two columns are linearly dependent if and only if they are
scalar multiples of one another.

So define an equivalence relation ∼ on the set of nonzero vectors in F` by the rule:

v∼ w ⇔ ∃λ ∈ F \{0} : v = λw.

(Exercise: this is an equivalence relation.) Each equivalence class has exactly q−1 elements in it (the
nonzero multiples of any element in it) and the equivalence classes must partition the set. Therefore the
number of equivalence classes is

number of nonzero vectors in F`

number of elements in each class
=

q`−1
q−1

which is n. We have to choose n columns of H and at most one column from each equivalence class,
therefore, we must choose exactly one column from each class, and so our set of column vectors is
maximal with respect to this property.

Moreover, since all nonzero vectors occur, up to scalar multiple, and ` ≥ 2, we have a set of three
linearly dependent vectors: the sum of the first and second columns, for example, must be a multiple of
another column. Therefore dmin(C) = 3. �

5.6 The search for perfect codes 57

From this proposition, we can quickly write down a parity check matrix for any Hamming code.

Theorem 5.20 Hamming codes are perfect single-error correcting codes.

Proof. Recall that a perfect code is one which meets the sphere-packing bound. We know, by the
proposition, that any Hamming code has dmin = 3, so it correct t = 1 error. We note that

qk
((

n
0

)
+(q−1)

(
n
1

))
= qk

(
1+(q−1)

q`−1
q−1

)
= qkq` = qk+` = qn

so the code is perfect. �

Corollary 5.21 The only nontrivial linear perfect single error correcting codes are the Hamming
codes.

Proof. Perfect and single error-correcting imply that (n,k) meets the sphere-packing bound with t = 1.
Well, as we saw in the proof above, this happens iff

1+n(q−1) = qn−k equivalently: n =
qn−k−1

q−1
.

Set ` = n− k ≥ 0. If ` = 0, then we have n = k, so the code has dmin = 1 and corrects no errors. If
`= 1, then the left side is 1 so n = 1 and k = 0, which corresponds to the zero vector space.2 For `≥ 2,
this is a Hamming code. �

5.6 The search for perfect codes

So what are all the perfect error-correcting codes?

t = 1 : Hamming codes

t = 2 : Let’s compute the Hamming bound in the binary case.(
n
0

)
+

(
n
1

)
+

(
n
2

)
= 2n−k

1+n+
1
2

n(n−1) = 2n−k

n2 +n+2 = 2n−k+1

For which values of n is this a power of 2? We check a few values and see n = 1,2,5 as possible
solutions. Now n = 1,2 are too small (they certainly can’t contain a code with dmin = 5) but for n = 5
we have the (5,1) repetition code

C = {00000,11111}

which is 2-error correcting. Moreover, 2n−k+1 = 25 = 32, so it is perfect.

2This is an error-correcting code, but since there’s only one codeword, it is called trivial.

58 Chapter 5. Decoding

Beyond this, what other values of n work? You’re looking for integer solutions to n2 + n+ 2 = 2m.
These are the kinds of questions brilliant mathematicians like Srinivasa Ramanujan explored and he
conjectured the answer in 1913 (proven later in 1948), though in a slightly different form (now called
the Ramanujan–Nagell equation; its Wikipedia page has a nice derivation of the equivance to our
equation). And in fact, the only other integer solution to this equation is n = 90, with n− k+1 = 13.
But later it was shown that no perfect binary (90,78) code exists (even if you allow nonlinear codes!).

Perfect codes are very hard to find, and variants on this question are a subject of ongoing research. The
story is settled for linear codes, though, with the following theorem that has been known since 1975
[LIN75].

Theorem 5.22 The only perfect linear error-correcting codes are:
1. binary (2n+1,1) repetition codes;
2. Hamming codes;
3. the Golay ternary (11,6) code with dmin = 5;
4. the Golay binary (23,12) code with dmin = 7.

These mysterious Golay codes are examples of cyclic codes — reason enough to tackle them next.

5.7 Another desirable structure: cyclic codes

Thus far, we have established many properties of linear codes, and can say many things about a code
we are given. But besides Hamming codes, we have seen few constructions that yield entire classes of
codes from which we could choose for a given application; in particular, we need ways to choose good
codes of high dimension, and with high error-correcting capabilities.

A nice way to construct codes is to look for classes of codes with additional structure, and then to relate
this to some algebraic structures.

Definition 5.23 Given a vector c = c1 · · ·cn, we define its cyclic shift to be the vector

c1 = cnc1c2 · · ·cn−1.

For any integer r ≥ 1, we recursively define cr = (cr−1)1. For example c2 = (c1)1, which is a shift
by 2.

Note that c1 = σ(c) where σ = (123 · · · n) is the full cyclic permutation, since

σ(∑
i

ciei) = ∑
i

ciσ(ei) = ∑
i

ciei+1

where we understand i+1 to mean i+1 mod n; thus the coefficient of e1 = en+1 is cn and the coefficient
of any other ek is ck−1.

Definition 5.24 A code C is cyclic if for all c ∈C, we also have that c1 ∈C, that is, the first cyclic
shift of c is again in C. Note that this implies that all cyclic shifts of c lie in C.

� Example 5.25 C = {000,011,101,110} is a cyclic code. �

5.7 Another desirable structure: cyclic codes 59

� Example 5.26 Let C be the (7,4) Hamming code with generator matrix

G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
1 1 1 0
0 1 1 1

Is this cyclic?

Say we begin with c = 1000110. Then we have

• c1 = 0100011 ∈C, good
• c2 = 1010001 is the sum of the first and third columns of G, so in C
• c3 = 1101000 is the sum of columns 1, 2 and 4, so in C.

We could keep going, but to check each vector in C (how many are there?) would be a pain. Instead,
we can see that these four vectors are linearly independent, hence form a basis for C. So for example

c4 = c+ c1 + c2 ∈C

and furthermore, once this relation is known, we can write down several more, for free:

c5 = c1 + c2 + c3

c6 = c2 + c3 + c4 = c+ c1 + c3

c7 = c1 + c2 + c4 = c

where this last one is what we expected.

Moreover, we claim that we have done enough work to prove this code is cyclic. Namely: suppose
c′ ∈C. Then c′ ∈ span{c,c1,c2,c3} since these form a basis. Thus

(c′)1 ∈ span{c1,c2,c3,c4}= span{c1,c2,c3,c+ c1 + c2}= span{c,c1,c2,c3}=C,

as required. �

Let’s generalize the technique we used in this last example.

Lemma 5.27 Suppose C has a basis B such that for each c ∈ B, we have c1 ∈C. Then C is cyclic.
In this case, every basis has this property.

Proof. We note that for any scalars α,β and any vectors u,v,

(αu+βv)1 = αu1 +βv1;

in other words, the cyclic shift is a linear transformation on Fn, for any n. Furthermore, if u1 = 0 then
u = 0, so it is injective, hence an isomorphism. Therefore, the cyclic shift takes a basis for C to a basis
for C1, the image of C under the cyclic shift.

60 Chapter 5. Decoding

So if B1 ⊆C, it follows that C1 ⊆C, and so they are equal.

A less theoretical approach to this argument would be: any vector in C is a linear combination of the
basis vectors, say c = ∑aiui, with ui ∈ B. By linearity, c1 = ∑aiu1

i ∈C.

The last statement follows from the definition of a cyclic code: the cyclic shift of every vector of C lies
in C. �

R Like the property of being systematic, the property of being cyclic is NOT an invariant
of the equivalence class. In other words, a cyclic code and a non-cyclic code could be
equivalent; the choice of ordering (permutation) of the coordinates is important.

The theorem tells us that being cyclic is something we can see independent of our choice of basis
(unlike systematic codes, where we had to choose a correct basis to prove that the code was systematic).

Proposition 5.28 If C is cyclic, so is C⊥.

Proof. Suppose h ∈C⊥; we need to prove that h1 ∈C⊥. So let c ∈C. We need to show that h1 · c = 0.
We calculate

h1 · c = (hn,h1, · · · ,hn−1) · (c1,c2, · · · ,cn)

= hnc1 +h1c2 + · · ·+hn−1cn

= h1c2 + · · ·+hn−1cn +hnc1 (first term moved to end)

= (h1,h2, · · · ,hn) · (c2,c3, · · · ,cn,c1)

= h · cn−1

and since C is cyclic, we have cn−1 ∈C, so this last is zero since h ∈C⊥. �

Can we construct a cyclic code? Yes! Choose one or more linearly independent vectors, then compute
their cyclic shifts. If any of them is linearly independent from the vectors you started with, add them to
the set, and repeat.

� Example 5.29 What is the cyclic code in Z5
2 of minimal dimension containing c = 10100? We

compute
c1 = 01010,c2 = 00101,c3 = 10010,c4 = 01001,c5 = c.

So: the minimal cyclic code C containing c is the span of these vectors. To find a basis, we row reduce:
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1

∼

1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0

∼

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0

whence we deduce that dim(C) = 4 and moreover that a basis is

{10001,01001,00101,00011}.

Ah: this is a parity check code! That was a lot of work to produce a not super-interesting result. �

5.8 Exercises 61

Cyclic codes end up being central to the theory of linear error-correcting codes for a few reasons. For
one, they admit a very efficient encoding and decoding algorithms using “shift registers" (Chapter 7.8)
which greatly improves on syndrome decoding. For another, we will see that it is possible to design a
cyclic code with a given minimum distance — a huge advantage over the few random examples we
have seen to date.

But to access all this structure: we need some ring theory.

5.8 Exercises

1. Prove that any code that is equivalent to a Hamming code is again a Hamming code.
2. Prove that any two binary Hamming codes are equivalent.
3. Prove than any two q-ary Hamming codes are scaled-equivalent (see §4.7, Exercise 13).
4. Prove that the minimum distance of any Hamming code is exactly 3. (Note that the definition of

the parity check matrix gave us dmin ≥ 3; and the sphere-packing bound further shows dmin ≤ 4.)
5. A code is called an equidistant code if for all x,y ∈C, such that x 6= y, d(x,y) = dmin. These

codes make the best use of space, in some sense, in that each pairwise probability of error is
equal. The dual of a Hamming code is called a simplex code. Prove that every simplex code is
equidistant.

6. Prove that the dual of a maximum distance separable code is again maximum distance separable.
Recall that this means it meets the Singleton bound.

7. A code is self-dual if C⊥ =C. Prove that an (n,k) code with generator matrix G is self-dual if
and only if 2k = n and GT G = 0. Express this as conditions on the columns of G, and then give
a generator matrix of a binary (10,5) self-dual code.

8. Show that the ternary (12,6) Golay code with generator matrix

G =

[
I6
A

]
with A =

0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0

has dmin = 6.

9. Prove that every binary parity check code is cyclic.
10. Show explicitly that the dual of the (7,4) Hamming code (a simplex code) of Example 5.26 is

cyclic.
11. Find a (7,4) Hamming code that is NOT cyclic, thereby proving the assertion that being cyclic is

not invariant under equivalence.
12. Lemma 5.27 does not address a related question: in Example 5.26, we could choose a basis such

that all elements were cyclic shifts of the first vector. Is this always true? (We will use ring theory
to answer this question in the next chapter.)

13. Can you always choose a basis B for a cyclic code with the property that B itself is closed under
cyclic shifts?

IILinear codes from polynomial rings

The word “code” evokes two
essentially opposite ideas:

• increasing the clarity of
a message (so that the
recipient can decode it,
even when the message
is damaged in transmis-
sion)

• obfuscating a message
(so that none but the in-
tended recipient can de-
code it)

Both are key important prob-
lems in communications the-
ory, and we will study both
in this course. The first is
the domain of error-correcting
codes; the second is cryptog-
raphy .

6 Rings . 65
6.1 Definition of a ring . 65
6.2 Polynomial rings over fields 66
6.3 Greatest common divisor 68
6.4 Irreducible polynomials 69
6.5 Exercises . 70
6.6 Ideals . 70
6.7 Quotient rings . 73
6.8 Writing elements of a quotient of the polynomial

ring explicitly . 74
6.9 Exercises . 76

7 Cyclic codes, revisited 79
7.1 Cyclic codes as subspaces of F [x]/〈xn−1〉 . . . 79
7.2 Factors of xn−1 over Q: cyclotomic polynomials 84
7.3 Another constraint on cyclic codes over Zp . . 85
7.4 Exercises . 87
7.5 A first generator matrix for a cyclic code 88
7.6 Parity check matrices for cyclic codes 89
7.7 Alternate generator matrix 91
7.8 Encoding cyclic codes with shift registers 94
7.9 Exercises . 96

8 Finite fields, beyond Zp 97
8.1 Looking for other finite fields 97
8.2 Using quotient rings to construct fields 98
8.3 Exercises . 101
8.4 Representing elements of a finite field in two

ways . 101
8.5 Application: minimal polynomials 103
8.6 Exercises . 105
8.7 Main theorems about finite fields 106
8.8 Proof of the primitive element theorem 107
8.9 Exercises . 109

9 BCH codes and Reed-Solomon Codes 111
9.1 The Vandermonde determinant 111
9.2 The BCH theorem . 113
9.3 Designed distance codes or BCH codes 115
9.4 A new kind of parity check matrix for BCH codes117
9.5 Reed-Solomon codes 118
9.6 Decoding BCH codes: the theory 119
9.7 Decoding BCH codes: examples 123
9.8 Further topics of interest 126
9.9 Exercises . 127

6. Rings

Ring theory is a vast subject, encompassing a huge variety of structures; virtually any reasonable-
looking set with two operations will turn out to be a ring. We have a whole course devoted to the
exciting diversity of rings (MAT3143).

For this course, we need rings for two major reasons. For one, cyclic codes are made from certain rings.
For another, we have already seen that fields, especially finite fields, are of critical interest. To classify
them (Chapter 8), we’ll need more ring theory (and then we’ll use that classification to construct the
best linear codes).

6.1 Definition of a ring

We start with the definition.
Definition 6.1 A ring is a set R with 2 operations, addition and multiplication, such that

1. (R,+) is an abelian group;
2. R is closed under multiplication ·, and · is associative;
3. multiplication distributes over addition on the left and the right, that is, for all a,b,c ∈ R,

a(b+ c) = ab+ac and (a+b)c = ac+bc.
If R contains an identity 1 for multiplication, then we call it a unital ring; if multiplication is
commutative, then we call R a commutative ring.

Some quick notes:

• The set of elements of R that have a multiplicative inverse is denoted R× and its elements are
sometimes called the units of R.

• A commutative unital ring in which every nonzero element of R admits a multiplicative inverse
(where R× = R\{0}) is a field (see Definition 2.6).

For us, a ring will be a commutative unital ring.

66 Chapter 6. Rings

� Example 6.2 Z is a ring, but it is not a field. �

� Example 6.3 Zn = Z/nZ is a ring for any n≥ 2. The set of its units is

Z×n = {x ∈ Zn | gcd(x,n) = 1}

so Z/nZ is a field only if n is prime. �

� Example 6.4 Let F be a field. Then the polynomial ring

F [x] := {a0 +a1x+ · · ·+aNxN | ai ∈ F,N ≥ 0}

is a ring, where the operations are just addition of polynomials, and multiplication of polynomials, in
the usual way. Note that F [x] can also be thought of as a vector space over F if we only think about
the multiplication by scalars (polynomials of degree 0); in this case it is an infinite dimensional vector
space over F . �

� Example 6.5 The polynomial ring Z[x], where the coefficients take values in the integers, is also a
ring. �

� Example 6.6 Dropping the condition that multiplication is commutative yields the class of non-
commutative rings; examples of non-commutative rings include the ring of 2×2 matrices with entries
in Z, or in a field. Dropping the condition that multiplication has an identity element yields the class of
nonunital rings; examples include the ring of compactly-supported functions on R. �

For the purposes of coding theory, and of (more complicated) finite fields, the important rings to
understand are polynomial rings over finite fields. Let us explore some of their unique properties, and
see how they are quite similar in structure, in some ways, to the ring of integers. For more detail on the
material in this chapter, see [Nic12, Chapter 3.1].

6.2 Polynomial rings over fields

You’re familiar with R[x]; our objective in this section is to go through the properties we know to be
true of R[x], and prove that they hold for F [x], for any field F . For more detail on the material in this
section, see [Nic12, Chapters 4.1 and 4.3].

Recall from Example 6.4 that if F is a field then the polynomial ring (in one variable) over F is

F [x] := {a0 +a1x+ · · ·+aNxN | ai ∈ F,N ≥ 0},

equipped with the usual addition and multiplication of polynomials. If f ∈ F [x], either f = 0 or else
there is a unique N ≥ 0 and unique coefficients a0, . . . ,aN ∈ F with aN 6= 0 such that

f = a0 +a1x+ · · ·+aNxN .

In this case, a0 is called the constant term, and aNxN is called the leading term. A polynomial is monic
if aN = 1. The number N is called the degree of f . If f = 0 then we sometimes say deg(0) =−∞, but
it is also common to include f among the constant polynomials, which are the polynomials of the form
f (x) = a0, for any a0 ∈ F (but which are sometimes just called the polynomials of degree 0).

Let’s begin with the key property that F [x] has in common with Z (making it in particular a Euclidean
ring).

6.2 Polynomial rings over fields 67

Lemma 6.7 — Division algorithm. Let F be a field. Let a,b ∈ F [x], with b 6= 0. Then there exist
unique polynomials q,r ∈ F [x] such that

a = qb+ r

where either r = 0 or 0≤ deg(r)< deg(b).

This result is a familiar one, at least over F = R; as we go through the proof (which is quite a clever
one), we should think about what properties we require of F for it to hold. For example, this theorem is
not true if we replace F by Z.

Proof. Let a,b ∈ F [x], with b 6= 0. If a = 0, then we may take q = r = 0; we leave it as an exercise to
show that this is the only solution.

Now suppose a 6= 0 and define

S = {r ∈ F [x] | r = a−qb, for some q ∈ F [x]}.

If 0 ∈ S, then a = qb for some q, so we could take r = 0; this is the only solution in this case since
if we had a = q′b+ r′, with r′ 6= 0, we’d have (q−q′)b = r′. If q 6= q′, the left hand side has degree
≥ deg(b) while the right hand side has degree < deg(b); a contradiction. So q′ = q and thus r′ = 0 and
thus the solution is unique.

Otherwise, let r ∈ S be an element of minimal degree, and write r = a−bq for some q ∈ F [x]. To show
that this is a solution, we need to prove that deg(r)< deg(b). For suppose not: then write

r = r0 + · · ·+ rnxn, rn 6= 0

b = b0 + · · ·+bmxm, bm 6= 0

with m≤ n. Set

r′ = r−
(

rn

bm
xn−m

)
b.

Then this is clearly an element of S, and by construction either r′ = 0 or deg(r′)< deg(r), contradicting
the choice of r. Hence deg(r)< deg(b).

We leave the proof of uniqueness as an exercise. �

We see directly that this proof does not apply to Z[x], for example; in fact, we can use the proof to
generate counterexamples (exercise).

The division algorithm has many wonderful consequences. As in Z, you can use this algorithm to form
the Euclidean algorithm, which computes the gcd of any two elements of F [x]. As a consequence,
the gcd exists [Nic12, §4.2, Theorem 10], which implies that every irreducible is prime [Nic12, §4.2,
Theorem 11], which implies uniqueness of factorization [Nic12, §4.2, Theorem 12]. Also, since roots
of h correspond to linear factors of h (exercise), we may deduce that if h ∈ F [x] has degree n, then h
has at most n roots, counting with multiplicity.

68 Chapter 6. Rings

We will accept these as facts about F [x], and instead focus on how to calculate the greatest common
divisor, or how to find out if a polynomial is irreducible.

6.3 Greatest common divisor

For a refresher on the gcd of integers, please see Appendix A.1.

To do this in polynomial rings, there is a subtle point. Over the integers, we think of the gcd as
producing a unique answer, but for example gcd(6,−9) =±3 = gcd(6,9). The answer is unique only
up to a unit, that is, an invertible element of the ring. Over Z the only units are ±1; in F [x], the units
are exactly the degree zero polynomials a ∈ F×, which we identify with the set of nonzero scalars.
Hence we might get an answer like

gcd(2x+4,3x+6) is both 2x+4 = 2(x+2) and 3x+6 = 3(x+2)

which is a bit perturbing. So we make the convention to scale the answer so that it is a monic polynomial;
this is akin to choosing the positive sign when we work over Z.

� Example 6.8 A quick reminder: to calculate the gcd of 35 and 10, we compute

35 = 3×10+5

10 = 2×5+0

so gcd(35,10) = 5. �

� Example 6.9 Calculate, over F =Z5, gcd(2x3+4x2+3,4x2+3x+3).

Set a = 2x3 +4x2 +3 and b = 4x2 +3x+3. Do long division; we use
the property that 4x2×3x = 2x3 over Z5, for example, to compute the
answer. We get

a = (3x)b+(x+3).

Now do long division with x+3 and b; we find it divides evenly:

b = (4x+1)(x+3)+0

so the gcd is x+3. �

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

� Example 6.10 Now calculate gcd(2x3 +4x2 +3,4x2 +3x+3) over
Z7.
This takes many more steps. (Exercise) Using the notation a,b as in the
preceding example, we obtain the sequence of division algorithm steps:

a = (4x+5)b+(x+2)

b = (4x+2)(x+2)+6

x+2 = (6x+5)6+0

so that after scaling, gcd(a,b) = 1; so over Z7 these polynomials are
relatively prime. �

× 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

6.4 Irreducible polynomials 69

An important consequence of the division algorithm is that you can trace back through the calculation
of gcd(a,b) = d to write d = sa+ tb for some s, t ∈ F [x].

� Example 6.11 From Example 6.8, the first equation yields 5 = 1×35−3×10 so s = 1 and t =−3.

From Example 6.9, we deduce x+3 = a− (3x)b so s = 1 and t =−3x.

From Example 6.10 we have to do a bit more work, starting from the second-last equation and working
our way upwards until everything is written in terms of a and b:

6 = b− (4x+2)(x+2) = b− (4x+2)(a− (4x+5)b)

=−(4x+2)a+(1+(4x+2)(4x+5))b =−(4x+2)a+(2x2 +4)b.

Now note that 6 =−1 to conclude that (4x+2)a− (2x2 +4)b = 1, as desired. �

6.4 Irreducible polynomials

A nonconstant polynomial h is irreducible if it cannot be factored as h = f g with 1≤ deg(f),deg(g)<
deg(h).

Notice that the irreducibility of a given polynomial depends on the field over which we are working.
For example,

x2 + x+1

is irreducible over Z2 (since if it factored, the factors would be linear, and hence correspond to roots, of
which there are none), but factors over Z3 as

x2 + x+1 = (x+2)2.

� Example 6.12 Find all the irreducible quadratic polynomials over Z2.

We have a few options, but the simplest is to enumerate all the polynomials of degree two over Z2
and work out which ones are irreducible. We are greatly helped in this exercise by the fact that any
factorization would have to be into linear factors, which means the polynomial would have to have a
root (in the binary field).

The quadratics are: x2, x2 +1, x2 + x, x2 + x+1. The first three are obviously not irreducible, and the
last is irreducible as we noted above. �

� Example 6.13 Find all irreducible quartics over the binary field.

Again, let’s begin by enumerating all the polynomials of degree 4 over Z2. Well, we can omit any
which do not have a constant term, because they would have x as a linear factor. We can also omit any
which have an even number of terms, because they obviously admit x = 1 as a root. This leaves just 4
to write down:

x4 + x+1,x4 + x2 +1,x4 + x3 +1,x4 + x3 + x2 + x+1

None of these has any roots, but that is not enough to deduce irreducibility. A polynomial is irreducible
iff it cannot be factored; a polynomial of degree 4 which factors will either have a root, or will have
two factors of degree 2.

70 Chapter 6. Rings

But now we use our previous exercise. If a quartic has no roots but factors, then it must factor as a
product of two irreducible quadratics. There is only one such quadratic; and we calculate:

(x2 + x+1)2 = x4 + x2 +1.

We conclude that the remaining 3 quartics above are irreducible. �

6.5 Exercises

1. Suppose a ring R contains a field (with respect to the same operations). Show that R is therefore
a vector space over F . To which over the following pairs (R,F) does this statement apply?

(a) R = F [x], F (identified with the constant polynomials)
(b) R = Z, F = Zp

(c) R = Z/p2Z, F = Zp

(d) R is the ring of all functions from a set X to F; F is identified with the set of constant
functions

Hint: the key trick here is to decide if F is a subring, that is, its structure is with respect to exactly
the same operations as R.

2. Show that if F is a field, then for a,b ∈ F [x], ab = 0 iff at least one of a or b is zero.
3. Show that if F is a field, and a,b ∈ F [x] with a,b 6= 0, then deg(ab) = deg(a)+deg(b).
4. Suppose a,b ∈ F [x]. Argue that if a = 0 and b 6= 0, then the only solution to a = qb+ r with

q,r ∈ F [x] and either r = 0 or deg(r)< deg(b), is the trivial solution q = r = 0.
5. Complete the proof of the division algorithm for F [x] by showing the answer is unique.
6. Show that there exist a,b ∈ Z[x], a,b 6= 0, for which there are no q,r as in the division algorithm

theorem.
7. Find gcd(3x4 + x3 +3x2 +4x+4,x4 +4) in Z5[x].
8. Find gcd(3x4 + x3 +3x2 +4x+4,x4 +4) in Z7[x].
9. Find all irreducible binary cubic polynomials.

10. Find all irreducible ternary monic quadratic polynomials.
11. Find all irreducible binary quintic polynomials.
12. How many monic polynomials of degree n are there in F [x], where F is a finite field with q

elements?

6.6 Ideals

Now that we have the abstract concept of a ring (and our particular example of a polynomial ring over a
field), we proceed as we usually do with a new definition of an algebraic object: we look for interesting
subobjects (and interesting morphisms). For more detail on the general theory of ideals, see [Nic12,
Chapter 3.3].

Let’s begin with the example of Z. The interesting subobjects are sets like

nZ= {na | a ∈ Z}.

They are additive subgroups, and also closed under multiplication, but they don’t contain 1 (unless
n = ±1). There’s something even more interesting about them: this set isn’t just closed under

6.6 Ideals 71

multiplication of two elements within the set (although it is) but actually closed under multiplication by
any element of the entire ring. That is, if we take any integer, and multiply it by an element of nZ, we
end up back in nZ. This wonderful property is so nice we call it an ideal.

Definition 6.14 Let R be a ring. A subset I of R is called a (left) ideal of R if

• I is an additive subgroup; and
• for all a ∈ I, for all r ∈ R, ra ∈ I.

It is called a right ideal if for all a ∈ I, for all r ∈ R, ar ∈ I. If R is commutative, then left ideals are
the same as right ideals, and we just call I an ideal. We write ICR.

R You could make the parallel: subgroups are to subrings as normal subgroups are to ideals.
Technically, however, note that nZ doesn’t contain 1, so in the category of unital rings,
this is not a subring. This is part of the reason we’re not going to bother with subrings at
all, but just focus on ideals.

� Example 6.15 The set of even integers, 2Z, is an ideal of Z. �

� Example 6.16 Consider R = Z[x]. The set

I = {2a0 +a1x+ · · ·+aNxN | N ≥ 0,ai ∈ Z}

is an additive subgroup; and if you multiply two polynomials, the constant term of the product is just
the product of the constant terms, so you deduce that if one polynomial has even constant term, so does
any product. Therefore I is an ideal of R.

If instead we’d taken I′ = {a0 +2a1x+a2x2 + · · ·+aNxN | N ≥ 0,ai ∈ Z} then this would not be an
ideal, since for example (1+2x)(3x) = 3x+6x2 /∈ I. �

� Example 6.17 Note that Z[x] ⊂ R[x] is an additive subgroup, and a subring, but it’s not an ideal,

since
1
2

p /∈ Z[x] for any p ∈ Z[x]\{0}. �

Definition 6.18 Let p ∈ R, a commutative ring. Then the ideal generated by p is the set

〈p〉 := {pq | q ∈ R}.

When an ideal is generated by a single element, we call it a principal ideal.

We can quickly check that it is in fact an ideal: if pq, pq′ ∈ 〈p〉 (meaning: q,q′ ∈ R) then (pq)+
(pq′) = p(q+ q′), which is in 〈p〉 since q+ q′ ∈ R. So it’s closed under addition. If r ∈ R, then
r(pq) = p(rq) ∈ 〈p〉, so it is closed under multiplication by any element of R. Thus it’s an ideal.

� Example 6.19 The ideal nZ of Z is a principal ideal, generated by the element n. �

� Example 6.20 Let F = Z3, R = F [x] and p = x−1. Then the ideal generated by p is

〈p〉= {(x−1)q | q ∈ F [x]}

and this is exactly the set of all polynomials in F [x] that have 1 as a root. �

R We sometimes write pR or Rp in place of 〈p〉, but note that this is not like a coset in

72 Chapter 6. Rings

a multiplicative group (since R is not a multiplicative group) — it’s the subset of all
multiples of p.

Where the ring theory for polynomial rings over fields really takes off is the following theorem.

Theorem 6.21 Let R be Z, or F [x] for some field F . Then every ideal is principal.

Proof. Suppose a,b ∈ I. Then since R has a Euclidean algorithm, we can compute

g = gcd(a,b) = ra+ sb

for some r,s ∈ R. But since a,b ∈ I, so are ra,sb; and since I is closed under addition, ra+ sb = g ∈ I.
Conclusion: the gcd of any two elements of my ideal is again in my ideal.

So now suppose I is nonzero, and choose a nonzero element a ∈ I of least

• absolute value, if R = Z;
• degree, if R = F [x].

Now let b ∈ I; we’ll show a divides b. Since a,b ∈ I, their gcd g ∈ I. By minimality of a, we know that
the absolute value or degree of g equals that of a. But g divides a. This means there exists some r ∈ R
such that rg = a. But then r is an element of

• absolute value 1 (case R = Z), since |a|= |rg|= |r|× |g|; or
• degree 0 (case R = F [x]), since deg(a) = deg(rg) = deg(r)+deg(g).

In either case, r is a unit. But g divides b so therefore r−1a divides b; but if s(r−1a) = b, then
(sr−1)a = b, so a divides b.

Thus I is a principal ideal, generated by a. �

So we get all ideals of F [x] by running through all possible choices of polynomials p and creating 〈p〉.
Let’s get a sense of how big these ideals will be.

Lemma 6.22 Suppose ICR, where R is a ring which contains 1. Recall that R× is the set of
invertible elements R. Then

• if 1 ∈ I then I = R;
• if I∩R× 6= /0, then I = R.

So 〈u〉= R for any u ∈ R×.

The proof is an exercise.

In particular, for R = F [x], where R× = F×, we infer that if a0 ∈ F is a constant polynomial then

〈a0〉=

{
F [x] if a0 6= 0;
{0} if a0 = 0.

So that’s not very interesting.

6.7 Quotient rings 73

Lemma 6.23 Let a,b ∈ R. Then

〈a〉 ⊆ 〈b〉 ⇐⇒ ∃q ∈ R, a = bq ⇐⇒ b divides a.

That is, the ideal generated by a contains the ideal generated by b if and only if b|a.

Note how this says that “smaller elements give bigger ideals".

Proof. Suppose b divides a, that is, there is some q ∈ R for which bq = a. Then a ∈ 〈b〉, by definition.
Thus all multiples of a will also lie in 〈b〉, which means 〈a〉 ⊆ 〈b〉. Conversely, if 〈a〉 ⊆ 〈b〉, then in
particular, the element a of 〈a〉 lies in 〈b〉= {qb | q ∈ R}. So there exists q ∈ R such that a = qb. �

6.7 Quotient rings

We stated earlier that ideals are the ring analogues of normal subgroups. Here, we make this precise, by
showing that they are the right objects for defining quotients which are again rings. For more details on
general factor rings, see [Nic12, Chapter 3.3]. For the particular case of polynomial rings, see [Nic12,
Chapter 4.3].

Definition 6.24 Let R be a ring and I an ideal. Then the quotient ring or factor ring, denoted R/I, is
the set of additive cosets of I in R:

R/I = {a+ I | a ∈ R}

with addition and multiplication defined by the rules

• (a+ I)+(b+ I) = (a+b)+ I, for all a,b ∈ R
• (a+ I)(b+ I) = ab+ I, for all a,b ∈ R

Of course we must first show that this is indeed a ring.

Proof that the quotient ring is a ring. Since I is a subgroup of the abelian group R, it is a normal sub-
group, so R/I is already automatically an abelian group, with the given addition. For the multiplication,
we see that the only issue is whether or not it is well-defined; after that, associativity and commutativity
and existence of 1 follow from R easily.

So what needs to be checked? The formula produces an answer in R/I, that’s no problem. But recall
that the coset representatives are not unique. We need to show that if a+ I = a′+ I and b+ I = b′+ I
that ab+ I = a′b′+ I, that is, that our definition is independent of the choice of representative.

Well, if a+ I = a′+ I then there is some c ∈ I such that a = a′+ c; and if b+ I = b′+ I then there is
some d ∈ I such that b = b′+d. Then

ab = (a′+ c)(b′+d) = a′b′+ cb′+da′+ cd.

But cb′,da′,cd ∈ I since c,d ∈ I, and I is an ideal. So ab and a′b′ differ by an element of I, so
ab+ I = a′b′+ I, as required. �

74 Chapter 6. Rings

Note that we absolutely needed the “closure under multiplication by arbitrary elements of the ring"
condition on an ideal to ensure that multiplication is well-defined.

� Example 6.25 For any n, Z/nZ is the ring we denote Zn: the coset a+nZ is the set of all integers
that are congruent to a modulo n. We usually choose our favourite set of coset representatives
{0,1, · · · ,n−1}, do our usual operations, and then take the remainder upon division by n to convert
our answer back to our favourite representatives. �

That is, in Z/nZ we have a shortcut that makes it seamless to work with cosets: instead of writing

(5+8Z)+(7+8Z) = 12+8Z= 4+8Z

we instead identify each coset by a favourite small representative and do the addition modulo n, as in

5+7 = 12≡ 4 mod 8.

This is much easier to look at and think about!

Our next goal is to find the same kind of shortcut for quotient rings F [x]/I.

6.8 Writing elements of a quotient of the polynomial ring explicitly

Lemma 6.26 Let a ∈ F [x] be any polynomial of positive degree, and set I = 〈a〉. For each coset
f + I, there exists a unique representative f of minimal degree, and in fact it has degree strictly less
than the degree of a.

Proof. Suppose f is a representative of its coset of minimal degree. If deg(f)≥ deg(a), then we can
perform long division to obtain

f = qa+ r

where deg(r)< deg(a). Furthermore, since f − r = qa ∈ I, it follows that f + I = r+ I, so r is another
coset representative, of smaller degree. This is a contradiction (even if r = 0, because this would imply
f ∈ I, so we can and do take f = 0 as the representative). Hence deg(f)< deg(a).

Next, suppose f + I = g+ I and both f and g have degree less than deg(a). Then f − g ∈ I, so a
divides f −g. This means there exists a q ∈ F [x] such that aq = f −g. But the degree of the left side is
deg(a)+deg(q), and the degree of the right side is at most the maximum of deg(f) or deg(g), both of
which are less than deg(a). The only solution is q = 0 and so f = g, whence unicity. �

We deduce that if deg(a) = m, then a set of representatives of the cosets in F [x]/〈a(x)〉 is

R̃ = {c0 + c1x+ · · ·+ cm−1xm−1 | ci ∈ F}.

Given f ,g ∈ R̃, we have that (f + I)+(g+ I) = (f +g)+ I, and since addition does not increase the
degree of a polynomial, the sum f +g is again in R̃.

On the other hand, when we multiply, (f + I)(g+ I) = f g+ I, and f g may no longer be a minimal
representative. In this case, we proceed as in the proof of the lemma and perform the division algorithm:

f g = qa+ r

6.8 Writing elements of a quotient of the polynomial ring explicitly 75

so f g+ I = r+ I and r ∈ R̃. So we define, in the set R̃, that

f g≡ r mod I.

Since R/I is a ring, and all we have done is renamed the elements of R/I, it follows that R̃ is also a ring.
In future, we may abuse notation and just call it R/I.

Lemma 6.27 Let deg(a) = m. Then

F [x]/〈a〉= {c0 + c1x+ · · ·+ cm−1xm−1 | ci ∈ F},

with usual addition, and with multiplication mod 〈a〉.

� Example 6.28 F = Z5, R = F [x], a = x2 +2x+2, I = 〈a〉. Then we have

R/I = {b0 +b1x | b0,b1 ∈ F}.

For example, (x+ 1)+ (x+ 4) = 2x ∈ R/I, and (x+ 1)(x+ 4) = x2 + 4 /∈ R/I. Subtracting a yields
x2 +4≡ (x2 +4)− (x2 +2x+2) = 3x+2 ∈ R/I. So we might write

(x+1)(x+4)≡ 3x+2 mod I

to avoid confusion.

This does suggest another way of approaching the long division. Since

a≡ 0 mod I

we have
x2 +2x+2≡ 0 mod I

which simplifies to
x2 ≡ 3x+3 mod I.

So we can replace every occurrence of x2 with a lower-degree expression. For example, x2 + 4 ≡
(3x+3)+4 = 3x+2 mod I. �

Now let’s proceed to an important example, the one that brings us back to cyclic codes.

� Example 6.29 Let F = Zp. Then the polynomial

a = xn−1

is NEVER irreducible; it always has a root at x = 1. By the Lemma, we may write

F [x]/〈xn−1〉= {c0 + c1 + · · ·+ cn−1xn−1 | ci ∈ F}

where multiplication obeys
xn ≡ 1 mod a.

�

76 Chapter 6. Rings

6.9 Exercises

1. Prove Lemma 6.22. Suppose R is a field. What are the ideals of R?
2. Define a ring homomorphism ϕ : R→ S between rings as a map which satisfies, for all a,b ∈ R,

ϕ(a+b) = ϕ(a)+ϕ(b)), ϕ(ab) = ϕ(a)ϕ(b) and ϕ(1) = 1.
(i) Show that the inclusion map of Z into R is a ring homomorphism.

(ii) Show that the multiplication by n map from Z to Z is not a ring homomorphism.
(iii) Show that for any a ∈ F , the evaluation map ϕa : F [x]→ F given by p 7→ p(a) is a ring

homomorphism.
(iv) Show that the map s : F [x]→ F defined by s(∑aixi) = ∑ai is a ring homomorphism, and

find its kernel.
3. Prove that the kernel of a ring homomorphism ϕ : R→ S is an ideal of R.
4. Prove that if p is a polynomial in F [x] such that p(a) = 0, then (x−a) divides p. Show also that

the converse is true. (Hint: division algorithm.)
5. Suppose R is a (commutative) ring and S,T are ideals of R. Show that S+T = {s+t | s∈ S, t ∈ T}

is an ideal of R. Show that ST = {∑n
i=1 siti | si ∈ S, ti ∈ T,n≥ 0} is an ideal of R.

6. In the context of the previous question: show that if S and T are principal, then so is ST .
7. The ring F [x,y] is not a principal ideal domain, meaning, it has ideals which are not principal.

Give an example of such an ideal. Show that there exist principal ideals S and T of F [x,y] whose
sum S+T is not principal.

8. The ring F [[x]] of formal power series in x has a unique maximal ideal. Show that every element
of F [[x]] which does not lie in this unique maximal ideal is a unit (that is, invertible).

9. Show that the set of ideals of a ring is a partially ordered set under inclusion, but not a totally
ordered set. In particular, exhibit a ring R and two ideals I and J that are incomparable under
inclusion, and exhibit a ring R with more than one maximal ideal.

10. Consider the following ideals of Z, and draw a diagram to indicate all inclusion relations among
these ideals:

2Z,5Z,10Z,25Z,40Z.

Which is/are the smallest, and which is/are the largest?
11. We need I to be an ideal in order for the multiplication in R/I to be well-defined. Show, for

example, that if we take the additive subgroup I = F in the ring R = F [x], then cosets of I in R
are of the form p+F where p is a polynomial, and two polynomials are in the same coset if and
only if their difference is a constant. Now find two polynomials p and q that represent the same
coset but such that p2 +F 6= q2 +F , which shows that in this case, multiplication does depend
of the choice of representative, so R/I is not a ring.

12. Consider R = F [x] and let a ∈ F . Set I = 〈x−a〉. What is a set of representatives for R/I? What
are the rules for addition and multiplication in this case? Do they depend on a?

13. Consider F = Z2, R = F [x] and let I = 〈x2 +1〉. How many elements are there in R/I? Write
down a set of representatives for R/I. Write down the addition and multiplication tables for R/I.
If you have seen ring isomorphisms: show this is isomorphic as a ring to Z2×Z2.

14. If |F |= q and deg(a) = n, how many elements are there in F [x]/〈a〉?
15. Show that if I is an ideal of F [x], where F is a field, then F [x]/I is a vector space over F . If

I = 〈a〉 and deg(a) = n, what is the dimension of this vector space?
16. Consider Example 6.29. Consider the map T : F [x]/I→Fn given by T (c0+c1x+· · ·+cn−1xn−1)=

c0c1 · · ·cn−1. (Note that we are indexing coordinates starting from 0 rather than 1.) Show this is
an isomorphism of vector spaces. Multiplication by x gives an isomorphism of F [x]/I to itself

6.9 Exercises 77

so induces an isomorphism of Fn. Which one? (That is: for any vector z ∈ Fn, write down
T (x(T−1(z))).)

7. Cyclic codes, revisited

We defined cyclic codes in Section 5.7 as subspaces of Fn which are closed under cyclic shifts.

In this chapter, we identify our codes as subspaces of the ring F [x]/〈xn−1〉, as follows.

First note that Pn = {a0 + · · ·+an−1xn−1 | ai ∈ F}, the set of all polynomials of degree less than n, is a
vector space of dimension n, hence isomorphic to Fn. We always choose the isomorphism

π : Pn→ Fn given by π(a0 + · · ·+an−1xn−1) = a0a1 · · ·an−1.

In fact, we often suppress the notation π , fluidly saying 1+ x = 1100 in P4 ∼= F4, for example.

Next, recall that F [x]/〈xn−1〉 is isomorphic to Pn as a ring, where Pn is equipped with addition and
multiplication mod xn−1. As with the identification Z/nZ∼=Zn, we usually suppress the coset notation,
writing x4−1 = 0 in F [x]/〈x4−1〉, for example.

Thus, given a ∈ F [x] we may think of it as representing a coset in F [x]/〈xn−1〉, and thus an element
of Pn, or as the corresponding vector in Fn. When helpful, we may write a(x) and ~a to help clarify
whether we are thinking of an element a as a polynomial or as a vector.

7.1 Cyclic codes as subspaces of F [x]/〈xn−1〉

The key property of our identification F [x]/〈xn−1〉 ∼= Fn is the following.

Lemma 7.1 The first cyclic shift of a vector in Fn is given by multiplication by x in F [x]/〈xn−1〉.

Proof. Consider~c = c0c1 · · ·cn−2cn−1 ∈ Fn. Then~c1 = cn−1c0c1 · · ·cn−2. Writing this as polynomials,

80 Chapter 7. Cyclic codes, revisited

we have
c(x) = c0 + c1x+ · · ·+ cn−2xn−2 + cn−1xn−1

and thus

xc(x) = c0x+ c1x2 + · · ·+ cn−2xn−1 + cn−1xn = cn−1 + c0x+ c1x2 + · · ·+ cn−2xn−1 mod xn−1.

Therefore
~xc(x) =~c1,

as required. �

Let C be a cyclic code, viewed as a subspace of polynomials in F [x]/〈xn−1〉 via the maps above. Then
C being cyclic implies that the first cyclic shift of any codeword lies in C; this translates to

∀c(x) ∈C, xc(x) ∈C.

This implies that x2c(x) ∈C, and indeed xmc(x) ∈C for any m; furthermore, since C is a subspace,
it is closed under scalar multiplication, so ac(x) ∈C for any scalar a. What about multiplying by a
polynomial? Let f (x) = a0 +a1x+ · · ·+an−1xn−1 ∈ F [x]/〈xn−1〉 be arbitrary. Then

f (x)c(x) = a0c(x)+a1xc(x)+ · · ·+an−1xn−1c(x)

is a linear combination of codewords, so is again in C, that is,

f (x)c(x) ∈C ∀ f (x) ∈ F [x]/〈xn−1〉.

This is very suggestive.

Proposition 7.2 A linear code C is cyclic if and only if it is an ideal in F [x]/〈xn−1〉.

Proof. Identify Pn ∼= F [x]/〈xn−1〉 as at the beginning of the chapter. We showed above that if C is
cyclic, then f (x)c(x) ∈C for all f (x) ∈ Pn. Since C is a subspace, it is closed under addition. Therefore
C is an ideal of Pn.

Conversely, if I is an ideal of Pn, then it is closed under addition (being a subgroup) and scalar
multiplication (since it is closed under multiplication by any element of Pn, including constants), and
multiplication by x ∈ Pn. Therefore it is a subspace closed under cyclic shift, which means a cyclic
code. �

So: to classify all cyclic codes is equivalent to classifying all ideals of F [x]/〈xn−1〉.

Lemma 7.3 Let R be a ring and I an ideal of R. The set of ideals of R/I is in bijection with the set
of ideals of R which contain I.

Proof. Let JCR be such that I ⊆ J. Define

J̃ = { f + I | f ∈ J}.

7.1 Cyclic codes as subspaces of F [x]/〈xn−1〉 81

Note that since I ⊆ J, if f ∈ J then every representative of the coset f + I lies in J as well. Using this
fact, it is easy to verify that J̃ is closed under addition and multiplication by any element of R/I, and so
is an ideal of R/I.

Conversely, given an ideal K̃ in R/I, let K be the union of all the elements of all the cosets which are in
K̃, that is,

K = { f ∈ R | f + I ∈ K̃}.

Again, we verify that K̃ being an ideal of R/I ensures that K is an ideal of R; futhermore, I ⊂ K since
in particular for each i ∈ I, i+ I = I = 0+ I ∈ K̃.

These two maps are inverses of one another, so the two sets are in bijection. �

Theorem 7.4 The cyclic codes of length n are in bijection with the monic factors of xn−1, via the
correspondence:

C = 〈g(x)〉 ⊆ F [x]/〈xn−1〉 ⇐⇒ h(x)g(x) = xn−1 for some h(x) ∈ F [x].

This theorem is just a summary of what we’ve worked out:

• cyclic codes correspond to ideals in F [x]/〈xn−1〉;
• the ideals in F [x]/〈xn−1〉 are all principal;
• such an ideal is generated by g(x)+ I where g(x) is the generator of an ideal of F [x] containing
〈xn−1〉; and

• if 〈g(x)〉 ⊇ 〈xn−1〉, then g(x) divides xn−1.
• Finally, since g(x) and ug(x), for any u ∈ F×, generate the same ideal, it suffices to restrict our

attention to monic polynomials.

� Example 7.5 Let n = 5, and p = 2. We have that x5 − 1 = (x− 1)(x4 + x3 + x2 + x + 1); by
Example 6.13, this quartic is irreducible. Therefore the factors of x5−1 are:

1, x+1, x4 + x3 + x2 + x+1, x5 +1

(replacing −1 by +1 because we can). Let us study each of the codes in turn.

• 〈1〉: The ideal generated by 1 is the whole ring, so C1 = F5.
• 〈x+1〉: We have 〈x+1〉 = {(x+1) f | f ∈ F [x]} mod (x5−1). As a vector space, this set is

spanned by

{(x+1), (x+1)x, (x+1)x2, · · ·}

which is, after simplifying mod (x5−1), the set

{1+ x, x+ x2, x2 + x3, x3 + x4, x4 + x5 = 1+ x4}.

Since the sum of the first 4 equals the last (over Z2), but the first 4 are linearly independent, we
have that

Cx+1 = span{1+ x, x+ x2, x2 + x3, x3 + x4}

82 Chapter 7. Cyclic codes, revisited

is a (5,4) code. A generator matrix is

Gx+1 =

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

Since all the codewords have even weight, and the sum of even weight codewords is even, it
follows that dmin is even; we deduce that dmin = 2. (In fact, we see that C is exactly the set of all
even weight vectors of Z5

2.)
• 〈x4 + x3 + x2 + x+ 1〉: Since x(x4 + x3 + x2 + x+ 1) ≡ x4 + x3 + x2 + x+ 1 mod (x5− 1), this

code contains only the one nonzero vector, namely 11111. It is in fact the (5,1) repetition code.
• 〈x5−1〉: Finally, consider x5−1. This element is 0 mod (x5−1), so generates the zero ideal,

which is a the trivial code.
We deduce that there are 4 binary cyclic codes of length 5: the trivial code, the whole space, the (5,1)
repetition code and the (5,4) parity check code. �

� Example 7.6 We saw earlier that there was a cyclic (7,4) Hamming code. Let’s find it here. We
begin with the factorization

x7−1 = (x−1)(x3 + x+1)(x3 + x2 +1),

and deduce there are 6 possible nontrivial cyclic codes (that is, excluding the zero code C = {0} and the
full code C =Pn). Our Hamming code in Example 5.26 contained the element 1101000= 1+x+x3 = g,
and in fact was shown to be generated by cyclic shifts of this element, so we deduce that C = 〈1+x+x3〉.

Note that to write down a generator matrix for C, we would proceed as above, that is, choosing a
linearly independent spanning subset of g,xg,x2g, · · · ,x6g. In this case, x4g ∈ span{g,xg,x2g,x3g}
(check) and therefore these first four vectors give a basis for C. The resulting generator matrix G is

G =

1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

.

This is attractive, but not in standard form; but recall that since the order of the coordinates matters for
cyclicity, we are not expecting our codes to be systematic. �

� Example 7.7 Consider ternary cyclic codes of length 5. We have the factorization

x5−1 = (x−1)(x4 + x3 + x2 + x+1) = (x+2)(x4 + x3 + x2 + x+1)

so there are only 4 such codes: the trivial one, corresponding to g(x) = x5− 1 = 0; the full codes,
corresponding to g(x) = 1; the code with generator g(x) = x+2; and the code with generator g(x) =
x4 + x3 + x2 + x+1 = 11111, which is just {00000,11111,22222}.

The code generated by x+2 has basis (exercise):

12000,01200,00120,00012

7.1 Cyclic codes as subspaces of F [x]/〈xn−1〉 83

and so is a (5,4) code. Note that 〈x+2〉 is dual to 〈x4 + x3 + x2 + x1〉. �

These examples illustrate that cyclic codes are few and far between, at least if xn−1 has few factors.
This seems particularly surprising when we consider larger fields, where we might have instead expected
to find more codes (since there are more subspaces altogether).

Let us consider cases where we actually have many factors.

� Example 7.8 Let n = 8 and p = 2. Since over Z2, (x+1)2 = x2 +1, we deduce that

x8−1 = (x−1)8 = (x+1)8.

Therefore the distinct monic factors of x8−1 are:

1, x+1, x2 +1, (x+1)3 = x3 + x2 + x+1, x4 +1, (x+1)5 = x5 + x4 + x+1,

(x+1)6 = x6 + x4 + x2 +1, (x+1)7 = x7 + x6 + x5 + x4 + x3 + x2 + x+1, x8 +1.

These each correspond to cyclic (8,k) codes over Z2. �

This example reveals a setting where we have a rich supply of cyclic codes: when n is a power of
|F |= q.

Proposition 7.9 Let F = Zp where p is prime. Then for any k ≥ 0,

xpk −1 = (x−1)pk

is a complete factorization over F .

This proposition is true over any field F of size q = p` for some `≥ 1; see Chapter 8.

Proof of Proposition 7.9. First consider the case that k = 1. Then we have

(x−1)p =
p

∑
`=0

(
p
`

)
xp−`(−1)`

= xp− pxp−1 +
p(p−1)

2
xp−2− p(p−1)(p−2)

3!
xp−3±·· ·

· · ·+ p(p−1) · · ·(3)
(p−2)!

x2(−1)p−2 + px(−1)p−1 +(−1)p

Now note that every coefficient (except the first and last) has numerator divisible by p and denominator
a product of factors that are strictly less than p (hence, relatively prime to p), so will be 0 mod p. If
p = 2 then (−1)p = 1 =−1 and if p is odd then (−1)p =−1. Therefore we conclude

(x−1)p = xp−1.

The proposition follows by a proof by induction on k (exercise). �

84 Chapter 7. Cyclic codes, revisited

In Chapter 9, we’ll discover how to factor xn−1 when gcd(n, p) = 1 (the setting in which we’ll produce
our best codes!) and thus, by putting these results together, we’ll have a factorization of xn−1 over any
finite field F for any n≥ 1.

Let’s briefly explore concepts related to the factorization of xn−1, to get a sense of why there are so
few of them in some cases, before returning to the exploration of these codes.

7.2 Factors of xn−1 over Q: cyclotomic polynomials

The factorization of xn−1 over Q has been understood for a long time, because it relates to many great
problems in number theory. Its solution allows us to deduce something about the solution over F a
finite field, in some cases.

Let us begin by recalling that we can identify Zn with the cyclic subgroup of C given by

µn := {e2πi j/n | 0≤ j < n},

which are just points on the unit circle (where i =
√
−1). The additive group Zn is isomorphic to the

multiplicative group µn, via the map that sends x to e2πix/n. Let Mn be the subset of µn corresponding
to Z×n ; thus

Mn = {e2πi j/n | gcd(j,n) = 1}.

The polynomial
Φn(x) = ∏

ζ∈Mn

(x−ζ)

is called the nth cyclotomic polynomial. We define Φ1(x) = x−1.

What is utterly astonishing, but kind of the whole point, is that even though the definition is complex
(in both senses of the word), the resulting polynomial Φn is quite simple.

� Example 7.10 By direct calculation, you can confirm that

Φ2(x) = x+1, Φ3(x) = x2 + x+1, and Φ4(x) = x2 +1.

�

Lemma 7.11 If p is a prime then Φp(x) = xp−1 + xp−2 + · · ·+1.

Proof. If p is prime then Mp = µp \ {1}. The roots of xp− 1 are exactly the p elements in µp, so
dividing by that one extra root we have

Φp(x) =
xp−1
x−1

= xp−1 + xp−2 + · · ·+1.

�

Notice from these examples that although these polynomials have non-real roots, all their coefficients
are in Z. This is not an accident!

7.3 Another constraint on cyclic codes over Zp 85

Theorem 7.12 Let n≥ 1. Then Φn(x) ∈ Z[x], and is an irreducible polynomial over Q[x]. Further-
more, we have

xn−1 = ∏
d|n

Φd(x), (7.1)

where the product runs over all positive divisors of n.

The proof of this result requires more information about extension fields than we currently have at our
disposal so we will not include it here; see, for example, [Nic12, §10.4].

Nevertheless, some thought reveals that (7.1) clearly holds. What is amazing is that the polynomials
have integer coefficients, which implies that we may map these polynomials into Zp[x] for any prime p,
and obtain a factorization of xn−1 in the ring Zp[x].

That said, there is no reason for the cyclotomic polynomials to remain irreducible when we consider
them in Zp[x].

� Example 7.13 In Z2[x] we have Φ4(x) = (x−1)2, so it is not irreducible, even though, according to
the theorem, Φ4(x) is irreducible when considered as a polynomial in Z[x]. �

This theorem therefore gives us a first rough factorization of xn−1, over any field F . 1

Many cyclotomic polynomials have been calculated, and they satisfy many relations which make them
relatively easy to work out; see for example the article on Wolfram Mathworld.

7.3 Another constraint on cyclic codes over Zp

In the previous section, we had some indication that xn−1 factors in a very special way, at least over
Q. Now let us see what we can say about this factorization over Zp.

If C is a cyclic code, then by definition it is closed under cyclic shifts, that is, if c0c1 · · ·cn−1 ∈C then so
is cn−1c0 · · ·cn−2; this was a consequence of multiplying the polynomial form of c by x in F [x]/〈xn−1〉.

But we also have, over Zp, a fascinating identity. There is a subtle point in its statement and proof. The
variable x is an indeterminate, so we do not have that xp = x. One way to see this is to consider that
although the polynomial xp gives the same answer as x whenever we evaluate on elements of Zp, we
could evaluate it at any a ∈ F where F is a field containing Zp, where ap 6= a. Therefore as functions
on this extension field, xp is not the same as x. We reconcile this weirdness by stating that F [x] is the
ring of formal polynomials over F , to distinguish it from the set of polynomial functions on F .

Lemma 7.14 Let a(x) ∈ Zp[x]. Then (a(x))p = a(xp) as polynomials.

1More generally, one can give a definition of Φn(x) that makes sense over any field, such as is done in [Nic12, §10.4], and
more subtleties of the relation between the characteristic of F and n come into play.

https://mathworld.wolfram.com/CyclotomicPolynomial.html

86 Chapter 7. Cyclic codes, revisited

Proof. Begin by noticing that (exercise) for any x,y ∈ Zp, we have

(x+ y)p = xp + yp.

Furthermore, by Fermat’s little theorem, we have that ap = a for any a ∈ Zp. So proceeding inductively,
we have that

(a(x))p = (a0 +a1x+ · · ·+an−1xn−1)p

= (a0 +

(
n−1

∑
i=1

aixi

)
)p

= ap
0 +

(
n−1

∑
i=1

aixi

)p

binomial case

= ap
0 +(a1x)p + · · ·+(an−1xn−1)p by induction

= ap
0 +ap

1xp + · · ·+ap
n−1x(n−1)p

= a0 +a1xp + · · ·+an−1x(n−1)p each ai ∈ Zp

= a(xp).

�

Proposition 7.15 Suppose C is a cyclic code of length n over Zp, where gcd(n, p) = 1. Then C is
closed under the permutation σ ∈ Sn which sends i to ip mod n.

Proof. Since gcd(p,n) = 1, p is invertible mod n so σ is a bijective map on the set {0,1, · · · ,n−1},
hence indeed in Sn.

Since C is a cyclic code, there exists some g(x) such that C = 〈g(x)〉. Suppose a(x) ∈C. Then there is
some q(x) such that a(x) = q(x)g(x). Then by the lemma we have

a(xp) = a(x)p = (q(x)g(x))p = (q(x)pg(x)p−1)g(x)

which is again a multiple of g, so in C. If a(x) = a0 +a1x+ · · ·+an−1xn−1, then a(xp) = b0 +b1x+
· · ·+ bn−1xn−1 where b0 = a0 and for each i > 0, bpi mod n = ai (since ai is the coefficient of xpi in
a(xp)). This is the map σ−1(a0a1 · · ·an−1) = aσ−10aσ−11 · · ·aσ−1(n−1) = b0b1 · · ·bn−1. So C is closed
under σ−1. Since Sn is finite, σ has finite order, so there is some k such that (σ−1)k = σ , and so the
lemma follows. �

� Example 7.16 Suppose n = 7 and p = 2. The theorem says that if c0c1c2c3c4c5c6 ∈C then so is
c0c2c4c6c1c3c5; the proof showed us that the inverse permutation c0c4c1c5c2c6c3 is also in C. For
example, in the cyclic Hamming code discussed above and in Example 5.26, we have 1101000 ∈C; its
σ -twist is 1000110; the inverse twist is 1010001; both of these are just cyclic shifts of 1101000 so are
obviously in C. �

� Example 7.17 Consider the ternary cyclic codes of length 5 discussed in Example 7.7. Since
3× 1 = 3, 3× 2 = 1, 3× 3 = 4 and 3× 4 = 2, the theorem says that any such code is closed under

7.4 Exercises 87

c0c1c2c3c4 7→ c0c3c1c4c2. This is obvious for three of the four codes in that example; for the last (the
one generated by 12000) we compute

12000 7→ 10200 = 12000+01200 ∈C

for example. �

The theorem tells us that the requirement of a linear code being cyclic implies more constraints on
the coordinates than we perhaps intended, because of these interactions with the finite field. This is
reflected in the complexity of the solution to the question of how many cyclic codes there are over any
given field.

7.4 Exercises

1. Complete the details of the proof of Lemma 7.3.
2. Suppose I = 〈10〉 and J = 〈6〉. What is J̃ (notation as in the proof of Lemma 7.3)?
3. Write out the details of the proof of Theorem 7.4.
4. Factor x3−1 into irreducibles over Z2 and use this to give a list of all ideals in Z2[x]/〈x3−1〉.

Use this to write down generator matrices for all cyclic codes in Z3
2.

5. Complete the proof of Proposition 7.9, by doing the argument by induction.
6. Prove that over a field F of characteristic p, where p is of course prime, we have

(x+ y)p = xp + yp

for all x,y ∈ F . (For those who have not seen “characteristic": prove this for the case that
F = Zp.)

7. Prove that if F = Zp, then ap = a for all a ∈ F . Hint: this is close to Fermat’s little theorem.
(The pth-power map becomes interesting if F is a field of characteristic p which is not equal to
Zp; it is sometimes called a Frobenius map.)

8. Find the dimension of and generator matrices for each of the cyclic codes in Example 7.8.
9. Describe the remaining binary cyclic codes of length 7, given the factorization of x7− 1 in

Example 7.6.
10. Prove directly that the generator matrix of Example 7.6 is that of a Hamming code.
11. Find generators for all ternary cyclic codes of length 4.
12. Show that the cyclic code generated by 11000 over Z3 is the full code Z5

3. (Note that 11000
means 1+ x and that x+1 6= x−1 = 21000 over Z3. It’s important to remember that the first
factor of xn−1 is x−1; it’s only over binary fields that we can pretend it is x+1.)

13. Find all factors of x9−1 over Z3. Which factors will generate bigger cyclic codes, and which
smaller? Find a basis for the code generated by (x−1)7.

14. Suppose g(x) ∈ F [x] is an irreducible polynomial that does not divide xn−1. What is 〈g(x)〉?
15. Find the full group of permutation automorphisms of a cyclic binary code of length 5. Generalize.
16. Work through the argument of the proof of Proposition 7.15 in the case that n = 6 and p = 2,

and identify what makes this case different. What does the closure under a(x) 7→ a(xp) give you
in this case?

88 Chapter 7. Cyclic codes, revisited

7.5 A first generator matrix for a cyclic code

So we’ve classified all cyclic codes: the cyclic codes of length n over F are in one-to-one correspondence
with monic factors of xn−1 in F [x]. But how big is such a code?

Theorem 7.18 Let g be a monic factor of xn− 1 and set C = 〈g〉. If deg(g) = n− k then C is an
(n,k) cyclic code.

Proof. We will find a basis for C, which in turn allows us to determine its dimension, and, as a corollary,
a generator matrix for C.

First, since g divides xn−1 we may set

h =
xn−1

g
∈ F [x];

since deg(g)+deg(h) = n, we have that deg(h) = k.

An element of C is of the form ag for some polynomial a = ∑i aixi. If deg(a) < k, then this implies
ag ∈ span{g,xg, · · · ,xk−1g}. Otherwise, we first use long division to write a = qh+ r with deg(r)<
deg(h); then since hg = xn−1 we have

ag = (qh+ r)g = q(hg)+ rg≡ rg mod (xn−1)

which shows that ag = rg ∈ span{g,xg, · · · ,xk−1g}. Thus C = span{g,xg, · · · ,xk−1g}.

To see that these vectors are linearly independent, it suffices to note that if rg≡ 0 mod (xn−1) then
necessarily deg(r)+deg(g)≥ n, which implies deg(r)≥ k. So no nontrivial dependence relation can
exist.

We conclude that {g,xg, · · · ,xk−1g} is a basis for C and that dim(C) = k. �

R Another way of thinking about the proof is the following, which is related to how we’ll
decode, later. Begin by noting that since g generates C and xng = g, the set

S = {g,xg,x2g, · · · ,xn−1g}

spans C. Say h = h0 +h1x+ · · ·hkxk. The equation hg = xn−1 becomes the equivalence

h0g+h1xg+ · · ·+hkxkg≡ 0 mod (xn−1)

which is a nontrivial dependence relation on some of the elements of S. In fact, since
hk 6= 0 (by definition of degree), we deduce that xkg is expressible as a linear combination
of {g,xg, · · · ,xk−1g}. Multiplying by x and repeating the process, we see that indeed
{g,xg, · · ·xk−1g} is enough.

Suppose g(x) = g0 +g1x+ · · ·+gn−kxn−k. Then one generator matrix for C is given by taking the first
column to be g0g1 · · ·gn−k0 · · ·0 and the next k−1 columns to be its cyclic shifts (ending with a column

7.6 Parity check matrices for cyclic codes 89

0 · · ·0g0g1 · · ·gn−k):

G =

g0 0 0 · · · 0 0
g1 g0 0 · · · 0 0
g2 g1 g0 · · · 0 0
...

...
...

. . .
...

...
...

...
... · · · gn−k gn−k−1

...
...

... · · · 0 gn−k

(7.2)

With such a matrix, the message a ∈ Fk is encoded as Ga; in polynomials, a(x) is a polynomial of
degree ≤ k−1, and (identifying vectors with polynomials in our usual way) we have

Ga = a(x)g(x) = g(x)a(x). (7.3)

That is, we can compute the encoding with respect to G without using matrix multiplication; use
polynomial multiplication instead.

� Example 7.19 Consider F = Z2 and n = 8, as in Example 7.8. Ignoring the zero code, we have
exactly one cyclic code of dimension k for each k between 1 and 8, since there are factors of x8−1 of
each degree. Let’s work out one of them.

Consider g = (x+1)5 = x5 +x4 +x+1 = g5x5 +g4x4 +g3x3 +g2x2 +g1x+g0. Since deg(g) = 5 and
n = 8, the code generated by g has dimension 8−5 = 3 and a basis is {g,xg,x2g}. Notice that since
deg(x2g) = 7 < 8, we will not need to reduce modulo x8−1 to compute these basis vectors! They are

{g(x) = 1+ x+ x4 + x5, xg(x) = x+ x2 + x5 + x6, x2g(x) = x2 + x3 + x6 + x7}.

Written as vectors this basis is

{~g = 11001100, ~xg = 01100110, ~x2g = 00110011}

so a generator matrix is

G =

1 0 0
1 1 0
0 1 1
0 0 1
1 0 0
1 1 0
0 1 1
0 0 1

which is exactly as predicted by (7.2) just above. �

7.6 Parity check matrices for cyclic codes

Now we go on to find a parity check matrix. We are looking for a matrix H of rank n− k such that
HG = 0. In the proof of Theorem 7.18, we saw that if h is the polynomial of degree k such that
hg = xn−1, then hg≡ 0 mod 〈xn−1〉. Thus we naturally expect that H has something to do with h.
The surprise is that we have to write h backwards.

90 Chapter 7. Cyclic codes, revisited

Proposition 7.20 Let g be a monic factor of xn−1 and set C = 〈g〉. If gh = xn−1 and h =
k

∑
i=0

hixi,

then a parity check matrix for C is given by the matrix with rows

hkhk−1 · · ·h1h00 · · ·0

and its n− k cyclic shifts, ending with 0 · · ·0hk · · ·h1h0, that is,

H =

hk hk−1 · · · h1 h0 0 · · · 0
0 hk · · · h2 h1 h0 · · · 0
. .
0 0 · · · · · · · · · h2 h1 h0

 .

Proof. It is easy to see that this matrix is of size (n− k)×n and has full rank (since both hk and h0 are
necessarily nonzero (exercise)), so it suffices to verify that HG = 0.

To better understand what the product HG represents, let’s write

g(x) = g0 +g1x+ · · ·+gn−1xn−1

where gi = 0 for i > n− k, and write h(x) = ∑
n−1
i=1 hixi. Then the columns of G are the cyclic shifts of

g0g1g2 · · ·gn−2gn−1

whereas the rows of H are various cyclic shifts of the vector

hn−1hn−2 · · ·h1h0.

Now, what does the dot product of these vectors have to do with the product h(x)g(x)?

We multiply:

g(x)h(x) = (
n−1

∑
i=0

gixi)(
n−1

∑
j=0

h jx j)

=
n−1

∑
i=0

n−1

∑
j=0

gih jxi+ j

=
n−1

∑
r=0

(
n−1

∑
i=0

gihr−i

)
xr

where all subscripts are interpreted as mod n. Reducing g(x)h(x) modulo xn− 1 only affects the
coefficients of x0 and xn, since all other powers of x are less than n; we find that the constant term of
g(x)h(x) mod xn−1 is (by removing all coefficients that are automatically zero) g0h0 +gn−khk.

Since a polynomial is zero iff each of its coefficients is, we obtain that g0h0 +gn−khk = 0 and the n−1
equations

n−1

∑
i=0

gihr−i mod n = 0, ∀0 < r < n.

7.7 Alternate generator matrix 91

This is precisely the statement that every row of H times every column of G is zero. We conclude that
HG = 0. �

! Suppose g(x)h(x) = xn−1. We could set C = 〈g〉 and D = 〈h〉. What the proof of the
theorem warns us is: even though dim(C)+dim(D) = n, and gh≡ 0, D = 〈h〉 need not
be the dual code of C = 〈g〉.

Define the reciprocal polynomial of h as the polynomial

h′(x) = xkh(x−1) = xk(h0+h1x−1+ · · ·+hk−1x−(k−1)+hkx−k) = hk+hk−1x+ · · ·+h0xk.

Then the proof shows us that C⊥ = 〈h′〉. Thus we have C⊥ = 〈h〉 if and only if 〈h〉= 〈h′〉
(such as when h(x) is a palindrome).

Thus we have a first construction of a generator matrix G and a parity check matrix H for our cyclic
code. The nice feature is that we can easily write down both from the factorization of xn−1. There are
other perks as well, as we’ll see next.

7.7 Alternate generator matrix

Although we’ve found a generator matrix for our cyclic code, we notice that it is not in standard form.
For cyclic codes, we cannot simply apply the arguments that show each equivalence class of codes
admits a systematic code, since permuting the coefficients could destroy the cyclic nature of the code.

On the other hand, we might suspect that a more efficient choice is nevertheless available, since in
the proof that HG = 0 (which consists of (n− k)k dot products equalling zero) we saw that we could
compute this from the product of two polynomials (with only n homogeneous equations). That is, one
single coefficient of the product g(x)h(x) determined several of the entries of the matrix HG.

With these thoughts in mind, let us find another generator matrix for a cyclic code.

Our idea is the following. Suppose C = 〈g(x)〉, with deg(g) = n−k, as always. Let n−k≤ i < n. Then
we can use the division algorithm to write

xi = qi(x)g+ ri(x)

and deg(ri(x))< n− k. From this equation, we deduce that

xi− ri(x) ∈C

for each of the k values of i. These polynomials are clearly linearly independent, since each one
contains a unique monomial of degree larger than n− k−1; there are k polynomials, and they all lie in
C, so this is a basis for C. The corresponding generator matrix is

G′ =
[
−R

I

]
(7.4)

where R is the matrix whose columns are the coefficients of rn−k(x), rn−k+1(x), · · · , rn−1(x). This is
still not standard, but it has all the same advantages as a standard matrix (and more!).

92 Chapter 7. Cyclic codes, revisited

Having a different generator matrix implies we have a choice of how to calculate the encoding of
a ∈ Fk.

Lemma 7.21 Let a ∈ Fk, and identify this with the polynomial a(x) = a0 +a1x+ · · ·+ak−1xk−1.
Let r(x) be the remainder of division of a(x)xn−k by g(x). Then (identifying vectors and polynomials
in our usual way) we have

G′a = a(x)xn−k− r(x),

that is, we can compute the encoding with respect to G′ without using matrix multiplication.

Proof. Let us compute G′a. We compute this matrix product as ∑
k−1
i=0 aigi, where gi is the ith column of

G′. In polynomial form, this sum is simply

G′a =
k−1

∑
i=0

ai(xn−k+i− rn−k+i(x)) = xn−k
∑aixi−

k−1

∑
i=0

airn−k+i(x) = xn−ka(x)− r′(x).

Note that r′(x) is a polynomial of degree less than n− k (since each of the ri(x) are). Now on the other
hand, G′a ∈C = 〈g(x)〉, so there exists some q(x) such that G′a = q(x)g(x) mod 〈xn−1〉. Since g(x)
divides xn−1, this means G′a = q′(x)g(x) for some q′(x). Thus we have an equation

a(x)xn−k = q′(x)g(x)+ r′(x)

with deg(r′(x))< n− k. But the division theorem tells us that such an expression is unique. In other
words, r′(x) is precisely the remainder of a(x)xn−k upon division by g(x). �

Thus, the effect of using G′ in place of G is to encode words using division by g(x) (Lemma 7.21)
rather than multiplication by g(x) (as in (7.3)). There exist more efficient algorithms for the division
operation than for multiplication, so G′ is preferred.

It is also easier to decode a(x) from its codeword: just take the last k bits.

� Example 7.22 Consider F = Z2 and n = 7. Then we have

x7−1 = (x−1)(x3 + x+1)(x3 + x2 +1).

Let us take the cyclic code C generated by

g(x) = (x−1)(x3 + x+1) = x4 + x3 + x2 +1,

which has degree n− k = 4; thus dim(C) = k = 3. To compute G′, we first need to divide each of
xn−k, · · · ,xn−1 (that is, x4,x5,x6) by g(x). We can do so recursively with little effort:

x4 = 1(x4 + x3 + x2 +1)+ x3 + x2 +1

so multiplying by x and simplifying again yields

x5 = xg(x)+ x4 + x3 + x = xg(x)+(g(x)+ x3 + x2 +1)+ x3 + x = (1+ x)g(x)+ x2 + x+1

and even more simply
x6 = (x2 + x)g(x)+ x3 + x2 + x.

7.7 Alternate generator matrix 93

At each step, we have used the uniqueness of the remainder to be assured that since our alleged
remainder has degree less than deg(g), it is the actual remainder upon division by g(x).

Thus we have r4(x) = x3 + x2 +1, r5(x) = x2 + x+1 and r6(x) = x3 + x2 + x, which means

G′ =

1 1 0
0 1 1
1 1 1
1 0 1
1 0 0
0 1 0
0 0 1

.

Now let us encode the message a = 101 using Lemma 7.21.

To do so, begin by writing a(x) = 1+x2. Then xn−ka(x) = x4a(x) = x4 +x6. We do long division (over
Z, for ease of reading):

x2− x+1

x4 + x3 + x2 +1
)

x6 + x4

− x6− x5− x4 − x2

− x5 − x2

x5 + x4 + x3 + x

x4 + x3 − x2 + x
− x4− x3 − x2 −1

−2x2 + x−1

which means (over F) that
x6 + x4 = (x2 + x+1)g(x)+ x+1.

Thus r(x) = x+1, and therefore our codeword is

G′a = a(x)xn−k− r(x) = x6 + x4 + x+1 = 1+ x+0x2 +0x3 + x4 +0x5 + x6 = 1100101.

We check that in fact, yes, this is the same vector we would get if we calculated the matrix product G′a.
�

Lemma 7.23 Let C and R be as in Lemma 7.21. Then the matrix

G′′ =
[

I
−R

]
is a standard generator matrix for C.

Proof. Since G′ is a generator matrix for C, its columns form a basis B for C. Since C is cyclic, the
cyclic shift is an automorphism of C. Applying the cyclic shift k times to each vector in B yields
therefore another basis Bk of C; these are precisely the columns of G′′. It is clear than G′′ is in standard
form. �

We deduce a surprising consequence.

94 Chapter 7. Cyclic codes, revisited

Corollary 7.24 All cyclic codes are systematic.

It turns out that G′′ gives the most efficient encoding algorithm of all.

7.8 Encoding cyclic codes with shift registers

A good reference for the material in this section is [Ple98, Ch 5]. In this section, we work only over the
binary field; this decoding algorithm is specific to the case of Z2.

Let C be a cyclic (n,k) code over the binary field, with generator polynomial g(x). Define h(x) and H
as in Proposition 7.20 and G′′ is a standard generator matrix as in Lemma 7.23. Note that since H is a
parity check matrix for C, we have HG′′ = 0 (and in fact HG = 0 where G is as in (7.2), and HG′ = 0
where G′ is as in (7.4)).

Goal:

We will use the structure of H to implement an encoding algorithm to compute the
codeword G′′a ∈ Fn from a ∈ Fk more efficiently than matrix multiplication.

To understand the algorithm, let a ∈ Fk, and recall that h(x) is a polynomial of degree k (so is one bit
longer than a). We wish to find G′′a, which is the systematic encoding of a. This a vector c ∈C such
that

c = a0a1 · · ·ak−1ckck+1 · · ·cn−1

for some ck, . . . ,cn−1 to be determined.

Since H is a parity check matrix for C, we must have Hc = 0. Consider the first coordinate of Hc = 0.
This yields the equation

hka0 +hk−1a1 + · · ·+h1ak−1 +h0ck = 0

so (since h0 = 1, since it’s a factor of xn−1) we can solve for ck. If we next consider the second entry
of Hc = 0, we get the equation

hka1 +hk−1a2 + · · ·+h2ak−1 +h1ck +h0ck+1 = 0

which allows us to solve for ck+1. We can then proceed inductively through the rows of H, computing
one more coefficient of c each time.

How this is implemented on a computer is through a shift register. This is a logical unit consisting of
(in our case) k flip-flops, connected in such a way that the following is true:

• We begin by loading a into the shift register (one bit per flip-flop).
• The shift register can move all data one unit left per clock cycle, dumping the leftmost bit out

(into a serial stream, for example).
• We can grab the data that is moving left and put it through a binary adder and direct the sum to

the new, open, empty space on the right.
In our case, what we implement on the last step is the sum

ck = ∑
i|hk−i+1 6=0

ai.

7.8 Encoding cyclic codes with shift registers 95

(We can do this because h is fixed throughout.) The result of one clock cycle is therefore

a1 · · ·ak 7→ a1 · · ·akck

and an output of the bit a0. Repeating this operation is equivalent to solving for ck+1 using the second
row of H. Thus after n clock cycles, we have encoded and output the codeword for a.

We did not use G′′ at all in this computation, but it can be shown (exercise) that c must be G′′a.

� Example 7.25 Let n = 7, p = 2 and g(x) = 1+ x+ x3. Then h(x) = (x+1)(1+ x2 + x3) = 1+ x+
x2 + x4. So the parity check matrix H is

H =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .
We set up our shift register to add the first, third and fourth elements together. (One draws this as
4 squares, representing your flip-flops, and directed lines to indicate the flow; addition is achieved
through XOR gates, whose symbol is ⊕.)

a0 a1 a2 a3 a0 +a3 +a4

⊕ ⊕ ⊕

Then if we input a = 1010 we get the following outputs (where we leave our leftmost bits visible, for
clarity):

• 1010
• 1 0100
• 10 1000
• 101 0001
• 1010 0011
• 10100 0110
• 101000 1101
• 1010001 1010 (stop)

Notice that our register contains the original data again; this would just keep repeating if we continued.

It is easy to verify that c = 1010001 ∈C, by computing Hc = 0. �

Notice that the shift register can be used for error detection as well, since entering any portion of the
codeword should generate the rest of the codeword.

It also therefore allows a rudimentary (but fast) single-error correction: if your received word w has
only one error, then there will be a contiguous subset of k bits of w which are correct; feeding them
through the shift register would then produce a codeword (after cyclic shift) which coincides with w in
all but one bit. Applying the shift register to a subset of bits that contained an error, on the other hand,

96 Chapter 7. Cyclic codes, revisited

would compound the errors and produce a codeword that differed from w in several bits. Thus applying
the shift register to random selections of k continguous bits of your received word would eventually
reveal the codeword (as the one that differed from w in only one bit).

However, if you cannot be certain that there exists a contiguous set of k correct bits, this method is not
equivalent to finding the nearest codeword.

Where to next?

We’ve established that cyclic codes have uniquely wonderful encoding properties, which make them
useful in practice — but we haven’t yet answered the most important question!

What is dmin? We might have hoped that working out a parity check matrix would allow us to determine
dmin in some clever way, but we don’t really see anything obvious about the smallest set of linearly
dependent columns. It will turn out (preview of things to come) that the answer has to do with how
many consecutive roots our polynomial has — not something we’re prepared to tackle, yet.

In the next chapter, we move on to the construction of finite fields, and an analysis of cyclotomic
polynomials over finite fields which is different, in practice, from the complex case we discussed earlier.

7.9 Exercises

1. Show that if hg = xn−1 then the constant terms of h and g are in F×.
2. Suppose g = g0 + g1x+ · · ·+ grxr is a polynomial of degree r that divides xn− 1. Prove that

h = gr +gr−1x+ · · ·+g1xr−1 +g0xr also divides xn−1. (Hint: one way is to prove and use the
formula h(x) = xrg(x−1). Another is to remember that the dual of a cyclic code is cyclic, and use
the results of this chapter.)

3. Use the methods of Section 7.7 to produce a standard generator matrix and corresponding parity
check matrix for the binary (8,3) cyclic code.

4. Give a direct proof of Lemma 7.21. That is, show that a(x)xn−k is a linear combination of
{xi | n− k ≤ i < n} and that therefore the remainder r(x) of the theorem is precisely the same
linear combination of the remainders {ri(x) | n− k ≤ i < n}. Infer that the decoding algorithm is
correct.

5. Describe an algorithm to divide a binary polynomial of degree n by a binary polynomial of
degree k. Estimate the number of operations required. Compare this with the cost of multiplying
a polynomial of degree k with one of degree n− k. Compare with the shift register.

6. Show that the output of the shift register encoding algorithm is G′′a. Hint: prove that there is
only one codeword in C which has a as a prefix.

7. Compute the encoding of 1110 using the shift register for the (7,4) Hamming code.
8. Define the shift register for your favourite binary cyclic code of length 9.

8. Finite fields, beyond Zp

We have previously seen that for every prime p, Zp is a field. In this chapter, we use what we learned
about quotients of polynomial rings to construct all finite fields. We’ll then relate this back to our
unanswered questions about cyclic codes.

A reference for the material about field extensions in this section is [Nic12, Chap 6.2, 6.3].

8.1 Looking for other finite fields
Definition 8.1 The characteristic of a field F is the least positive integer n such that 1+1+ · · ·+1
(n times) equals 0. If no such n exists, then we define the characteristic to be n = 0. In any case, we
write n = char(F).

� Example 8.2 We have char(Z5) = 5 since 1+1+1+1+1≡ 0 mod 5, and no subsum is zero.

We have char(R) = 0 since 1+1+ · · · is never 0. �

It is clear that if the characteristic of a field is zero, then the field is infinite. (But the converse is not
true! There are fields of positive characteristic which are infinite, like the field of infinite Laurent
polynomials in one variable with coefficients in Zp.) Put another way: any finite field has positive
characteristic.

Lemma 8.3 If F is a field, then char(F) is either 0 or a prime.

Proof. Suppose char(F) = n > 0. If n has a nontrivial factorization as n = ab, with 1 < a,b < char(F),
then first write

a = 1+1+ · · ·+1 (a times) and b = 1+1+ · · ·+1 (b times).

Then by distributivity, ab is the sum of ab 1s, which is 0 since ab = n = char(F). But F is a field, so

98 Chapter 8. Finite fields, beyond Zp

ab = 0 implies one of a or b is zero. But both a and b are sums of fewer than n 1s, so are not zero, a
contradiction. We conclude that n is prime. �

This is really quite handy. For instance, suppose F is a finite field of characteristic p. Then we obtain a
well-defined map

ϕ : Z→ F ϕ(n) = 1+1+ · · ·+1(n times)

whose kernel is pZ. Thus Z/pZ, which is what we call Zp, is isomorphic to the image of ϕ in F . In
other words, with this identification, we have that Zp ⊆ F .

Theorem 8.4 If F is a field of characteristic p, then it is a vector space over the field Zp.

We leave the proof of Theorem 8.4 as an exercise. Note that the operations of the vector space are just
a subset of the operations of the field.

So if F is a finite field of characteristic p, then F is a (finite-dimensional) vector space over Zp. Let
{v1, · · · ,vn} be a basis for this vector space; then every element of F is uniquely expressible in the form

a1v1 + · · ·+anvn

for some a1, · · · ,an ∈ Zp. This proves an astounding fact.

Corollary 8.5 If F is a finite field, then |F |= pn for some prime p and some n ∈ N.

In fact, there is a deeper theorem which asserts: for each prime p and each n ∈ N, there exists up to
isomorphism a unique field of order pn. We sometimes call it the Galois field of order pn, denoted
GF(pn) or Rpn .

8.2 Using quotient rings to construct fields

We have previously seen that for any ideal I, R/I is again a ring. When is this a field?

Well a (commutative, unital) ring is a field exactly when every nonzero element is invertible. By
Lemma 6.22, this implies the ring has no proper ideals except {0}. By Lemma 7.3, the ideals of R/I
are exactly the ideals of R containing I.

Therefore: R/I is a field when the only ideals of R containing I are R and I. We give such ideals a
name.

Definition 8.6 A maximal ideal I of a ring R is a proper ideal such that if J is any other ideal of R
satisfying I ⊆ J ⊆ R then either J = I or J = R.

OK: so to make R/I into a field, we need to choose I to be a maximal ideal. So what are the maximal
ideals of a ring like F [x], in which all ideals are principal? Well, suppose 〈a〉 is a maximal ideal of R.

8.2 Using quotient rings to construct fields 99

Theorem 8.7 Let R be either Z or F [x] for some field F . Let I = 〈a〉 be a maximal ideal of R. Then
a is irreducible and R/〈a〉 is a field.

Proof. All ideals of R are principal, by Theorem 6.21. So suppose I is a maximal ideal and let a ∈ R be
such that I = 〈a〉. Then a /∈ R× (or else 〈a〉= R), and by Lemma 6.23,

〈a〉 ⊆ 〈b〉 ⇐⇒ b divides a

so a maximal ideal corresponds to an element a which has no nontrivial divisors (so that there are no
larger proper ideals). In F [x], these are exactly the irreducible polynomials; in Z, these are exactly the
prime numbers.

As discussed above, since I is maximal (and R is commutative and unital), R/I is a field. Let us give a
direct proof, one that gives us the technique to find inverses.

Suppose b /∈ I; we want to show it is invertible in R/I. Now b is not a multiple of a and a is irreducible
so we deduce that gcd(a,b) = 1. By the extended Euclidean algorithm, we can write

1 = ra+ tb

for some r, t ∈ R. Thus tb+ I = 1+ I; this means (t + I)(b+ I) = 1+ I so (b+ I) is invertible. This
holds for all b /∈ I, in other words, every nonzero element of R/I is invertible. Thus R/I is a field. �

� Example 8.8 The irreducibles in Z are the primes; so we recover the fact that Z/pZ is a field for all
primes p. �

� Example 8.9 The polynomial x is irreducible, and F [x]/〈x〉 ∼= F is a field. �

Now let us concentrate on the polynomial ring case. If F and E are two fields such that F ⊆ E, then E
is called an extension field of F (and F is called a subfield of E).

The following is the key result that produces all finite fields.

Theorem 8.10 Let R = F [x], for a field F and let m be an irreducible polynomial in F [x] of degree n.
Then the quotient ring

E = F [x]/〈m〉

is an extension field of F , such that as a vector space over F , we have dimF(E) = n. If F is finite of
order q, then E is of order qn.

Proof. Recall by Lemma 6.27 that if deg(m) = n then we have

F [x]/〈m〉= {a0 +a1x+ · · ·an−1xn−1 | ai ∈ F}

(where on the right we perform operations mod 〈m(x)〉). This is a vector space over F of dimension n.
If F is a finite field of order q, then this set has qn elements.

Now if m is irreducible, then by Theorem 8.7

E = F [x]/〈m〉

100 Chapter 8. Finite fields, beyond Zp

is a field. It contains F as a subfield (as the constant polynomials), so is an extension of F .

�

In the proof we noted a useful property: if E is an extension field of F then E is a vector space over F!

Definition 8.11 An extension field E of F such that dimF(E) = n < ∞ is called a degree n extension
of the base field F (regardless of whether F is finite or not).

� Example 8.12 The polynomial x2 + 1 is irreducible over R; R[x]/〈x2 + 1〉 is a field which is
two-dimensional as a vector space over R. Hence it must be C.

We can write this out explicitly, to get to a more satisfactory reason why this field is C: we have F =R,
m(x) = x2 +1, I = 〈m〉. Then

F [x]/I = {a+bx | a,b ∈ R}
and we have the rule that (a+bx)(c+dx) = ac+(ad+bc)x+bdx2 ≡ ac−bd+(ad+bc)x mod (x2+
1). This is now clearly the field C, by the identification a+bx 7→ a+bi for all a,b ∈ R. �

In the last example, we saw that F [x]/〈m〉 is a field where the symbol x is now interpreted as a (new!)
root of the polynomial m(x). This argument works to describe any field F .

� Example 8.13 Let F = Z2 and consider p(x) = x2 + x+1, which is an irreducible polynomial of
degree 2. Then the set

F4 = F [x]/〈p(x)〉= {a0 +a1x | a0,a1 ∈ Z2}
should be a field, where we define addition as usual but do multiplication mod p(x). In other words,
since p(x)≡ 0 mod 〈p(x)〉, we have

x2 =−x−1 = x+1 ∈ F4.

Thus, F4 = {0,1,x,1+ x} with addition mod 2 and multiplication mod x2 = x+1.

Before writing out the addition and multiplication tables for F4, however, let’s rename the variable,
just as we did for C. For example, let’s replace x with α — we think of α as being a choice of root of
the polynomial p(x), just as we think of i as being one of the roots of x2 +1 = 0. Then addition in F4
satisfies

+ 0 1 α 1+α

0 0 1 α 1+α

1 1 0 1+α α

α α 1+α 0 1
1+α 1+α α 1 0

whereas multiplication in F4 is given by

× 0 1 α 1+α

0 0 0 0 0
1 0 1 α 1+α

α 0 α 1+α 1
1+α 0 1+α 1 α

8.3 Exercises 101

We can see directly that this is a field (see 4 in Section 2.4); in particular, notice that it is NOT Z4. �

R In fact, you can show directly that if E ′ is a field with 4 elements, then there is an
isomorphism E ′ ∼= F4. This is a general fact!

Summary: To construct a finite field with q = pn elements:
1. Find an irreducible polynomial m ∈ Zp[x] of degree n;
2. Set E = Zp[x]/〈m〉;
3. Choose a name for a root of m(x), like α;
4. Identify E = {a0 +a1α + · · ·an−1αn−1 | ai ∈ Zp,m(α) = 0}.

These last two steps make a concrete field from the abstract construction. When F =Q, then at step 3
it is instead: “choose a root α ∈ C of m(x)" (and different choices can give different fields).

8.3 Exercises

1. Verify that the set {a+ I | a ∈ F} ⊆ F [x]/I, for a maximal ideal I, equipped with the addition
and multiplication in the quotient ring, is a field, and is isomorphic to F . (That is, we only take
cosets of elements of F .)

2. Let E ′ be a field with 4 elements. Since it is a field, 0 6= 1 are two distinct elements of E ′; so
we can write E ′ = {0,1,a,b}. Prove that (up to swapping the names of a and b) we must have
a2 = b and b = 1+a, and conclude that E ′ ∼= Z2[x]/〈x2 + x+1〉.

3. The polynomial x3 + x+1 is irreducible over Z2. Use it to define a finite field F with 8 elements
and write down the multiplication table for F .

4. Now use the irreducible binary polynomial x3+x2+1 to construct a finite field E with 8 elements
instead. Find an isomorphism between F (of the preceding exercise) and E. (An isomorphism is
a relabeling or permutation of elements such that the multiplication and addition tables become
identical.)

5. Can you construct F9 using x2 + x+1 over Z3?
6. Construct F9 using x2 + x−1. Can you find a primitive element?
7. Write down all quadratic monic polynomials over F4. Identify an irreducible quadratic monic

polynomial, and use it to construct a quadratic extension of F4, which you can call F16.
8. Find an irreducible quartic (degree 4) polynomial over Z2. Use it to construct a quartic extension

of Z2 which has 16 elements. Show it is isomorphic to the field you constructed in the preceding
exercise. With the help of your multiplication table, identify F4 as a subfield of F (that is, find an
isomorphic copy of F4 inside F).

9. (Important Multiplication Theorem) Suppose F ⊆ E ⊆ K are fields, such that E is a degree e
extension over F and K is a degree k extension over E. Prove that K is a degree ek extension
over F . Hint: If {ei} is a basis of E over F, and {k j} is a basis of K over E, prove directly that
{eik j} is a basis for E over F. Alternately: prove this just in the finite field case.

8.4 Representing elements of a finite field in two ways

Consider F = C. We have two representations of elements of F :

102 Chapter 8. Finite fields, beyond Zp

• cartesian form (where an element is written as a+bi for some a,b ∈ R) and
• polar form (where an element is written as reiθ for some r,θ ∈ R, r ≥ 0).

One reason why we use two different forms is the following pair of observations:

• Adding complex numbers in Cartesian form is easy; adding numbers in polar form is hard.
• Multiplying complex numbers in polar form is easy; multiplying them in cartesian form takes

more work.
Now consider F a finite field, constructed as Zp[x]/〈m〉 as in the previous section. Suppose deg(m) = n.
We write an element of F in standard form as

b0 +b1α + · · ·+bn−1α
n−1

for some bi ∈ Zp. Then addition of elements of F is easy to write down, but multiplication takes
extra work. Our question is: can we find a different way of representing the elements of F , such that
multiplication is easy to work out in this new form?

We consider this in some examples.

� Example 8.14 Consider F4 = {0,1,α,1+α | α2 = α +1} as in Example 8.13. Since

α
3 = α

2
α = (1+α)(α) = α +α

2 = α +(1+α) = 1,

this is the set
F4 = {0,1,α,α2 | α3 = 1}.

Multiplication in F4 is thus given by the rules: 0× t = 0 for all t; and αkα` = αk+` mod 3. �

� Example 8.15 Consider F8 = Z2[x]/〈x3 + x+1〉. Then in standard form we have

F8 = {a0 +a1β +a2β
2 | ai ∈ Z2,β

3 = β +1}.

We calculate:

• β 3 = 1+β

• β 4 = β +β 2

• β 5 = β 2(1+β) = β 2 +β 3 = 1+β +β 2

• β 6 = (β +1)2 = 1+β 2

• β 7 = β (1+β 2) = β +(1+β) = 1
so in fact

F8 = {0,1,β ,β 2, · · · ,β 6}

which is rather convenient for working out multiplication in F8. �

Definition 8.16 Let F be a finite field of order q. An element α ∈ F with the property that

F× = {1,α, · · · ,αq−2 | αq−1 = 1}

is called a primitive element of F .

Since F× is a multiplicative group of order q−1, Lagrange’s theorem promises us that each element of
F× has order dividing q−1. The existence of a primitive element of F is a much stronger assertion: it
can happen if and only if F× is a cyclic group. (See Corollary ??, coming up.)

8.5 Application: minimal polynomials 103

� Example 8.17 Consider F9 = {a0 +a1γ | γ2 +1 = 0,ai ∈ Z3}. Then

γ
2 = 2,γ3 = 2γ,γ4 = 1

so γ has order 4. Thus the order of γ divides q−1 = 8, but γ is not a primitive element. �

8.5 Application: minimal polynomials

We mentioned earlier that when we write β (or α , or γ) in place of x in our definition of a field, like

F8 = {a0 +a1β +a2β
2 | ai ∈ Z2,β

3 +β +1 = 0},

then we are thinking of β as being one root of the polynomial x3 +x+1. This is reasonable, because in
F8, we have that β 3 +β +1 = 0, so it really is a root.

We might ask:

• Are there other roots of this polynomial in F8?
For example, in C there are two roots of x2 +1, namely i and −i.

• Do all elements of F8 satisfy this polynomial?
Wait: that’s an obvious NO. If a polynomial is cubic, it has at most 3 roots, and F8 has 8 elements.

• In C, we know that every complex (non-real) number is the root of a quadratic irreducible
polynomial.
Is it true that every element of F8 is the root of some irreducible polynomial? And if so, how do
we find it and what does it tell us?

Let’s work this all out in our example. Our objective is:

For each a ∈ F8, find an irreducible polynomial of which it is a root.

Recall that we had worked out the additive-multiplicative dictionary:

additive form multiplicative form
0 -
1 1 = β 7

β β

β 2 β 2

1+β β 3

β +β 2 β 4

1+β +β 2 β 5

1+β 2 β 6

Consider the element β 2. We calculate

(β 2)3 +β
2 +1 = (1+β

2)+β
2 +1 = 0

so β 2 is another root of x3 + x+1.

Now consider β 3. We calculate

(β 3)3 +β
3 +1 = β

2 +(1+β)+1 6= 0

104 Chapter 8. Finite fields, beyond Zp

so β 3 is NOT a root of x3 + x+1. How can we find a polynomial that β 3 satisfies?

One approach: think of a polynomial equation in some element γ as being a dependence relation on
the set {1,γ,γ2, · · ·}. Since F8 is a 3-dimensional vector space over Z2, the set {1,γ,γ2,γ3} must be
linearly dependent, meaning, there must exist a polynomial of degree at most 3 of which γ is a root.

Let’s consider γ = β 3, again. Using our relations we have

{1,γ,γ2,γ3}= {1,β 3,β 6,β 9}= {1,1+β ,1+β
2,β 2}.

We see in this case that the sets {1}, {1,γ}, and {1,γ,γ2} are all linearly independent; but the set
{1,γ,γ2,γ3} is dependent, with dependence relation:

1+ γ
2 + γ

3 = 0 that is, (1)+(1+β
2)+(β 2) = 0.

So β 3 is a root of x3 + x2 +1, and this is the (monic) polynomial of minimal degree which β 3 satisfies.
We therefore call it the minimal polynomial of β 3.

R Notice that x3 + x2 + 1 is another irreducible polynomial of degree 3 which we could
have used to construct a field with 8 elements (as in some of the exercises above).

Now take γ = β 4. Then

{1,γ,γ2,γ3}= {1,β 4,β 8 = β ,β 12 = β
5}= {1,β +β

2,β ,1+β +β
2}

Again, we find by looking at these elements that the minimal polynomial of β 4 is x3 + x+1.

Exercise : β 5 and β 6. By either a similar method, or by plugging into the existing list of candidates,
we work out that β 5 and β 6 both have minimal polynomial x3 + x2 +1.

While we’re at it: the minimal polynomial of γ = 1 is x−1; and the minimal polynomial of γ = 0 is x.

Conclusion:
• Each element of F8 has a minimal polynomial from the following list:

x,x−1,x3 + x+1,x3 + x2 +1.

• Each of these polynomials is irreducible over Z2, but factor completely into linear factors over
F8.

• The 8 elements of F8 are precisely all the roots of these 4 polynomials.
• When we multiply them all together we get

x(x−1)(x3 + x+1)(x3 + x2 +1) = x(x7−1) = x8− x.

We’ll see in the next section that this is a general fact.
Let us summarize some important phenomena we have identified here.

8.6 Exercises 105

Lemma 8.18 Let E be a finite extension of F and γ ∈ E. Then any element γ ∈ E is the root of
some polynomial with coefficients in F . There is moreover a unique monic polynomial m(x) ∈ F [x]
of minimal degree such that m(γ) = 0.

We leave the proof as an exercise. One needs to justify both the existence, and the assertion of
uniqueness. Note that existence requires the hypothesis of E being a finite extension of F .

Definition 8.19 The minimal polynomial of γ over F is the unique monic polynomial of minimal
degree m(x) ∈ F [x] such that m(γ) = 0.

8.6 Exercises

1. Let F9 be defined by the irreducible polynomial x2 +1 over Z3. Find all primitive elements of
F9.

2. Prove that if F has one primitive element, then it has ϕ(q−1) primitive elements, where ϕ is the
Euler phi function, that is, ϕ(n) = |Z/nZ×|.

3. Prove that (in the setup of the definition of the minimal polynomial) that if m(x),n(x) ∈ F [x] are
two monic polynomial of (the same) minimal degree for which m(γ) = n(γ) = 0, then m = n,
that is, the polynomials are equal, and the minimal polynomials is uniquely characterized in this
way.

4. Prove that if γ ∈ E has minimal polynomial m(x)∈ F [x], and f (x)∈ F [x] is any other polynomial
of which γ is a root, then m(x) divides f (x).

5. Give an example of an element in R which is not the root of a polynomial with coefficients in
Q (that is, which is not algebraic over Q). Why does our argument in the main example of
Section not apply?

6. Give the minimal polynomial for γ =
√

2 over Q.
7. Suppose F is a finite field containing Zp, and let γ ∈ F×.

(a) Argue that there exists some n≥ 1 such that the set {1,γ, · · · ,γn+1} is linearly dependent
over Zp.

(b) Let n be such a value. Argue that there is a polynomial of degree at most n in Zp[x] of
which γ is a root.

(c) Prove that if n is the least such value, then this polynomial must be irreducible, and hence,
by dividing by its leading coefficient to make it monic, it gives the minimal polynomial of
γ over Zp.

(d) Prove that if γ ∈Zp then {1,γ} is linearly dependent over Zp. Give the minimal polynomial
of γ .

8. In this question, you will determine the key properties of the field GF(9) and record them in a
table. (Hang on to this table.)

(a) Construct the field GF(9).
(b) Find a primitive element.
(c) Create a table where you write out the additive form of each power of your primitive

element.
(d) Add a column where you write down the order of each element in the multiplicative group

of the field.
(e) Add a row for 0 (which is not a power of your primitive element, of course).

106 Chapter 8. Finite fields, beyond Zp

(f) Now calculate the minimal polynomial of each element of GF(9) and record that in a fourth
column. Use your multiplicative-additive dictionary to do this easily.

(g) Finally, verify that the least common multiple of all the minimal polynomials is equal to
x9− x.

8.7 Main theorems about finite fields

The detailed example of the previous section revealed many interesting facts about F8 that are true in
general. Let’s round out our discussion of finite fields with the statements of some key theorems. The
proofs of some results are included but require mathematical background above what has been assumed
thus far in these notes.

Let E be a finite field of order q. Then the set E× is a multiplicative group of order q− 1, so by
Lagrange’s theorem1, each element of E× satisfies

aq−1 = 1.

To include a = 0, multiply this by a. So every element of E satisfies aq = a; in fact, E is precisely the
set of solutions in E to the equation

xq− x = 0.

R This is an extremely special situation, for finite fields. For infinite fields, one instead
introduces the notion of a splitting field for a polynomial m(x) ∈ F [x], which is an
extension field E of F of minimal degree such that m(x) factors completely into linear
factors in E[x] (so that E contains all the roots of m). Since F and E are infinite, it is
impossible for E to be the set of all roots of one polynomial!

We can now state the key theorem of finite fields. We attribute it to Évariste Galois in honour of his
contributions to the modern understanding of these fields in his 1830 paper [Gal30], but the result does
not appear there. It does appear in the first chapter of an important treatise of Camille Jordan in 1870
[Jor70].

Theorem 8.20 — Galois 1830. Let p be a prime and n≥ 1. Then there exists a field of order pn,
and it is unique up to isomorphism.

We sometimes call the field of order pn the Galois field of order pn, denoted GF(pn) or Fpn .

Idea of proof. We want to define E as the set of all solutions to xpn− x. One tricky step is to prove that
such a polynomial couldn’t have repeated roots. Another is to make sure this is a field. For this latter
problem, we could start by postulating the existence of an algebraic closure K of Zp, in which case
E ⊆ K and you show it’s a subfield; but this is cheating, since the usual way we define K is as ∪n≥1Fpn .

The longer route is to prove the existence of splitting fields, and show that if E ′ is a splitting field for
xpn− x then the subset E consisting of just the roots of this polynomial is in fact already a field. �

1Lagrange’s theorem asserts that if G is a group with k elements, then any element g ∈ G satisfies gk = 1; therefore, its
order n, which is the minimal power such that gn = 1, must divide k.

8.8 Proof of the primitive element theorem 107

We deduce several consequences that make finite fields quite pleasant to work with.

Corollary 8.21 Let E = Fqn be a degree n extension of a finite field F = Fq of order q. Then:
1. The minimal polynomial of any a ∈ E over F must be an irreducible factor of xqn − x. In

particular, aqn−a = 0 for all a ∈ E.
2. Every irreducible polynomial of degree n over F divides xqn− x in F [x].

Proof. (1) Let g(x) = xqn− x and let a ∈ E. Then g(a) = 0. Let m be the minimum polynomial of a;
then since m(a) = 0 it follows that if d(x) = gcd(m,g), we have d(a) = 0. Since m is irreducible, we
deduce that d = m and so m divides g.

(2) Given an irreducible polynomial p(x) of degree n, construct a field of order qn using p(x). Then
any root of p(x), including x = α , has minimal polynomial p(x). By (1), we conclude that p(x) divides
xqn− x. �

This settles many of our open questions from our examples in previous sections; let us also settle the
last, namely the existence of primitive elements.

Theorem 8.22 If F is a finite field then F× is cyclic, so has a primitive element.

We defer the proof of this statement to the following section, and instead derive the immediate
consequences.

Corollary 8.23 Let F be a finite field. If E is a field extension of F of degree n then there exists an
irreducible polynomial of degree n in F [x].

Proof. Since E is a field, we have by the theorem that E× is a cyclic group. Let α ∈ E× be a generator,
and consider its minimal polynomial m(x) ∈ F [x] over F . If deg(m) = k < n, then αk is a linear
combination of {1,α, · · · ,αk−1}. It follows that α` ∈ spanF{1,α, · · · ,αk−1} for all `≥ 1. But there
are only |F |k elements in this span whereas the cyclic group generated by α has order |F |n− 1, a
contradiction. �

This corollary tells us, for example, that every finite field of characteristic p can be realized as Zp[x]/〈m〉
for some irreducible m ∈ Zp[x].

8.8 Proof of the primitive element theorem

We prove something a bit more general than Theorem 8.22. Recall that E being a splitting field of a
polynomial f ∈ F [x] means that E contains all the roots of f .

Theorem 8.24 Suppose E is a splitting field of xn− 1. If char(E) = p, assume furthermore that
gcd(n, p) = 1. Then the set µn of all nth roots of unity in E is a cyclic group.

108 Chapter 8. Finite fields, beyond Zp

To prove this theorem, we use an unusual characterisation of cyclic groups.

Lemma 8.25 A group G of order n is cyclic if and only if there exists exactly one subgroup of
order d, for any d dividing n.

“Only if” direction of the proof. Throughout this proof, let us write 〈h〉 for the subgroup of G gen-
erated by h; this is the set {1,h,h2, · · · ,hk−1 | hk = 1}. If k is the least integer such that hk = 1, then
(exercise), this cyclic subgroup has order k.

Suppose that G = 〈g〉 is a cyclic group of order n (so gn = 1, and this is the least positive power for
which this holds). We begin with a few facts, which you can prove as an exercise:

• For any two gk,g` ∈G, we have that gk,g` ∈ 〈gd〉 where d = gcd(k, `), and any group containing
gk and g` contains gd .

• Every subgroup of G is cyclic.
• The cyclic subgroup of G generated by gk is also generated by gd , where d = gcd(k,n), and this

group has size n/d.
• There is exactly one cyclic subgroup of order d for each d which is a divisor of n, and it is

generated by (for example) gn/d .
These facts together give one implication of the lemma. �

Before proving the reverse implication, we need another lemma.

Lemma 8.26 Let ϕ denote the Euler totient function. Then the number of elements of order exactly
n in a cyclic group of order n is ϕ(n). Furthermore, we have

∑
d|n

ϕ(d) = n.

Proof. In the cyclic group of order n generated by g, the element gk is another generator if and only
if gcd(k,n) = 1 (because otherwise, 〈gk〉= 〈gd〉 6= G). What this means is: gk has order exactly n iff
gcd(k,n) = 1. So the number of elements of order n in G is ϕ(n), the Euler phi function.

Since all subgroups of G are cyclic, we deduce that the number of generators of a cyclic subgroup of
order d is exactly ϕ(d); this means the number of elements of order exactly d in G is ϕ(d), for any
divisor d of n.

Now count the number of elements of any given order in G. These orders must divide n. Let d divide n.
Each element of order d generates a subgroup of G of order d; but there is only one such subgroup, and
it therefore contains all the elements of order d. How many? ϕ(d). In this way we account for all the n
elements of G, and conclude the surprisingly useful formula:

∑
d|n

ϕ(d) = n,

which has nothing to do with cyclic groups, but is a nice formula in number theory. �

8.9 Exercises 109

“If" direction of the proof. Now let us prove the inverse implication of Lemma 8.25. That is, suppose
G has this unique subgroup property. Proceeding as above, let h be an element of order d (which must
divide n). Then the cyclic subgroup generated by h has order d, and is the unique subgroup of order
d. We conclude (by our discussion about the number of generators of any cyclic group) that there are
exactly ϕ(d) elements in G of order d. So: for each d dividing n, including n itself, there are either
0 or ϕ(d) elements of order exactly d. But the total number of elements must be n = |G|. So by the
above useful equality, every d must occur as the order of some element of G, and so in particular G
must have an element of order n, and so be cyclic. �

Proof of Theorem 8.24. By Lemma 8.25, it therefore suffices to show that for each divisor d of n there
exists at most one subgroup of µn of order d. In a subgroup H of order d, by Lagrange’s theorem, every
element satisfies xd = 1. Since we are working over a field, this says every element of H is a root of
xd−1. Since xn−1 = (xd−1)(xn−d + xn−2d + · · ·+1), every root of xd−1 is also a root of xn−1, so
lies in µn.

In particular, xd−1 can have no repeated roots; this is guaranteed by the hypothesis that gcd(n, p) = 1
(exercise). Therefore if we had two subgroups of order d, we’d have more than d solutions to the
equation xd−1 = 0, which is impossible. �

Now let E be a finite field of order q = p`, and set n = q− 1. Then we have gcd(n, p) = 1, so by
Theorem 8.24, the set of nth roots of unity is a cyclic group. But by Corollary 8.21, the nth roots of
unity are precisely the elements of E×; thus Theorem 8.22 follows.

Given that E× = µq−1, the following definition is natural.

Definition 8.27 An element β of order n in an extension field of Zp, where gcd(n, p) = 1, is called
a primitive nth root of unity.

8.9 Exercises

1. Prove all the statements about cyclic groups stated at the beginning of the lemma. (See [Nic12,
Chapter 2.4].)

2. Prove that the generators of a cyclic group G = {1,g, · · · ,gn−1 | gn = 1} are exactly {gk |
gcd(k,n) = 1}.

3. Use the formal derivative of a polynomial to prove that xn− 1 has no repeated roots in any
extension of Zp if and only if gcd(n, p) = 1. (See [Nic12, Chapter 6.4 Theorem 2].) Hint: argue
that f 7→ f ′ is a linear map on F [x] for any F. Then observe that from Calculus we know that
if f (x) = (x−a)2g(x) then f ′(x) = (x−a)(2g(x)+(x−a)g′(x)) whereas if f (x) = (x−a)g(x)
(with g(a) 6= 0) then f ′(x) = g(x)+(x−a)g′(x), to argue the result.

4. Show that if n divides q−1, where q is a prime power, then µn ⊂GF(q). Infer that xn−1 factors
into irreducible factors in any field GF(q) such that n|(q−1).

9. BCH codes and Reed-Solomon Codes

We previously saw how to construct and efficient decode Hamming codes (which all have dmin = 1).
In this chapter, we continue our work with cyclic codes, applying the insights we gained into the
factorization of xn− 1 in our study of finite fields. End result: we’ll be able to design codes of
any minimum distance, and we’ll also gain an efficient decoding algorithm that makes them quite
practical. In consequence, even though BCH codes and Reed-Solomon codes are just the cyclic codes
of Chapter 7, they have earned their own name!

9.1 The Vandermonde determinant

Before we tackle BCH codes, there’s a common and extremely useful tool we’ll need, so we’ll state it
as a proposition: it’s called the Vandemonde determinant.

Proposition 9.1 Let s ≥ 1 and let {x1, · · · ,xs} be a set of s commuting symbols. Let Vs =
Vs(x1, · · · ,xs) denote the s× s matrix

Vs =

1 1 · · · 1
x1 x2 · · · xs

x2
1 x2

2 · · · x2
s

...
...

...
xs−1

1 xs−1
2 · · · xs−1

s

 .

Then we have
det(Vs) = ∏

1≤i<k≤s
(xk− xi).

The Vandermonde determinant is named after Alexandre–Théophile Vandermonde (1735–96). While

112 Chapter 9. BCH codes and Reed-Solomon Codes

he is generally regarded as the “founder of the theory of determinants", and he proved the techniques
we will use in the proof, ironically he did not actually produce the result that bears his name [OR01].

Proof. We proceed by induction. We know that det(V1) = 1. Suppose that s≥ 2 and we know that

det(Vs−1(x2, · · · ,xs) = ∏
2≤i<k≤s

(xk− xi).

We now row reduce Vs, keeping track of our elementary row operations so that we can relate
det(Vs(x1, · · · ,xs)) to det(Vs−1(x2, · · · ,xs)).

Recall that if we perform a row operation of the form c×Row(i)+Row(i+1)→ Row(i+1), then
this does not change the value of the determinant. Also, if we factor a scalar z from a row or column of
A, then the determinant of the resulting matrix is zdet(A). (See the exercises.)

To compute

detVs = det

1 1 · · ·
x1 x2 · · ·
x2

1 x2
2 · · ·

...
...

xs−1
1 xs−1

2 · · ·

we cleverly clear out the first column by adding −x1×Row(s−1) to Row(s), then −x1×Row(s−2)
to Row(s−1), and so on, to deduce

det(Vs) = det

1 1 1 · · ·
0 x2− x1 x3− x1 · · ·
0 x2(x2− x1) x3(x3− x1) · · ·
...

...
0 xs−2

2 (x2− x1) xs−2
3 (x3− x1) · · ·

 .
Now expand along the first column to deduce that the above determinant is

= 1×det

x2− x1 x3− x1 · · ·

x2(x2− x1) x3(x3− x1) · · ·
...

...
xs−2

2 (x2− x1) xs−2
3 (x3− x1) · · ·

 .
Finally, take out the common factor in each column to get

det(Vs) = (x2− x1)(x3− x1) · · ·(xs− x1)det

1 1 · · ·
x2 x3 · · ·
x2

2 x2
3 · · ·

...
...

xs−2
2 xs−2

3 · · ·

= (x2− x1)(x3− x1) · · ·(xs− x1)det(Vs−1(x2, · · · ,xs)

= ∏
1=i<k≤s

(xk− xi) · ∏
2≤i<k≤s

(xk− xi)

= ∏
1≤i<k≤s

(xk− xi).

9.2 The BCH theorem 113

as required. �

One of the key applications is the following. Suppose we want to find a polynomial of degree s−1
whose graph interpolates some points (over some field F):

(x1,y1),(x2,y2), · · · ,(xs,ys) ∈ F2.

That is, we’re trying to find a polynomial

f (x) = c0 + c1x+ · · ·+ cs−1xs−1 ∈ F [x]

such that
∀1≤ i≤ s, f (xi) = yi.

Let c be the (column) vector of the unknown coefficients (c0,c1, · · · ,cs−1) and set y = (y1, · · · ,ys).
Letting A =V T

s (x1, · · · ,xs), our problem is to solve the matrix equation

Ac = y

for c. Since det(A) = det(V T
s (x1, · · · ,xs)) 6= 0 if and only if all of the values xi are distinct, we conclude

that this system has a unique solution if and only if the xi are distinct. That is, we can always uniquely
interpolate s values (satisfying this condition) with a polynomial of degree s−1 (independent of the
field we are working over).

9.2 The BCH theorem

In this chapter, we assume that gcd(n, p) = 1, where n is the length of our code and p is the characteristic
of our field F . Then we can look for q = pm, a power of p, such that n|(q−1). (Exercise: such a q
always exists.) When this happens, Theorem 8.22 and Lemma 8.25 together tell us that we’ll have
µn ⊂ F×q .

In particular, n|(q−1) implies that xn−1 factors into linear factors over Fq. Since µn is cyclic, there
is some γ ∈ Fq that generates µn. (In general this is some power of a primitive element of Fq unless
µn = Fq.) Therefore, the roots of xn−1 are µn = {1,γ,γ2, · · · ,γn−1} so xn−1 factors as

xn−1 = (x−1)(x− γ)(x− γ
2) · · ·(x− γ

n−1).

Now suppose that g(x) divides xn−1. Then we can factor

g(x) = ∏
j∈S

(x− γ
j)

for some subset S⊆ {0,1, · · · ,n−1}. This observation led to the following remarkable theorem, due
to Hocquenghem [Hoc59] and, independently, by Bose and Ray-Chaudhuri [BRC60].

114 Chapter 9. BCH codes and Reed-Solomon Codes

Theorem 9.2 Let C = 〈g(x)〉 be a cyclic code of length n. Let γ be a primitive nth root of unity over
Zp. If t consecutive powers of γ are roots of g(x), that is, if there exists an ` such that

g(γ`) = g(γ`+1) = · · ·= g(γ`+t−1) = 0,

then dmin(C)> t.

Proof. Let E = Fq be an extension field of Zp which contains µn, and let γ ∈ µn be a primitive nth root
of unity. We want to show that under the given hypothesis, the weight of any nonzero vector in C is
greater than t.

Let c(x)∈C\{0}; then c(x)∈ 〈g(x)〉 so there exists some q(x) such that c(x) = q(x)g(x) mod 〈xn−1〉.
More precisely, there exists some r(x) ∈ Zp[x] such that

c(x) = q(x)g(x)+ r(x)(xn−1).

Since any power of γ is a root of xn− 1, and the elements {γ`,γ`+1, · · · ,γ`+t−1} are roots of g, we
conclude that {γ`,γ`+1, · · · ,γ`+t−1} are each roots of c(x).

Now suppose to the contrary that wt(c) = s≤ t. Then we could identify exactly s nonzero coefficients
of c(x), say c j1 ,c j2 , · · · ,c js . Then the first s equations c(γ`) = 0, · · · , c(γ`+s−1) = 0 give rise to a system
of s homogeneous linear equations in the s variables c j1 ,c j2 , · · · ,c js :

c j1(γ
`) j1 + · · ·+ c js(γ

`) js = 0

c j1(γ
`+1) j1 + · · ·+ c js(γ

`+1) js = 0
... =

...

c j1(γ
`+s−1) j1 + · · ·+ c js(γ

`+s−1) js = 0.

The square matrix of coefficients is

B =

γ j1` γ j2` · · · γ js`

γ j1(`+1) γ j2(`+1) · · · γ js(`+1)

...
...

. . .
...

γ j1(`+s−1) γ j2(`+s−1) · · · γ js(`+s−1)

 .
Since the above system has a nontrivial solution (namely, the one coming from c(x)), this matrix is not
invertible. Thus its determinant is zero. Let’s calculate its determinant.

det(B) = γ
j1`γ j2` · · ·γ js` det

1 1 · · · 1

γ j1 γ j2 · · · γ js

γ2 j1 γ2 j2 · · · γ2 js

...
...

. . .
...

γ(s−1) j1 γ(s−1) j2 · · · γ(s−1) js

 .

This latter determinant is exactly the Vandermonde determinant of Proposition 9.1, with xi = γ ji for
i ∈ {1, . . . ,s}. Therefore, we have

det(B) = γ
j1`γ j2` · · ·γ js`∏

i<k
(γ jk − γ

ji).

9.3 Designed distance codes or BCH codes 115

But since all of our γ ji are distinct (by primitivity of γ), and nonzero (since they are roots of unity), this
determinant cannot be zero, which is a contradiction.

Hence: there does not exist a nonzero codeword c(x) ∈C of weight s≤ t, whence dmin > t. �

This is marvelous! It is a huge and strange result. It suggests we can — and indeed it is possible to —
construct cyclic codes with arbitrarily high values of dmin.

Reality check: If we fix n, however, note that the theorem asks us to find g(x) with t consecutive
powers of γ as a root, and it is possible that the only divisor of xn−1 which has this property, for a
given value of t, is g(x) = xn−1, which corresponds to the zero code. But if we’re willing to go to
large values of n, this method gives us incredibly good error-correcting codes.

Our next question: this is a wonderful theory, but how do we find γ , and how do we compute with these
things?

9.3 Designed distance codes or BCH codes

To apply Theorem 9.2, we need to find a primitive nth root of unity, γ . Where do we start?

We are looking for an element γ such that γ has order n. Then in particular γ is a root of xn−1, which
implies that the minimal polynomial m(x) (of γ over Zp) must divide xn−1 (Exercise 4 of Section 8.6).
Moreover, if m(x) were to divide xk−1, for any k < n, then we’d have γk = 1, contradicting that n is
the smallest power of γ which equals 1.

This line of reasoning tells us where to look for elements like γ . Namely, choose an irreducible factor
m(x) of xn− 1 such that m(x) does not divide xk− 1 for any k < n. (The existence of such a factor
depends on the hypothesis that gcd(n, p) = 1, although we do not prove it here.)

Suppose deg(m(x)) = m. Construct the field E = Fpm as E = Zp[x]/〈m(x)〉, and let γ be the image of x
in E. Then by construction, m(γ) = 0, so we conclude both that γn = 1 (since m(x) divides xn−1) and
that γk 6= 1 (since m(x) does not divide xk−1) for any 0 < k < n.

� Example 9.3 Say n = 5 and p = 2. To find γ ∈ µ5, a primitive 5th root of unity, we first factor

x5−1 = (x−1)(x4 + x3 + x2 + x+1).

The first factor clearly divides x−1, so doesn’t work. The second one clearly cannot factor any xr−1,
for r ≤ 4, so meets our criterion. Set m(x) = x4 + x3 + x2 + x+ 1. Then F [x]/〈m(x)〉 is a field with
24 = 16 elements. So there exists an element of F16 of order exactly 5, which we could call γ . It isn’t
hard to see that γ , γ2, γ3 and γ4 are all roots of m(x), so if we set g(x) = m(x) we have a polynomial
that satisfies Theorem 9.2 with t = 4. The corresponding code is C = {00000,11111}, which has
dmin = 5 > 4, as expected. �

That was a lot of work. It’s more efficient to turn this around: let’s first start with a given field Fq such
that n|(q−1) and identify the order of all of the elements of F×q as well as their minimal polynomials.
Then we can select the generator of our codes from the data at hand.

116 Chapter 9. BCH codes and Reed-Solomon Codes

multiplicative form additive form minimal polynomial order of element
- 0 x -
1 1 x−1 1
α α p(x) 15
α2 α2 p(x) 15
α3 α3 r(x) = x4 + x3 + x2 + x+1 5
α4 1+α p(x) 15
α5 α +α2 t(x) = x2 + x+1 3
α6 α2 +α3 r(x) 5
α7 1+α +α3 s(x) = x4 + x3 +1 15
α8 1+α2 p(x) 15
α9 α +α3 r(x) 5
α10 1+α +α2 t(x) 3
α11 α +α2 +α3 s(x) 15
α12 1+α +α2 +α3 r(x) 5
α13 1+α2 +α3 s(x) 15
α14 1+α3 s(x) 15

Table 9.1: The field F16, defined by p(x) = x4 + x+1 over Z2.

� Example 9.4 Let’s take n = 15, p = 2. Since n = p4−1, the nth roots of unity are exactly E×, where
E = F16, which means we just need to construct E and go from there. In particular, we will take γ to be
a primitive element of E over Zp.

To construct E, choose an irreducible polynomial of degree 4. Let’s take p(x) = x4 + x+ 1. Then
we construct F16 = F [x]/〈p(x)〉 and compute the multiplicative and additive forms of all elements in
Table 9.1.

Now let’s see what cyclic codes of length n = 15 we can construct with this information.

First approach: trial and error. Say g(x) = p(x) = x4 + x+1; this gives a (15,11) cyclic code. The
roots of g, by the table, are α,α2,α4,α8. So taking γ = α , we count exactly 2 consecutive roots1, so
dmin > 2. Since the generator already has weight 3, we conclude that dmin = 3.

Second approach: by design. Say we wish to construct a code with designed distance 7. So we’d
need a polynomial with 6 consecutive roots, say {α,α2, · · · ,α6}.

To do this, take the set of minimal polynomials of α , α2, · · · , α6. They are p(x), r(x) and t(x).

So if we were to choose g(x) = p(x)r(x)t(x), we would have a polynomial with 6 consecutive roots,
and so for the code C = 〈g(x)〉, we have dmin ≥ 7.

How big is it? Since deg(p(x)) = 4, deg(r(x)) = 4 and deg(t(x)) = 2, we have that deg(g(x)) = 10 and
so this code is a binary 3-error-correcting (15,5) cyclic code. (We can verify directly, by multiplying

1Of course γ is not the only primitive 15th root of unity. Could there be a different choice for which we’d get a different
count of the number of consecutive roots? Here, it is easy to argue that this does not occur; if we had 3 consecutive roots then
two of the pairwise quotients of the roots would be equal; but they are all distinct.

9.4 A new kind of parity check matrix for BCH codes 117

out the generator, that again this code contains an element of weight exacty 7.) �

R From Table 9.1, we can find all the primitive kth roots of unity, for all divisors of 15,
that is, for all k ∈ {3,5,15}. Thus we can work out a lower bound on dmin for any binary
cyclic code of length 3, 5 or 15 using this table.

This second approach is what defines BCH codes.

Definition 9.5 Let F be a finite field of characteristic p and let n,d, ` be integers such that 2≤ d ≤ n,
gcd(n, p) = 1 and ` ≥ 0. Let γ denote a primitive nth root of unity. A BCH code of designed
distance d is a cyclic code of length n over F with generator

g(x) = lcm(m`(x),m`+1(x), · · · ,m`+d−2(x))

where mk(x) denotes the minimal polynomial of γk.

This approach provides a streamlined way to produce codes: create a table like Table 9.1, and look for
a consecutive sequence of powers of γ whose minimal polynomials have a least common multiple of
low degree (hence giving a higher-dimensional cyclic code).

9.4 A new kind of parity check matrix for BCH codes

We deduce a new way of detecting codewords.

Lemma 9.6 Let C be a BCH code, with notation as in Definition 9.5. Then f (x) ∈C if and only if
f (γ i) = 0 for each i = `,`+1, · · · , `+d−2.

Proof. During the proof of Theorem 9.2 we established that each of the γ i, being roots of g(x), are
roots of c(x) for all c(x) ∈C.

Conversely, if f (γk) = 0, then since mk(x) is the minimal polynomial of γk, we have that mk(x) divides
f (x). Thus the hypothesis implies that the least common multiple of all these minimal polynomials
divides f (x), which is saying that f is a multiple of g. Thus f (x) ∈C. �

An immediate consequence is that the following is another “parity check matrix” for C. Define

H =

1 γ` γ2` · · · γ(n−1)`

1 γ`+1 γ2(`+1) · · · γ(n−1)(`+1)

...
...

...
. . .

...
1 γ`+d−2 γ2(`+d−2) · · · γ(n−1)(`+d−2)

 . (9.1)

Then for any vector f ∈ Fn, identified with a polynomial f (x) ∈ F [x]/〈xn−1〉, we have

H f = (f (γ`), · · · , f (γ`+d−2)).

Thus H f = 0 if and only if f ∈C. However, this is not at all like our “usual” parity check matrices:

118 Chapter 9. BCH codes and Reed-Solomon Codes

For one, the entries of this matrix are in the field Fq that contains γ ; in general this is not the base field
Zp. To interpret H as a matrix over Zp, choose a linear isomorphism Fq ∼= Zm

p , and replace each entry
in H with the corresponding column vector. So although H has size (d−1)×n as a matrix with entries
in Fq, it “really” has size (d−1)m×n as a matrix with entries in Zp.

For another: we previously defined our parity check matrices to have size (n− k)×n, for an (n,k)
code; but the matrix H above is unlikely to be of the correct size (no matter how we write it). What’s
happening is that (d−1)m≥ n− k, and therefore in fact some of these rows are linearly dependent.
Note that this does not affect the ability of H to detect errors; it just implies our H is bigger than it
needs to be.

We will nevertheless call H a parity check matrix for the BCH code C.

9.5 Reed-Solomon codes
Definition 9.7 Let F be a field with q elements. A Reed-Solomon code is a BCH code of length
n = q−1 over F of minimal distance at least d whose generator has the form

g(x) =
`+d−2

∏
i=`

(x− γ
i)

for some `, where γ is a primitive element of F .

This is just a very special case of BCH codes, where the primitive nth root of unity already live in your
base field, and so their minimal polynomials are just linear.

Consider the following example.

� Example 9.8 Let p = 7. A primitive root of F7 is 3, since F7 = Z7 and the powers of 3 give all
nonzero elements of Z7. Thus γ = 3 has order exactly 6, which makes it a primitive 6th root of unity,
and so x6−1 = ∏

6
i=1(x− i). Note that 32 = 9 = 2. So

g(x) = (x−3)(x−2)

is a generator for a (6,4) cyclic code. Since its roots are two consecutive powers of a primitive 6th root
of unity, we deduce from the theorem that dmin > 2. Since g(x) = x2 +2x+6 has weight 3, we deduce
that dmin = 3, and this is a single-error-correcting code. �

Proposition 9.9 Reed-Solomon codes are MDS, that is, they satisfy the Singleton bound.

(The proof is left as an exercise.)

Where Reed-Solomon codes are handy is the following kind of example.

� Example 9.10 Let’s take F = F28 . So we can choose a linear basis for F over Z2 and thereby write
each element of F as a vector in Z8

2 (an isomorphism which preserves addition but has no idea about
multiplication in Z8

2). So we can think of each symbol in a codeword as being a byte, rather than a bit.

9.6 Decoding BCH codes: the theory 119

Now F has q = 28 = 256 elements, so we can create a Reed-Solomon (255,k) code C for any choice
of k, such that dmin = 255− k+1. A popular choice is (255,223), which has dmin = 33 so corrects 16
errors.

Each codeword in C is 255 bytes long (or 2048 bits). What the code corrects is 16 byte errors, not 16
bit errors. That is, it can correct errors or the form

• 1 bit error in 16 separate bytes, or
• 16 consecutive bytes completely trashed (“burst error”).

�

9.6 Decoding BCH codes: the theory

We know how to decode any linear code via syndrome decoding, but at the same time we realize that
our algorithm is most efficient in the case of single-error-correcting codes. Let’s outline a decoding
algorithm for BCH codes which, for sufficiently large n (say n> 25) is more efficient than any syndrome
table-lookup.

Setup: Suppose C is an (n,k) BCH code of designed distance d; then it is t-error-correcting where
t = b(d−1)/2c. Suppose that γ is a primitive nth root of unity and to make the indexing simpler, let’s
say that the largest string of consecutive roots of the generator polynomial g(x) is γ , γ2, · · · , γd−1, with
d ≥ 2t +1.

The approach of this decoding algorithm: Suppose we receive a vector v ∈ Zn
p, viewed as a

polynomial v(x) ∈ Zp[x]/〈xn−1〉. Then there is some c ∈C and an error polynomial e such that

v(x) = c(x)+ e(x).

If v is the result of r ≤ t errors, then we can write the error polynomial as

e(x) = e j1x j1 + · · ·+ e jr x
jr (9.2)

for r distinct exponents ji and unknown coefficients e ji . (If p = 2, then all these e ji = 1, and things are
a bit simpler!) This polynomial is not known; we need to find a way to solve for

• r,
• the r exponents, and
• the r nonzero coefficients.

What we have: Using H as in (9.1) (with ` = 1), and given that c ∈ C so that c(γ i) = 0 for all
1≤ i≤ d−1, the syndrome Si is

Si = v(γ i) = c(γ i)+ e(γ i) = e(γ i),

which we can calculate from the received vector v.

We have d− 1 syndromes, and by definition of error correction, d− 1 ≥ 2t. So we have at least 2t
equations, and 2r ≤ 2t unknowns; this looks good.

120 Chapter 9. BCH codes and Reed-Solomon Codes

The problem: nonlinearity. Our equations are nonlinear (in the variables for which we want to
solve)! A key rule of thumb is that all we can ever solve painlessly are linear equations.

To see they are nonlinear, it’s easier to write zi for γ ji , and yi for e ji , so that we have

S1 = y1z1 + · · ·+ yrzr (9.3)

S2 = y1z2
1 + · · ·+ yrz2

r

...
...

S2t = y1z2t
1 + · · ·+ yrz2t

r .

Note, however, that for any r consecutive equations we have a square linear system ~S = Vr~y, where
~S = (Sm, · · · ,Sm+r),~y = (y1, · · · ,yr) and Vr,m is the matrix

Vr,m =

zm

1 · · · zm
r

zm+1
1 · · · zm+1

r
...

...
zm+r

1 · · · zm+r
r

=Vr(z1, · · · ,zr)D(zm
1 , · · · ,zm

r) (9.4)

where Vr(z1, · · · ,zr) is a Vandermonde matrix and D(zm
1 , · · · ,zm

r) is a diagonal matrix with zm
i ’s along

the diagonal. By Proposition 9.1 we conclude that if the zi are distinct (and none are 0), this matrix has
nonzero determinant and so the system will have a unique solution for the yi.

But how do we find the zi?

The trick: the error locator polynomial The special (and surprising) trick is to define a new
polynomial, called the error locator polynomial s(x). (We don’t know what it is — we’ll have to solve
for its coefficients and guess its degree.) We define it by

s(x) = (1− xz1)(1− xz2) · · ·(1− xzr) (9.5)

so that it is a polynomial whose roots are exactly the inverses of the r distinct zi = γ ji that we’re trying
to find.

This polynomial has constant term 1, but we do not know the rest of the coefficients. Write

s(x) = 1+ s1x+ · · ·+ srxr

for r unknowns s1, · · · ,sr. We claim we can find these coefficients s j, as follows.

Observe that we have, for each i ∈ {1,2, · · · ,r} and j ∈ {1,2, · · · ,2t− r},

0 = s(z−1
i)

= yiz
j+r
i s(z−1

i) multiplying by a nonzero element

= yiz
j+r
i (1+ s1z−1

i + · · ·+ srz−r
i)

= yiz
j+r
i + s1yiz

j+r−1
i + · · ·+ sryiz

j
i .

9.6 Decoding BCH codes: the theory 121

Now, we sum over i to get

0 =
r

∑
i=1

(yiz
j+r
i + s1yiz

j+r−1
i + · · ·+ sryiz

j
i)

=
r

∑
i=1

yiz
j+r
i + s1

r

∑
i=1

yiz
j+r−1
i + · · ·+ sr

r

∑
i=1

yiz
j
i

= S j+r + s1S j+r−1 + · · ·+ srS j.

Notice that since j+ r ≤ 2t, these are all valid syndromes, for every j ∈ {1,2, · · · ,2t− r} : each of the
Sk are known values we have previously computed.

This gives us an inhomogeneous system of linear equations for the variables s1, · · · ,sr, which we can
write in matrix form as

S~s =

S1 S2 · · · Sr

S2 S3 · · · Sr+1
...

...
. . .

...
Sr Sr+1 · · · S2r−1

sr

sr−1
...

s1

=

−Sr+1
−Sr+2

...
−S2r

 . (9.6)

Proposition 9.11 Let D be a diagonal matrix with the values yizi along the diagonal. Then the
matrix S of (9.6) is given by

S =V DV T ,

where V =Vr(z1, · · · ,zr) is a Vandermonde matrix of size r.

Proof. From (9.3) and (9.4), we have that Sm
...

Sr+m

=V

y1zm
1

...
yrzm

r

 .
These are the various columns of the matrix S, as m goes from 1 to r. Factoring out the common factor
yizi from each row produces V T ; thus we have

S =V

y1z1 · · · y1zr
1

...
yrzr · · · yrzr

r

=V DV T ,

as required. �

It follows that if the zi are distinct, and the yi nonzero (i.e. if we guessed r correctly) then this system
has a unique solution. Conversely, it means that we should choose r to be the largest value ≤ t for
which S is an invertible matrix.

We can then solve the system (9.6), using any favourite method, to get the coefficients si, and conse-
quently, write down the error locator polynomial s(x).

122 Chapter 9. BCH codes and Reed-Solomon Codes

What does knowing the error locator polynomial give us? Given s(x), we first want to find
its roots. When the order of γ is not too large, we can find the roots by just plugging in powers of γ until
we find r different γ i such that s(γ i) = 0. More generally, there exist classic multi-purpose efficient
implementations of root-finding algorithms (for example, [Ber68, Ber70, CZ81]) and improving these
for various applications is an active area of research.

For each root you find, in the form γn−k, remember that its inverse γk is one of the zi = γ ji . Therefore
for each k such that γn−k is a root of s(x), k is one of the error positions ji. Therefore finding all the
roots of s(x) gives all the error positions.

If our field is not binary, then we need to find the yi = e ji , which are the coefficients of the error
polynomial e(x) in (9.2). To do so, note that (9.3) is now just a linear system in just the unknowns yi,
and so these values can again be found by linear algebra.

R We have given a decoding algorithm which involves solving a pair of linear systems of
size about t. The complexity of row reduction to solve such a system is in the order of t3.
For large t < n this is still vastly better than a table lookup of the pn−k syndromes; but in
fact even more efficient algorithms have been developed. In particular, a famous one by
Berlekamp and Massey, can be implemented with shift registers (which we have already
seen are very efficient).

We can summarize this as an algorithm (where we now allow g(x) to have any d−1 consecutive roots).

Algorithm 9.12 — BCH decoding. Given a BCH code C = 〈g(x)〉 of length n over a field F , where
g(x) = lcm{ma(x) | a ∈ {γ`+1,γ`+2, · · · ,γ`+d−1}} for some generator γ of an extension field E of F
that contains µn, and given a received vector v(x) ∈ F [x]/〈xn−1〉, we decode v(x) as follows:

1. Calculate the syndromes S1, · · · ,Sd−1 by evaluating

Si = v(γ`+i) ∈ E.

2. Choose the largest value of r ≤ t for which the matrix

S =

S1 S2 · · · Sr

S2 S3 · · · Sr+1
...

...
. . .

...
Sr Sr+1 · · · S2r−1

is invertible.

3. Solve for the unknowns s1, · · · ,sr in the equation

S

sr

sr−1
...

s1

=

−Sr+1
−Sr+2

...
−S2r

 .
4. Find the roots of s(x) = 1+ s1x1 + · · ·+ srxr in E.
5. Find the powers ji such that the roots of s(x) are γ− j1 ,γ− j2 , · · · ,γ− jr .

9.7 Decoding BCH codes: examples 123

6. Set zi = γ ji for each i. Now solve
z`+1

1 · · · z`+1
r

z`+2
1 · · · z`+2

r
...

...
z`+r

1 · · · z`+r
r

y1
y2
...

yr

=

S1
S2
· · ·
Sr

for the unknowns y1, · · · ,yr.

7. Set e(x) = y1x j1 + · · ·+ yrx jr .
8. Compute c(x) = v(x)− e(x).
9. Check that c(x) ∈C by evaluating it on the roots γ`+i for 1≤ i < d. If c(x) /∈C, then v(x) was

the result of more than t errors.

9.7 Decoding BCH codes: examples

Performing this algorithm by hand is quite torturous! Nevertheless, let’s look at a couple of examples,
and explore a few calculation tricks to bear in mind.

� Example 9.13 For example, let g(x) = 1+ x2 + x5 + x6 + x8 + x9 + x10 be a generator polynomial
for a (15,5) binary BCH code.

We begin by factoring g(x) = r(x)s(x)t(x), with notation as in Table 9.1, so the consecutive roots are
α9, · · · , α14, and we deduce that the designed distance is d = 6+1; since the weight of g(x) is 7 we
conclude that dmin = 7. Thus this code can correct up to 3 errors.

Suppose the word v = 101101011001001 is received, and let’s determine the correct word that was
sent, by solving for the error locator polynomial and finding its roots. Write

v(x) = 1+ x2 + x3 + x5 + x7 + x8 + x11 + x14.

Let’s copy the table describing F16 here for ease of reference.

mult. form add. form mult. form add. form
- 0 α7 1+α +α3

1 1 α8 1+α2

α α α9 α +α3

α2 α2 α10 1+α +α2

α3 α3 α11 α +α2 +α3

α4 1+α α12 1+α +α2 +α3

α5 α +α2 α13 1+α2 +α3

α6 α2 +α3 α14 1+α3

Table 9.2: Addition and multiplication in the field F16, defined by p(x) = x4 + x+1 over Z2.

124 Chapter 9. BCH codes and Reed-Solomon Codes

1. The first step is to calculate all the syndromes, which we can do using the 6×15 parity check matrix

H =

1 α9 α18 · · ·
1 α10 α20 · · ·
...

...
...

1 α14 α28 · · ·

=

1 α9 α3 · · ·
1 α10 α5 · · ·
...

...
...

1 α14 α13 · · ·

 .
Thus for example,

S1 = v(α9)

= 1+α
3 +α

12 +1+α
3 +α

12 +α
9 +α

6

= α
6 +α

9

= α +α
2

= α
5

where we have used that α15 = 1, that 2 = 0 in F16, and Table 9.2 to simplify the answer in the last
lines.

In practice, it is much easier to use the fact that if

v(x) = q(x)m(x)+ t(x)

where m(x) is the minimal polynomial of γ , then v(γ) = t(γ) — because the degree of t is much lower
than that of v, in practice.

The only minimal polynomials we need to worry about here are those occurring in the factorization of
g(x), and by performing long division we find that

v(x) = q1(x)r(x)+ x3 + x2 +1

v(x) = q2(x)s(x)+ x3 + x2 + x

v(x) = q3(x)t(x)+1.

So we further compute, with much less hassle, that

S2 = v(α10) = 1

S3 = v(α11) = α
13

S4 = v(α12) = α
10

S5 = v(α13) = 1+α
3 = α

14

S6 = v(α14) = 1+α +α
3 = α

7.

2. So we construct the matrix for the maximum number of errors, which is:α5 1 α13

1 α13 α10

α13 α10 α14

but this has determinant zero, meaning the system is overdetermined, which means we chose too high a
degree for our polynomial. So there are not 3 errors, but perhaps 2.

9.7 Decoding BCH codes: examples 125

3. Thus we take r = 2 and we want to solve (9.6), which is:[
α5 1
1 α13

][
s2
s1

]
=

[
α13

α10

]
.

Thus [
s2
s1

]
=

[
α5 1
1 α13

]−1[
α13

α10

]
=

[
1

α7

]
where we have used the formula for the inverse and spent some time simplifying.

4. Thus s1 = α7 and s2 = 1 so our error locator polynomial is

1+α
7x+ x2.

We find that α is a root; dividing by x−α yields x−α14 so the two roots are α and α14.

5. So z−1
1 = α14 and z−1

2 = α , which means z1 = α and z2 = α14. (Note that it was just luck that they
were inverses of one another.) Now zi = α ji so we have { j1, j2}= {1,14}.

6. Since our field is binary, we’re done (all the coefficients yi must be 1). We could check by multiplying[
z9

1 z9
2

z10
1 z10

2

][
1
1

]
=

[
α9 +α6

α10 +α5

]
=

[
α +α2

1

]
=

[
S1
S2

]
,

as required.

7. This says that our error polynomial is

e(x) = x+ x14.

8. The correct codeword is

c(x) = v(x)− e(x) = 1+ x+ x2 + x3 + x5 + x7 + x8 + x11.

9. We verify that r(x), s(x) and t(x) each divide evenly into c(x) with no remainder, which shows that
c vanishes on all the roots of r,s, t; in particular, c vanishes on α9 · · ·α14 and therefore lies in C. �

� Example 9.14 Let’s try a more straightforward example that is not binary, using a Reed-Solomon
(10,6) code over Z11.

We have Z×11 = {1,2,4,8,5,10,9,7,3,6}, where we have listed these elements as successive powers of
the generator 2 for convenience in what follows. Suppose we choose the Reed-Solomon code generated
by

g(x) = (x−2)(x−4)(x−8)(x−5);

since these correspond to the minimal polynomials of 4 consecutive roots, our designed distance is 5
and we can correct (at least) two errors.

Suppose our received codeword is 0480185310 which corresponds to

v(x) = 4x+8x2 + x4 +8x5 +5x6 +3x7 + x8.

126 Chapter 9. BCH codes and Reed-Solomon Codes

1. We evaluate (using a spreadsheet, for example) that

S1 = v(2) = 7

S2 = v(4) = 1

S3 = v(8) = 5

S4 = v(5) = 0

so our received vector is not a codeword.

2. Here, t = 2 and indeed the 2×2 matrix is invertible, so r = 2.

3. We solve [
S1 S2
S2 S3

][
s2
s1

]
=

[
−S3
−S4

]
using the matrix inverse[

s2
s1

]
=

[
7 1
1 5

]−1[−5
0

]
=

1
1

[
5 −1
−1 7

][
−5
0

]
=

[
8
5

]
.

4. Thus s(x) = 1+5x+8x2. We can use the quadratic formula to find its roots:

z−1
i =

−5±
√

25−32
16

=
6±
√

4
5

= 9(6±2) = 3,6.

5. We have 6 = 29 = 2−1 and 3 = 28 = 2−2 so j1 = 1 and j2 = 2.

6. Thus z1 = 2 and z2 = 4. Since here `= 0 we solve[
z1 z2
z2

1 z2
2

][
y1
y2

]
=

[
S1
S2

]
by using matrix inversion to get[

y1
y2

]
=

[
2 4
4 16

]−1[7
1

]
=

1
16

[
5 −4
−4 2

][
7
1

]
=

[
4
8

]
.

7. Thus e(x) = 4x1 +8x2.

8. This yields c(x) = v(x)− e(x) = x4 +8x5 +5x6 +3x7 + x8, which is actually x4g(x) so clearly in C.

This was a lot of work — but far less work than creating and searching through a table of syndromes as
in Section 5.3 (which would have |F |n−k = 114 = 14,641 rows).

�

9.8 Further topics of interest

BCH codes were classically used in several important networks, including:

9.9 Exercises 127

• European information communication systems, with a (255,231) BCH code which detects 6
errors;

• INTELSAT-V satellite communications, with a (128,112) code;
• cell phone circa 1997 used a BCH (48,36) code with dmin = 5.

Their value is in their abundance and ease of construction; for any given block size and error-correction
desired, within reason, you can construct such a code. Their algebraic structure also makes them ideal
for applications requiring families of codes that are scalable and whose characteristics and decoding
properties are provable (eg: cryptography).

One can purchase implementations of BCH codes, or find some on-line [MZ23]. They are inefficient
for small n, however, because there’s quite a bit of overhead to include the polynomial arithmetic and
field extensions.

While BCH codes have excellent error rates, they do not approach the Shannon channel capacity
bound (Section 3.2). The two most common codes in use that do approach this capacity bound are the
LDPC (low-density parity check) linear codes based on random graphs (discovered in 1960 but they
were impractical before modern computing power) and turbo codes (discovered in 1993), which use
probabilistic tools (like Bayesian inference) to decode, have excellent performance, and are very widely
used in applications.

Some related topics of interest, for those who want to delve deeper into codes, include:

• decoding algorithms, including particularly those due to Berlekamp, which exploit features of
polynomial arithmetic to be extremely efficient;

• codes for different uses than presented here: for data compression or cryptography;
• other algebraic codes (quadratic residue codes, Goppa codes, algebraic geometry codes);
• space-time codes (for multiple antenna / multiple receiver systems).

9.9 Exercises

1. Write down the elementary matrix A such that the elementary row operation “add c times row
(i) to row (j)" is given by left multiplication by A, that is: such that the result of doing this
elementary row operation on B produces the matrix AB. Show that det(A) = 1.

2. Write down the elementary matrix C such that the elementary row operation “multiply row (i) by
c ∈ F×" is given by left multiplication by C, that is: such that the result of doing this elementary
row operation on B produces the matrix CB. Show that det(A) = c.

3. Write down the elementary matrix P such that the elementary row operation “swap rows (i) and
(j)" is given by left multiplication by P, that is: such that the result of doing this elementary row
operation on B produces the matrix PB. Show that det(P) =−1.

4. Show that right multiplication of a matrix B by the matrices A, C and P of the previous exercises
performs the corresponding column operations on B.

5. Prove that if gcd(n, p) = 1 then there exists m ≥ 1 such that n|(pm− 1). Hint: Consider the
powers of p mod n.

6. Suppose F is a field of characteristic p. Prove that if p divides n, then xn−1 has repeated roots,
and in fact you cannot find any factors of xn− 1 which are not already factors of a xk− 1 for
some k < n.

7. Prove that the matrix H in (9.1) is a parity check matrix for C.

128 Chapter 9. BCH codes and Reed-Solomon Codes

8. Prove that over Z2, if α ∈ F2m is a root of an irreducible polynomial p(x), then so are α2, α4,
α8, · · · .

9. Prove that for any positive integers m and e≤ 2m−1−1, there is a binary BCH code of length
n = 2m−1 that is e-error-correcting and has dimension k ≥ n−me (that is, n− k ≤ me). Hint:
Working over F2m , use the preceding exercise to show that the maximum number of distinct
minimal polynomials you’ll need to construct such a code is e; show also that the degrees of
these minimal polynomials are bounded by m.

10. Prove that Reed-Solomon codes are MDS.
11. For the code in Example 9.14, decode

v(x) = 1+9x+4x2 +7x3 + x4 +7x5 +2x6.

12. For the code in Example 9.14, decode

v(x) = 2+5x+10x2 +6x3 +7x4 +3x5 +2x6 +4x7 +9x8 +3x9.

III Cryptography

The word “code” evokes two
essentially opposite ideas:

• increasing the clarity of
a message (so that the
recipient can decode it,
even when the message
is damaged in transmis-
sion)

• obfuscating a message
(so that none but the in-
tended recipient can de-
code it)

Both are key important prob-
lems in communications the-
ory, and we will study both
in this course. The first is
the domain of error-correcting
codes; the second is cryptog-
raphy .

10 Public-Key Cryptography 131
10.1 Perfect secrecy: the one-time pad 132
10.2 New directions in cryptography 133
10.3 Diffie–Hellman key exchange and the discrete log-

arithm . 134
10.4 The ElGamal public-key cryptosystem 135
10.5 Exercises . 136
10.6 Post-quantum cryptography 136

11 NTRU . 139
11.1 NTRU algorithm . 139
11.2 Analysis of NTRU . 142
11.3 The NTRU Lattice . 144
11.4 Conclusions . 145
11.5 Exercises . 145

12 Code-based cryptography 147
12.1 McEliece cryptosystem 147
12.2 Niederreiter cryptosystem 149
12.3 Classic McEliece . 151
12.4 Information set decoding 153
12.5 Attacking McEliece . 157

13 Cryptography from errors 159
13.1 Learning with Errors (LWE) 159
13.2 Crystals Kyber . 162
13.3 Exercises . 165
13.4 Final thoughts . 165

10. Public-Key Cryptography

We now turn to another aspect of communications — security. Once again, algebraic structures underlie
some of the most important algorithms in use today.

Suppose that Alice wants to send a secret message to Bob, but knows that Eve the eavesdropper may
intercept it. How can she encode the message so that Eve does not gain information about its content
but Bob can fully recover the message?

Alice

message m

ciphertext c

encryption
with key k

Bob

m

c

decryption
with key k

Insecure Channel

Eve

c?

Figure 10.1: Alice uses a secret shared key k to encrypt her message m as the ciphertext c. She
transmits it to Bob over an insecure channel, where it is intercepted by Eve. Bob, using k, is able to
decrypt c to recover m, but Eve cannot.

132 Chapter 10. Public-Key Cryptography

10.1 Perfect secrecy: the one-time pad

Claude Shannon proved, in a paper [Sha49] extending his theory of information to the question of
cryptography, that there is effectively only one way to achieve perfect secrecy : the one-time pad.

Fix a message length n. Alice and Bob agree in advance upon a secret key k that is chosen uniformly at
random from Zn

2. To encrypt a plaintext message m ∈ Zn
2, Alice computes the ciphertext

c = m+ k ∈ Zn
2.

She sends the vector c to Bob, who can decrypt it by adding the vector k:

c+ k = (m+ k)+ k = m+2k = m.

What information does Eve gain from knowing c? By Shannon’s theory of communcation: zero
information. Each bit of m has a 50% probability of having been changed, so knowing the output bit
does not reveal anything about the input bit.1

R This doesn’t mean Eve is necessarily thwarted: perhaps the timing of the communication
tells Eve all she needed to know, for example. The encryption algorithms we discuss
will always just be the first (and hopefully by far the most secure) layer of information
privacy.

There are a couple of downsides to the one-time pad:
(i) The secret key needs to be at least as long as the message; and

(ii) Alice and Bob need to secretly share k using some other means of communication.
Since perfect secrecy is possible only with a one-time pad, the next-best thing is to consider secrecy
under the realistic constraint of limited computing power. That is, instead of asking for it to be
impossible for Eve to determine the message, we ask that the probability that she can learn ε about m
(in the Shannon sense of information) is negligible (for example, a 1 in 240 chance with an investment
of 240 of computing time and space).

R To convey this accurately requires the tools of probability and complexity theory — neither
of which we assume in this course! Therefore, in this chapter, we restrict ourselves to
describing these notions at an intuitive level, using phrases like “efficient algorithm,"
“computationally infeasible" and “hard mathematical problem" — leaving our focus on
the algebraic tools involved.

So to resolve (i), we can use a smaller key k as input to an efficient symmetric cipher, like AES
(Advanced Encryption Standard). This is an algorithm that takes the key and a message of arbitrary
length as input, then expands the key to whatever length it needs and scrambles the message block by
block, using the key. It is computationally infeasible to recover the message without the key.2

1If Alice re-uses k to encrypt another message, then this no longer holds; hence the name “one-time pad".
2As of now, that is. The previous standard was called Data Encryption Standard (DES), developed in 1977, and which had

not sufficiently anticipated the acceleration of computing power of the following decades. While implementers used "triple
DES" as a patch, NIST (National Institute of Standards and Technology, USA) ran a call for a new standard at the end of the
century, choosing AES in 2001.

10.2 New directions in cryptography 133

But (ii) seems like a major obstacle: if all lines of communication between Alice and Bob are insecure,
surely they cannot exchange any secret information, let alone a secret key? Wasn’t this the whole point?
This is the setting for our mathematical discussion of cryptography.

10.2 New directions in cryptography

In 1976, Whit Diffie and Martin Hellman published a paper entitled “New directions in cryptography"
[DH76]. Like Shannon’s paper of 30 years earlier, it revolutionized the mathematical theory of
communication, this time laying the foundation for an entirely new approach to ensuring its privacy
and security: public key cryptography.3 Unlike Shannon, however, their initial paper did not contain a
solution to the central problem, but rather a challenge to the community to find one.

Alice

message m

ciphertext c

encryption
with pub-
lic key
kpub

Bob

m

c

decryption
with pri-
vate key
kpvt

kpub

Insecure Channel

Eve

c?

Figure 10.2: Bob generates a key pair (kpub,kpvt) such that anyone with kpub can encrypt a message
to him but only he, with access to kpvt , can decrypt it.

The concept of public-key cryptography is elegant, and modelled on the idea of a padlock: if you give
people open padlocks (kpub) such that only you have the key (kpvt), then anyone with a padlock can
securely send a message to you. This concept, now with numbers instead of padlocks, is illustrated in
Figure 10.2.

Thus the requirements for a public-key cryptosystem are:
(i) Bob should be able to generate a key pair (kpvt ,kpub), publish kpub and keep kpvt to himself alone;

(ii) There should be an efficient encryption algorithm E that takes the public key kpub and a message
m and produces as output a ciphertext c;

(iii) It should be computationally infeasible for Eve to either discover the private key or to find a

3In fact, Diffie and Hellman were not the first to discover this concept; James Ellis, working for the GCHQ (U.K.), was
the first in 1969, but his work was classified. Similarly, other researchers in GCHQ, Malcolm Williamson and Clifford Cocks,
discovered what we call the Diffie–Hellman key exchange algorithm and RSA cryptography, respectively.

134 Chapter 10. Public-Key Cryptography

preimage of the encryption function, even knowing kpub;
(iv) There should be an efficient decryption algorithm D that takes the private key kpvt and a ciphertext

c and outputs the original message m.
Part (ii) stipulates the existence of a function E; part (iii) stipulates that it is one-way in the sense that it
is efficient to compute but extremely difficult to invert; and part (iv) stipulates that E has a trapdoor, that
is, there exists additional information such that access to that information makes inverting it efficient.

Within two years, several such algorithms had been found, including RSA and the Diffie-Hellman
key exchange. RSA relies on the difficulty of factoring a number that is the product of two very large
primes, and it is not exaggerating to say that RSA is what enabled banking and commerce over the
internet (where all transmitted data is subject to eavesdropping!) and thus our society today. Until
around 2010, virtually every browser used RSA as the unassailable core of its cryptographic suite.4 We
won’t discuss RSA further; a good reference is [Nic12, §1.5].

10.3 Diffie–Hellman key exchange and the discrete logarithm

Let G be a cyclic group of order N, generated by an element g. That is,

G = 〈g〉 := {1,g,g2,g3, · · · ,gN−1 | gN = 1}.

Let x ∈ G; then it is equal to gr for some 0≤ r < N and we write

r = dlog(x).

The function dlog is called the discrete logarithm with respect to the generator g. It does depend on
the generator, so in cases where there could be ambiguity we’ll write dlogg, specifying the choice of
generator g.

� Example 10.1 The additive group ZN is cyclic, generated by 1. In additive notation, 〈1〉= {0,1,2 ·
1,3 ·1, · · · ,(N−1) ·1}= ZN . In this case dlog1(x) = x. �

� Example 10.2 The multiplicative group Z×13 is cyclic, generated by 2 because

Z×13 = {1,2,2
2 = 4,23 = 8,24 = 3,25 = 6,26 = 12,27 = 11,28 = 9,29 = 5,210 = 10,211 = 7}

and 212 = 1 since |Z×13| = 12, by Lagrange’s theorem. Thus for example dlog2(3) = 4, which we
compute by going through the list. �

Given a group G, and an element g ∈ G, then g generates a cyclic subgroup 〈g〉 ⊂ G. The discrete
logarithm problem is then: given x ∈ 〈g〉, find dlogg(x). If the group has a sufficiently interesting
structure, then this problem can be very hard — hard enough to call a one-way function!

Suppose G is a group such that the discrete logarithm problem is hard (for at least one choice of g).

The following algorithm allows Alice and Bob to calculate a secret value that Eve, limited by finite
computing power, cannot obtain, even if she intercepts every aspect of their communication. This was
developed by Ralph Merkle in response to the challenge posed by Diffie and Hellmann in their paper,
with G = Z×p for a sufficiently large prime p.

4This also made factorization a hot topic! So much progress was made in computing power and factorization algorithms
that now secure RSA requires very large key sizes, and industry has shifted to more efficient Elliptic Curve Cryptography.

10.4 The ElGamal public-key cryptosystem 135

Algorithm 10.3 — Diffie–Hellman Key Exchange.

• Alice and Bob agree in public on a group G and element g. Let N = |〈g〉|.
• Alice secretly chooses an integer a uniformly at random from [2,N−1] and computes A =

ga ∈ G. She publishes her answer A.
• Bob secretly chooses an integer b uniformly at random from [2,N−1] and computes B = gb ∈

G. He publishes his answer B.
• Now Alice and Bob can efficiently compute their shared secret key

k = gab.

Proof of correctness. Note that Alice knows B and a so can compute Ba = (gb)a = gba = gab = k. Bob
knows A and b so can compute Ab = (ga)b = gab = k. Note that this holds for any integers a,b ∈ Z;
therefore if the order N of g is not known, Alice and Bob can use N = |G| instead. �

The Diffie–Hellman assumption defining the security of this cryptographic algorithm is that Eve cannot
efficiently obtain k from knowledge of ga and gb. So for example the Diffie–Hellman assumption
does not hold for G = (Zn,+) (exercise). On the other hand, it is felt to hold for G = (F×q ,×), for q
sufficiently large so as to make calculating dlogg(A) or dlogg(B) computationally infeasible. We say
“felt to hold" because there is no proof that this is Eve’s ONLY option to try to get k!

R The resulting key is an element of G, but we assume there is a standard way to represent
elements of G as integers or as bitstrings (so that these computations can be carried out
on a computer). For example, this is relatively straightforward to do if G is a finite field
(exercise).

10.4 The ElGamal public-key cryptosystem

Now suppose we go a step further. In the Diffie–Hellman key exchange, Bob created a pair of keys: b,
his private key and B, his public key. He could publish this public key somewhere and everyone could
use it to send him messages that only he could decrypt. This idea first appeared in a paper by Taher
ElGamal [ElG85] in 1985.

Algorithm 10.4 — ElGamal public-key cryptosystem.

• Bob chooses a group G and an element g. Let N = |〈g〉|. Bob chooses a secret integer kpvt

uniformly at random from [2,N−1] and computes kpub = gkpvt ∈G. He publishes (G,g,N,kpub)
and keeps kpvt secret.

• When Alice wants to send a message to Bob, she uses the public information (G,g,N,kpub).
She first converts her message to an element m ∈ G, then chooses an ephemeral key a ∈ Z,
chosen uniformly at random from [2,N−1]. She then computes

A = ga,C = mka
pub.

She then destroys a. The pair (A,C), which she transmits to Bob, is the ciphertext.

136 Chapter 10. Public-Key Cryptography

• Upon receipt of (A,C), Bob recovers m as

m =C(Akpvt)−1.

Proof of correctness. First note that
K = Akpvt = gakpvt

is the secret key from Algorithm 10.3. Therefore since ka
pub = gakpvt , we have

CK−1 = (mka
pub)K

−1 = mKK−1 = m ∈ G,

as required. �

There, that was easy!

When specialized to the case that G is an elliptic curve over a finite field (usually F2k for some very
large k), this is the most common public-key cryptosystem in use for browsers; it is the core of the
standard protocol TLS 1.3.

10.5 Exercises

1. Prove that if Alice and Bob use a one-time pad to encrypt a message m ∈ Zn
2 then if their secret

k ∈ Zn
2 is chosen uniformly an random, every output ciphertext c ∈ Zn

2 is equally likely.
2. Prove that 2 is not a generator of Z×17 but that 3 is. Given that |Z×17|= 16, what are the minimum

number of calculations you need to make to prove these facts?
3. Suppose G = Z×11 and g = 7. Find dlogg(10).
4. Suppose G = Z×11 and g = 7. Use Algorithm 10.4 to encrypt m = 4, and verify its correct

decryption.

10.6 Post-quantum cryptography

Advances in number theory have brought down the complexity of integer factorization and the discrete
logarithm problem to subexponential levels; correspondingly, implementations of these algorithms use
larger and larger key sizes, so the systems remain secure.

The increasingly real threat is the quantum computer. In 1994, Peter Shor [Sho97] developed a quantum
algorithm to factor large integers, or solve the discrete logarithm problem, in polynomial time (that
is, very quickly). It depends on the existence of a sufficiently large quantum computer. While such
computers were the stuff of science fiction at the time, large-scale quantum computers are quickly
becoming reality, with IBM producing 433 qubit models in 2022.

Cryptosystems built on mathematical problems for which there is no known efficient algorithmic
(classical or quantum) solution are called “post-quantum," or PQC, reflecting their potential for use
in the quantum computing age. The testing and development of such algorithms was significantly
accelerated by the public Post-Quantum Standardization exercise initiated by NIST (National Institute

10.6 Post-quantum cryptography 137

of Standards and Technology, USA) launched in 2017, with three rounds of submissions and the first
selection of algorithms for standardization made in 2022 (and further rounds ongoing). The stakes
are high: to incorporate new PQC into the infrastructure of the internet requires years of planning and
coding, and there needs to be confidence that the new system is as secure as the old.

In this chapter, we present examples of PQC based on algebraic structures we have met in this course.

11. NTRU

NTRU (pronounced “en-true") was first proposed by Jeffrey Hoffstein, Jill Pipher and Joseph Silverman
in 1998 [HPS98]; a good reference is [HPS14, §6.10]. It is based on the same kinds of polynomial
rings as we used for cyclic codes.

11.1 NTRU algorithm

The core of the one-way trapdoor function is the following observation.

Lemma 11.1 Suppose 2 ≤ p < q are two relatively prime integers. Then the operations “mod
p" and “mod q" do not commute. More precisely: choose a set of representatives Sp ⊂ Z for the
equivalence classes Z/pZ; write πp : Zp→ Sp ⊂ Z for this map. Define Sq and πq similarly. Then,
leaving the maps Z→ Zp and Z→ Zq implicit, we have

πp ◦πq 6= πq ◦πp.

However, equality holds if Sp ⊂ Sq and we restrict to the domain Sq.

Proof. To see that πp(πq(N)) 6= πq(πp(N)) in general, apply this to any integer multiple k of q. Then
πq(kq) = πq(0), so the left sides are all equal. But as gcd(p,q) = 1, q is invertible mod p, so kq runs
over all classes in Z/pZ. That is, {πp(kq) | k ∈ Z}= Sp, a contradiction.

On the other hand, suppose Sp ⊂ Sq. If N ∈ Sq, then πq(N) = N, and similarly πp(N) ∈ Sp ⊂ Sq implies
πq(πp(N)) = πp(N), so the equality holds in this case. �

� Example 11.2 Take p = 2 and q = 101. Let Sp = {0,1} and Sq = {−50,−49,−48, · · · ,49,50}.
Then Sp ⊂ Sq so πq ◦πp = πp, which tells us if a number is even or odd. But since q is not even, it can
happen that the remainder mod q of a number N is not of the same parity as N itself. For example, if

140 Chapter 11. NTRU

we take N = 101 /∈ Sq, then πp(101) = 1 whereas πp(πq(N)) = πp(0) = 0. �

Let us now present the algorithm as it appeared in the original publication; we’ll spend the rest of the
section analysing it. We first explain how to choose the parameters (N, p,q,d) and set some notation.

• Let 2 < p < q be relatively prime integers; let

Sp = {0,±1,±2, · · · ,± p−1
2
} and Sq = {0,±1,±2, · · · ,±q−1

2
} (11.1)

be a fixed chosen set of representatives of the equivalence classes of Z/pZ and Z/qZ, respec-
tively.

• Choose a positive integer d such that (6d +1)p < q, and choose a prime N such that N > 3d.
• Let R = Z[x]/〈xN−1〉; this is an integer version of the ring we used for cyclic codes. We identify

R with the set of polynomials (with integer coefficients) of degree less than N, with multiplication
defined by xN = 1. In R, the coefficients are integers; we also define

Rp = Zp[x]/〈xN−1〉, Rq = Zq[x]/〈xN−1〉,

which are the kinds of rings we used for cyclic codes, if p and q are prime, for example. Note,
however, that we don’t require p and q to be prime (though we do require gcd(p,q) = 1), so the
coefficient rings of R, Rp or Rq are not necessarily fields.

• For a,b positive integers such that a+b≤ N, let T (a,b)⊂ R denote the set of polynomials that
have a coefficients equal to 1, b coefficients equal to −1, and the remaining coefficients 0. We
can think of these as elements of R,Rp or Rq.

� Example 11.3 As a toy example, we may take as in [HPS14, Example 6.53]:

N = 7, p = 3, q = 41, d = 2.

Then |Rq|= 417, |Rp|= 37 and |T (a,b)|=
(7

a

)(7−a
b

)
, when a+b≤ N. �

Algorithm 11.4 — NTRU cryptosystem: key generation. Choose (N, p,q,d) as above. Now
choose two polynomials

f (x) ∈ T (d +1,d), g ∈ T (d,d),

such that f (x) is invertible in both Rp and Rq, that is, such that there exists Fp(x)∈ Rp and Fq(x)∈ Rq

such that
Fp(x) f (x) = 1 ∈ Rp, Fq(x) f (x) = 1 ∈ Rq.

Set h(x) = Fq(x)g(x) ∈ Rq; this is Bob’s public key (together with (N, p,q,d)). Bob’s private key
is the pair (f (x),Fp(x)).

� Example 11.5 Continuing our example, we compute in this case |T (d,d)| =
(7

2

)(5
2

)
= 210 =

|T (d +1,d)|, so we have many choices. We could choose ([HPS14, Example 7.53])

f (x) = x6− x4 + x3 + x2−1 ∈ T (3,2),

and
g(x) = x6 + x4− x2− x ∈ T (2,2).

Using the extended Euclidean algorithm, we find that the inverse of f in Rq is

Fq(x) = 8x6 +26x5 +31x4 +21x3 +40x2 +2x+37 ∈ Rq,

11.1 NTRU algorithm 141

and that the inverse of f in Rp is

Fp(x) = x6 +2x5 + x3 + x2 + x+1 ∈ Rp.

We now compute the public key in the ring Rq:

h(x) = Fq(x)g(x) = 20x6 +40x5 +2x4 +38x3 +8x2 +26x+30 ∈ Rq

Note that the coefficients of Fq and h range over all of Zq even though f and g had only a few small
nonzero coefficients. �

Notice, however, that Fp(x) f (x) 6= 1 in Z[x] — but after you reduce mod x7−1 it will be a polynomial
whose reduction mod p = 3 is 1.

Algorithm 11.6 — NTRU cryptosystem: encryption and decryption. Given (N, p,q,d) and Bob
has published his public key h, we proceed as follows.

Encryption: Alice prepares her message as an element m(x) ∈ R with coefficients chosen only from
Sp. She then chooses r(x) ∈ T (d,d) at random (her ephemeral key) and computes the ciphertext

c(x) = pr(x)h(x)+m(x) ∈ Rq.

Decryption: If Bob receives a ciphertext c, he first computes

a(x) = f (x)c(x) ∈ Rq,

and then maps this to an element of πq(a(x)) ∈ R with coefficients in Sq. He recovers the message as

m′(x) = Fp(x)πq(a(x)) ∈ Rp.

Let’s continue our example before proving the correctness of this algorithm.

� Example 11.7 We continue with the example from [HPS14, Example 6.53]. Suppose Alice’s
message is

m(x) =−x5 + x3 + x2− x+1.

Choose the ephemeral key
r(x) = x6− x5 + x−1.

Then the ciphertext is

c(x) = ph(x)r(x)+m(x) mod q, mod xN−1

= 3h(x)r(x)+m(x) mod 41, mod x7−1

= 3(24x6−48x5 +56x4−68x3 +54x2−26x+8)+(−x5 + x3 + x2− x+1) mod 41

= 31x6 +19x5 +4x4 +2x3 +40x2 +3x+25 mod 41

which we note disguises the message m(x) since reducing c(x) mod 3 gives x6+x5+x4−x3+x2+1 6=
m(x). When Bob receives this message, he computes

a(x) = x6 +10x5 +33x4 +40x3 +40x2 + x+40 ∈ Rq

142 Chapter 11. NTRU

so
πq(a(x)) = x6 +10x5−8x4− x3− x2 + x−1 ∈ R.

Then he finds
Fp(x)πq(a(x)) = 2x5 + x3 + x2 +2x+1 ∈ Rp,

which after applying πp, is exactly the message we started with. �

Proof of correctness. We need to show that m′ = m. Since

c(x) = pr(x)h(x)+m(x) = pr(x)Fq(x)g(x)+m(x) ∈ Rq

we have

a(x) = f (x)c(x) = pr(x)(f (x)Fq(x))g(x)+ f (x)m(x) = pr(x)g(x)+ f (x)m(x) ∈ Rq.

Let us understand this product as an element of R. By construction, each of the polynomials r,g, f have
coefficients in {0,±1}, and those of m are in Sp. When we multiply the two polynomials r(x) = ∑rixi

and g = ∑gixi in R, the result is a convolution of the form

r(x)g(x) = ∑
i+ j≡0

rig j +

(
∑

i+ j≡1
rig j

)
x+ · · ·+

(
∑

i+ j≡N−1
rig j

)
xN−1,

where we interpret the sums as being over the set of all pairs of indices (i, j) such that i+ j ≡ k mod N,
since xN+k = xk.

Thus the maximum possible value of any coefficient is 2d (in absolute value). Similarly, the maxi-
mum possible value of any coefficient of f (x)m(x) is bounded by (2d +1)p/2. Thus altogether, the
coefficients of pr(x)g(x)+ f (x)m(x) are, in absolute value, less than

p(2d)+(2d +1)p/2 = (3d +
1
2
)p <

q−1
2

.

That is, πq(a(x)) = pr(x)g(x)+ f (x)m(x) as computed in R. Therefore we compute

m′(x) = Fp(x)πq(a(x)) ∈ Rp

= p(Fp(x)r(x)g(x))+(Fp(x) f (x))m(x) ∈ Rp

= 0+1m(x) ∈ Rp

= m(x)

as required. �

11.2 Analysis of NTRU

Complexity, briefly: NTRU encryption and decryption are quite fast. Calculating products of polyno-
mials with only 2d nonzero coefficients, and those equal to ±1, amounts to n sums of 2d elements of
bitsize log(q). Calculating the coefficients mod q is also fast; the overall complexity is O(n2).

Security: There are two separate but closely related issues to consider:

11.2 Analysis of NTRU 143

• How difficult is it to extract the private keys?
• How difficult is it to extract the message?

We’ll focus here on the key extraction problem; if one can solve this then one can certainly extract the
message.

Our first observation is that the key is not unique.

Lemma 11.8 Let f ′(x) ∈ R be invertible in Rp and set g′(x) = πq(f ′(x)h(x)) ∈ R. If both f ′ and g′

satisfy that all coefficients of
pg′(x)φ(x)+ f ′(x)m(x)

lie in the range −q/2 to q/2, then the decryption of m(x) will succeed with f ′(x) in place of f (x).

Proof. We compute the decryption steps with f ′(x); this gives

a(x) = f ′(x)c(x) = pr(x) f ′(x)h(x)+ f ′(x)m(x) = pr(x)g′(x)+ f ′(x)m(x) ∈ R.

By hypothesis, this is in the image of πq. Compute F ′p(x) as the inverse of f ′(x) mod p; then

F ′p(x)a(x) = pF ′p(x)r(x)g
′(x)+F ′p(x) f ′(x)m(x)≡ m(x) mod p,

as required. �

Note that finding a suitable f (x) is all that is needed to complete both steps of the decryption algorithm.

� Example 11.9 If fi(x) = xi f (x) ∈ R for some i > 0, then setting gi(x) = xig(x), it follows that

(Fi)q(x)gi(x) = (xi f (x))−1(xig(x)) = h(x) mod q,

so fi(x)h(x) ≡ g(x) ∈ Rq. Since all the coefficients of a(x) are the same as if we’d used (f ,g), they
meet the hypothesis of the lemma, so (f ′,g′) is an alternate key pair. �

More generally, suppose θ(x) is any polynomial; then f ′(x) = θ(x) f (x) satisfies

f ′(x)h(x) = θ(x) f (x)?h(x) = θ(x)g(x) mod q.

Thus, to find an alternate key, one might hope to find a sparse polynomial θ(x) so that θ(x) f (x) and
θ(x)g(x) still have small coefficients, in which case (θ f ,θg) is another alternate key.

R If we just pick a small polynomial f ′(x) at random and compute f ′(x)h(x) ∈ Rq to get
g′(x), it is highly unlikely that our resulting polynomial g′(x) will have all coefficients
very small (relative to p). (And without knowledge of f (x), that would be our only tactic
towards finding a small θ ′(x).)

So: we need to find polynomials f (x),g(x) with small coefficients such that f (x)h(x) = g(x) ∈ Rq. The
strongest attacks to NTRU come from turning this into a shortest vector problem in a lattice.

144 Chapter 11. NTRU

11.3 The NTRU Lattice

A lattice is a free Z-module, that is, it is the Z-span of some vectors. If those vectors lie in Rm or Zm

then we say it is of full rank if n = m. For example, if {v1,v2,v3} is a basis for R3 then

L = {av1 +bv2 + cv3 | a,b,c ∈ Z}

is a lattice in R3; it looks like a regularly-spaced set of points, 8 of which are the corners of a
parallelepiped. In this chapter, we discuss lattices in Zn; that is, we only consider bases such that all of
the coefficients of the vectors in the basis are integers.

Definition 11.10 — Shortest vector problem. Let L⊂Zn be a full rank lattice. The shortest vector
problem is to find a nonzero vector v ∈ L such that ‖v‖ ≤ ‖w‖ for all w ∈ L\{0}.

For a 2-dimensional lattice, this is quite easy: do Gram-Schmidt orthogonalization on a basis, rounding
off your non-integer scalar factors. But as the dimension of the lattice increases, this becomes
progressively more difficult. Algorithms that attempt to find a shortest vector, or even just a vector of
length “fairly close" to a shortest vector, are called lattice reduction algorithms, like LLL and BKZ.
For N large and an arbitrary lattice, the SVP is solvable with these only in exponential time.

So how does this relate to NTRU? We first note that if we write a polynomial

r(x) = r0 + r1x+ · · ·+ rn−1xn−1 ∈ R

as a vector
r = [r0 r1 · · · rn−1]

then for any other polynomial s(x) ∈ R, the product r(x)s(x) is the matrix product rS where

S =

s0 s1 · · · sn−1

sn−1 s0 · · · sn−2
...

...
...

s1 s2 · · · s0

 .

Let h(x) be an NTRU public key and write H for its corresponding matrix as above. Then f H = g
mod q. That is, f H = g+qu for some polynomial u(x) ∈ R.

We wish to define a lattice whose vectors are such pairs (f ,g) (viewed as vectors in 2N-space), as
we’ve established that any suitable short vectors like this will do.

Lemma 11.11 Define

Mh :=
[

IN H
0 qIN

]
where IN in the N×N identity matrix. The rows of this matrix are a basis for the NTRU lattice
corresponding to h(x). That is, for any f ,u ∈ ZN , we have

[f u]Mh = [f g]

11.4 Conclusions 145

where the pair (f ,g) satisfies f (x)h(x)≡ g(x) ∈ Rq.

Proof. We calculate:

[f u]Mh = [f u]
[

IN H
0 qIN

]
= [f IN +0 f H +quIN] = [f g]

where
f H +qu = g⇔ f (x)h(x) = g(x) ∈ Rq.

In particular, since [f u] is an integer vector, [f g] is an integer vector in the integer span of the rows
of Mh. So the rows of Mh span an integral lattice whose short vectors are potential keys for the
corresponding NTRU system. �

Hence: if a lattice reduction algorithm successfully produces a short vector in the NTRU lattice, then
that instance of the NTRU cryptosystem is compromised.

11.4 Conclusions

NTRU has undergone many transformations since its original definition but the ideas at its core remain
the same. It continues to be considered a promising and viable cryptographic system, with security
related to either the shortest vector problem, or the newer “Ring Learning with Errors" (R-LWE)
problem proposed in the 2000s. While NTRU did make it to the 3rd round of submissions for NIST
PQC process, it was, however, not selected for standardization by NIST in 2022.

11.5 Exercises

1. Prove that if f ,g ∈ Rq then to compute f g ∈ Rq we may choose any representatives f ′,g′ ∈ Z[x],
compute the product f ′(x)g′(x) ∈ Z[x], and then either first reduce modulo 〈xN − 1〉 and then
modulo q, or first reduce the coefficients mod q and then reduce the result modulo 〈xN−1〉 in
the ring Zq[x]/〈xN−1〉. That is, the following diagram commutes:

Z[x] Zq[x]

Z[x]/〈xN−1〉 Zq[x]/〈xN−1〉.

mod q

mod xN−1 mod xN−1

mod q

2. In the setting of the example, verify that f (x)Fp(x) 6= 1 in R but does reduce to 1 in Rp.
3. In the encryption algorithm, the ciphertext is c(x) = pr(x)h(x)+m(x) in Rq. Why can’t Eve

simply reduce c mod p to recover m? Consider the example.
4. Prove that if f ∈ T (d,d) then f cannot be invertible in Rq. Hint: what is f (1)?
5. [HPS14, Exercise 6.27] With parameters N = 7, p = 2 and q = 37 (so Sp = {0,1} and we use

binary instead of trinary coefficients), suppose Bob’s private key is f (x) = x+ x3 + x6.
(i) Compute F2(x), the inverse of f (x) mod 2, using long division and the extended Euclidean

algorithm.
(ii) Suppose Bob receives the ciphertext c(x) = 1+3x+3x2 +4x3 +4x4 +x5 +35x6. Decipher

the message and find the plaintext.

12. Code-based cryptography

In 1978, Robert McEliece proposes a cryptosystem based on error-correcting codes [McE78]. The
one-way trapdoor function at its core is the realization that efficient decoding algorithms for algebraic
codes (like BCH, for example) depend on knowing its full structure; but that one can communicate a
code by choosing a random basis for it without revealing this structure.

This cryptosystem was not widely adopted because of its (at the time) prohibitively large key sizes. It
has withstood some 40 years of scrutiny with very few corrections required, and so is now emerging as
a very strong PQC contender.

12.1 McEliece cryptosystem

The error-correcting codes used in McEliece are Goppa codes, which derive their structure from
algebraic geometry. (The structural data for Goppa codes also uses polynomials and field extensions; a
Goppa code is defined by Γ = {g;α1, · · · ,αn} where g is a polynomial in Fq (with q = 2m) and αi ∈ Fq

but are specifically NOT roots of g.) Variants in the literature use certain subcodes of BCH codes, but
the cyclic nature of BCH codes has been an exploitable weakness. We will nonetheless consider them
as a toy example to understand this cryptosystem.

Suppose that C is an (n,k) BCH code over Fq of designed distance d, based on a choice of d− 1
consecutive powers of a primitive nth root of unity, say γ`+1,γ`+2, · · · ,γ`+d−1, the least common
multiple of whose minimal polynomials over Fq is a polynomial g(x) ∈ Fq[x] of degree n− k.

Recall that we can construct a generator matrix G for C = 〈g(x)〉 by using cyclic shifts of g(x) as
its columns; therefore if you know G then you know g(x) and can find the consecutive powers of a
primitive nth root of unity γ ′ that are its roots — and thus use the efficient decoding algorithm of
Section 9.6. Ergo: the first step is to disguise G.

148 Chapter 12. Code-based cryptography

Algorithm 12.1 — McEliece cryptosystem: key generation. Bob chooses a linear (n,k) code
over Fq that corrects t errors, with an efficient decoding algorithm D : Fn

q→ Fk
q and corresponding

generator matrix G. He then chooses, uniformly at random:

• an invertible k× k matrix S with entries in Fq; and
• a permutation σ ∈Sn with n×n matrix P = Pσ .

He computes Ĝ = PGS; this, together with (n,k, t,q), is his public key. The tuple (P,G,S,D) is his
private key.

McEliece proposed parameters (n,k, t,q)∼ (1024,524,50,2) in 1978; the NIST proposal parameters
include options like the mceliece460896 : (4608,3360,96,213).

Lemma 12.2 The matrix Ĝ is a generator matrix for a code equivalent to G that corrects the same
number of errors.

Proof. Let C be the code generator by G and Ĉ the subspace generated by Ĝ, which is thus a code.
Since S and P are invertible, it will again be an (n,k) code. Moreover, we have

Ĉ = {Ĝx | x ∈ Fk
q}

= {PGSx | x ∈ Fk
q}

= {PGy | y ∈ Fk
q} since S is invertible

= {Pc | c ∈C}

so Ĉ is the permutation P applied of C, meaning they are equivalent codes.

Since the codes are equivalent, they have the same value of dmin(C), and therefore correct the same
number of errors. �

The matrix S is often called a scrambler matrix for the role it plays in disguising the (highly structured)
matrix G.

Algorithm 12.3 — McEliece cryptosystem: encryption. Alice wants to send a message m ∈ Fk
q

to Bob. She chooses a random “error vector" z ∈ Fn
q of Hamming weight exactly t, and computes her

ciphertext as
x = Ĝm+ z.

Eve, upon intercepting this message, needs to try to decode x to a nearest codeword c. If she finds c,
then she can row reduce Ĝm = c to find the message m. Note that it is equally difficult to find c as to
find z, so we sometimes say we are looking for the random error vector z. It is infeasible for Eve to use
syndrome decoding; the number of syndromes is astronomical (exercise).

Bob, however, knows an efficient decoding algorithm, so has better options.

Algorithm 12.4 — McEliece cryptosystem: decryption. Suppose Bob receives a ciphertext x.
Then he decodes x as follows:

12.2 Niederreiter cryptosystem 149

1. Compute x′ = P−1x
2. Decode m′ = D(x′); then Gm′ = x′.
3. Compute m = S−1m′.

Lemma 12.5 If x = Ĝm+ z is a valid ciphertext, then Bob’s decoding algorithm decodes to the
message m.

Proof. Note that the ciphertext can be thought of as the result of a transmission over a noisy channel in
which precisly t errors occured. If x = Ĝm+ z, then

x′ = P−1x = P−1(PGS)m+P−1z = G(Sm)+P−1z.

Since P is a permutation, wt(P−1z) = wt(z) = t, so Bob’s decoding algorithm can correct this error and
will return the codeword GSm or, equivalently, the “message" m′= Sm∈ Fk

q. Thus S−1m′= S−1Sm=m,
as required. �

The security of the McEliece cryptosystem has remained relatively constant since inception, with
essentially no significant weaknesses found. Moreover, the best known attack (classical or quantum)
uses a technique called information set decoding, the major cost of which is a search. A quantum
search algorithm due to Lov Kumar Grover in 1996 reduces the complexity of the search on a list of
n terms by a square root, so the rule of thumb is to double the key size to achieve the same level of
security against attack.

A downside to the McEliece cryptosystem are the key sizes.

� Example 12.6 Suppose n = 4608, k = 3360, t = 96 and q = 213. The public key is a n× k matrix
over Fq, so requires

n× k× log2(q) = 4608×3360×13 bits≈ 24 Mbytes.

This is a bit extreme, even by today’s generous standards! �

So let’s consider some more efficient variants, the ones that were used in the NIST submission.

12.2 Niederreiter cryptosystem

Harald Niederreiter proposed a variant of McEliece in 1986, based on parity check matrices rather
than generator matrices. Since a code C with generator matrix G and parity check matrix H can be
recovered as either C = {Gx | x ∈ Fk} or C = ker(H), these two notions are equivalent in terms of the
information they convey about the code. Moreover, when computing the syndrome is the key step of
the decoding algorithm, it is not necessary to retain the received word at all!

This is true, for example, of BCH codes: the first step was to compute the syndrome relative to a certain
parity check matrix, and the entries of this vector (called the syndromes Si in that algorithm) were the
only features of the received word that we used until the final step.

150 Chapter 12. Code-based cryptography

R The parity check matrix H that reveals the efficient decoding algorithm for BCH codes,
given in 9.1, has entries in some extension field E of F of degree `. If you write each
element of E as a vector with components in F, then replace each entry of the matrix
H with its corresponding vector, then the resulting matrix has entries in F and has size
(d−1)`×n. In the following, we’ll assume it’s actually (n− k)×n; for the true Goppa
codes this can be arranged.

Algorithm 12.7 — Niederreiter variant: key generation. Bob chooses a linear (n,k) code over Fq

that corrects t errors, with an efficient syndrome decoding algorithm and corresponding parity check
matrix H. He then chooses, uniformly at random:

• an invertible (n− k)× (n− k) matrix S with entries in Fq; and
• a permutation σ ∈Sn with n×n matrix P.

He computes Ĥ = SHP; this, together with (n,k, t,q), is his public key. The triple (P,H,S) (and
corresponding syndrome decoding algorithm) is his private key.

As before, one can show that the code Ĉ = ker(Ĥ) is equivalent to C, so corrects t errors.

Algorithm 12.8 — Niederreiter variant: encryption. Alice wants to send a message to Bob. She
first converts her message to a vector m ∈ Fn

q of weight exactly t, and then computes her ciphertext as

y = Ĥm.

In other words, instead of sending her message as a codeword disguised by an error, she turns it into
the error, and simply sends the syndrome.

Algorithm 12.9 — Niederreiter variant: decryption. Suppose Bob receives a ciphertext y. He
decodes y as follows:

1. Compute y′ = S−1y.
2. Use syndrome decoding relative to H to find the error m′.
3. Compute m = P−1m′.

Let us first ensure that this works.

Lemma 12.10 If y = Ĥm is a valid ciphertext, then Bob’s decoding algorithm decodes to the
message m.

Proof. We have y′ = S−1Ĥm = S−1(SHP)m = H(Pm). Since P is a permutation matrix, the weight of
Pm is equal to that of m, which is t. Thus syndrome decoding recovers m′ = Pm from H(Pm), and Bob
recovers m = P−1m′ = P−1Pm = m. �

What options does Eve have, upon intercepting a ciphertext y? She can set up a table of syndromes,
hoping to identify which error gave rise to the syndrome y, but this work is astronomical (see the
exercises). In fact, if Eve found some new way to recover m from y, then she could apply this technique
to the original McEliece cryptosystem to recover z and hence the message — so the Niederreither
variant is no weaker than the original. The advantage it offers is improved key size.

12.3 Classic McEliece 151

� Example 12.11 Suppose n = 4608, k = 3360, t = 96 and q = 213. The public key is a (n− k)×n
matrix over Fq, so requires

(n− k)×n× log2(q) = 1248×4608×13 bits≈ 9 Mbytes.

Well, that’s still huge, but somewhat better. �

That said, the ciphertexts themselves are short and thus easy to transmit.

� Example 12.12 Suppose n = 4608, k = 3360, t = 96 and q = 213. A ciphertext is a vector in Fn
q, so

has size
log2(q

n−k) = 1248×13 bits≈ 200 bytes.

�

12.3 Classic McEliece

The submission to NIST continues the trend to great efficiency.

For example, upon sober second thought: what was the point of the matrix S? It is to scramble the
matrix H so that we can’t infer the nice form that reveals the algebraic structure of the code. A different
way to achieve the same end is to row reduce Ĥ to its RREF R!

Lemma 12.13 The matrix R is another parity check matrix for Ĉ. We can obtain the syndrome Rm
from Ĥm and for fixed P and every scrambler matrix S we obtain the same matrix R.

Proof. Recall that row reducing a matrix Ĥ is the process of multiplying it on the left by various
invertible matrices; therefore R = S′Ĥ for some invertible matrix S′. Given Ĥ and y = Ĥm, first row
reduce Ĥ to find S′, and then compute Rm as Rm = S′y. On the other hand, for every invertible S, the
matrix SHP will have the same RREF R. �

In other words: we lose nothing by omitting S and instead letting row reduction do the scrambling. In
practice, Classic McEliece (which is, despite its name, based on the Niederreiter variant) takes this one
step further, and omits the permutation matrix P as well (though it offers parameters sets with some
permutations); thus the security relies entirely on the decoding problem and the private key is smaller.
Again, it is based exclusively on binary Goppa codes but we state it more generally.

Algorithm 12.14 — Classic McEliece: key generation. Bob chooses a linear (n,k) code C over
F2 that corrects t errors, with an efficient syndrome decoding algorithm and corresponding parity
check matrix H, such that the RREF of H is of the form Ĥ = [In−k|T] where T has size (n− k)× k.
Then T , together with (n,k, t,2), is his public key, and H, together with his syndrome decoding
algorithm, is his private key.

Note that Bob’s private key is significantly smaller; in fact, he needn’t store the matrix H as he can
generate it from the data he needs for his efficient decoding algorithm. The public key is also marginally
smaller, since we only need to communicate the matrix T .

152 Chapter 12. Code-based cryptography

� Example 12.15 Suppose n = 4608, k = 3360, t = 96 and q = 213. The public key T is a (n− k)× k
matrix over Fq (which is a 13(n− k)× k matrix over F2), so requires

(n− k)× k× log2(q) = 1248×1248×13 bits≈ 2.5 Mbytes.

�

Note that Alice can reconstruct Ĥ from the public key T and so encryption is unchanged from the
Niederreiter variant Algorithm 12.8.

Algorithm 12.16 — Classic McEliece: encryption. To send a message to Bob, Alice converts it to
a vector m ∈ Fn

q of weight exactly t (algorithm provided). She sets Ĥ = [In−k|T] and computes her
ciphertext as

y = Ĥm.

For decryption, however, Bob can exploit the nature of Ĥ in a surprising way.

Algorithm 12.17 — Classic McEliece: decryption. Suppose Bob receives a ciphertext y. He
decodes y as follows:

1. Append k zeros to y to create x = (y,0, · · · ,0) ∈ Fn
q.

2. Decode to find the closest codeword c to x.
3. Set e = x+ c and verify that wt(e) = t and He = Hx.
4. Deduce m = e.

This algorithm seems very strange. Let’s prove it works.

Lemma 12.18 If Bob receives a valid ciphertext y that is the output of the encryption algorithm
with some input m, then his decryption algorithm outputs m.

Proof. Suppose y = Ĥm where Ĥ = [In−k|T] and m has weight exactly t. Then since x = (y,0, · · · ,0)
has all nonzero entries in the first n− k coordinates, we have

Ĥx = [In−k|T]
[

y
0

]
= y+0 = y = Ĥm.

Therefore x and m have the same syndrome with respect to Ĥ, which means x−m ∈C. Therefore they
also have the same syndrome with respect to the secret parity check matrix H.

Therefore Bob may apply his decoding algorithm to the received word x to find a codeword c ∈C and
an error vector e ∈ Fn

2 such that
x = c+ e.

Then e = x+ c since we are working over a field of characteristic 2. If wt(e) = t and He = Hx then,
since C can correct t errors, we know this is the unique solution (or coset leader), and thus must be
equal to m. �

In practice, one also takes care in these algorithms to specify what to do if a step fails (as would happen
if there were noise on the line, but also if Eve were trying something nefarious).

12.4 Information set decoding 153

Even though the operations for encryption and decryption are very efficient (and much simpler than
for existing public key cryptosystems), its public key is quite large, and this system was not chosen by
NIST for standardization in 2022. It remains a very respected system, with over 40 years of scrutiny
and no structural flaws found (when implemented with binary Goppa codes!).

Let’s next examine some examples and the main method of attack.

12.4 Information set decoding

Let’s consider the original McEliece cryptosystem. We’re given a random-looking n× k matrix G and
x ∈ Fn and trying to find m ∈ Fk and a vector e ∈ Fn of Hamming weight at most t so that the linear
system

Gm = x− e

is consistent, meaning that x− e ∈C.

To get a feel for this, let’s consider an example.

� Example 12.19 Suppose that e is nonzero only in its first and ith coordinates; then in matrix form
this system looks like

g1,1 g1,2 . . . g1,k
g2,1 g2,2 . . . g2,k

...
...

...
...

gi,1 gi,2 . . . gi,k
gi+1,1 gi+1,2 . . . gi+1,k
gi+2,1 gi+2,2 . . . gi+2,k

...
...

...
...

gn−1,1 gn−1,2 . . . gn−1,k
gn,1 gn,2 . . . gn,k

m1
m2
...

mk

=

x1
x2
...
xi

xi+1
xi+2

...
xn−1
xn

−

1
0
...
1
0
0
...
0
0

.

So: If we just removed the first and ith rows of both G and x, then the new linear system G′m = x′−e′ =
x′ would be consistent (and easy to solve!).

The problem: we don’t know beforehand which rows we need to remove... �

This example is in fact our plan of attack. Let’s set some notation.

Definition 12.20 Let G be an n× k generator matrix for a code C and x ∈ Fn. For any subset
S⊂ {1,2, · · · ,n}, let GS denote the |S|× k matrix obtained from G by taking just the rows indexed
by elements that are in S, and similary let xS ∈ F |S| be the vector

xS = (xi1 ,xi2 , · · · ,xi|S|) where S = {i1, · · · , i|S|} and i1 < i2 < · · ·< i|S|.

If GS is invertible then this set S is called an information set.

Let ΩS be the matrix obtained from the n×n identity matrix In by keeping only those rows corresponding
to S. Then GS = ΩSG and xS = ΩSx. If S = {i1, i2, · · · , i|S|} and i1 < i2 < · · ·< i|S| then we can define

154 Chapter 12. Code-based cryptography

ΩS explicitly as the |S|×n matrix with entries

(ΩS)k,` =

{
1 if `= ik;
0 otherwise.

� Example 12.21 Consider n = 5 and S = {1,2,4}. Then

ΩS =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 .
Thus for example if x is a vector abcde we have

ΩS

a
b
c
d
e

=

a
b
d

= xS.

�

The following algorithm is due to Eugene Prange [Pra62].

Algorithm 12.22 — Information Set Decoding. Let C be an (n,k) code that corrects t errors. Given
a received word x ∈ Fn that is the result of at most t errors, we find the closest codeword c to x as
follows:

1. Choose a random subset S⊂ {1,2, · · · ,n} of size k.
2. If GS is invertible, then

(a) set e = x−GG−1
S xS; and

(b) if wt(e)≤ t, then stop and return e;
3. Return to Step 1 (that is, if you did not find an answer at Step 2(b).)

That is, one keeps choosing size-k information sets until one finds the answer.

Note that although Step 2(a) is phrased with G−1
S , it is in fact equivalent to solving GSu = xS and then

computing Gu, which can usually be done much more efficiently.

Let’s do an example to illustrate the steps before proving that it always works.

� Example 12.23 Consider the binary Hamming code C (see Section 5.5) with parity check and
generator matrices

H =

1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1

 , and G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 1 1 0
1 0 1 1

.

12.4 Information set decoding 155

We know that C corrects one error, so set t = 1. We have k = 4. Suppose we receive x = 1010010.
Since Hx = 110 6= 0 we know there was an error. Remembering syndrome decoding for Hamming
codes, we know exactly where that error is — but let’s forget that and instead apply information set
decoding.

First choose S = {1,2,3,4}. Then GS = I4, which is certainly invertible, so we compute

e = x−GG−1
S xS = x−GI4xS = x−G

1
0
1
0

= 1010010−1010100 = 0000110.

Since wt(e)> t, this fails and we try again.

Now choose S = {4,5,6,7}. Then we have

GS =

0 0 0 1
1 1 0 1
1 1 1 0
1 0 1 1

 .
We could decide if it is invertible by calculating its determinant, but since our next step is to solve
u = G−1

S xS anyway, we can just row reduce to solve GSu = xS— and if it turns out GS is not invertible,
we just stop. Thus

[GS|xS] =

0 0 0 1 | 0
1 1 0 1 | 0
1 1 1 0 | 1
1 0 1 1 | 0

∼

1 0 0 0 | 1
0 1 0 0 | 1
0 0 1 0 | 1
0 0 0 1 | 0

which shows both that GS was invertible (was this an accident? see Lemma 12.24, below) and that
G−1

S xS = u = 1110. We compute

e = x−Gu = 1010010−1110010 = 0100000,

which indeed has weight wt(e) ≤ t. Therefore this is was the error vector (as expected) and our
codeword was 1110010 and our message was 1110. �

Now let us show that the information set decoding algorithm always terminates, and always on a correct
solution. We do this as a sequence of lemmas.

Lemma 12.24 If Algorithm 12.22 terminates and outputs e, then e ∈ Fn and x− e is the closest
codeword in C to x. That is, the algorithm will never produce an incorrect answer.

Proof. First note that G is of size n× k, GS is of size k× k, and xS ∈ Fk, so if GS is invertible then the
product GG−1

S xS is well-defined and thus e ∈ Fn.

Suppose e = x−GG−1
S xS is a vector of weight at most t. Set m = G−1

S xS ∈ Fk; then c = Gm ∈C by
definition, and since wt(x− c)≤ t, and C is t-error-correcting, we conclude that c = GG−1

S xS is indeed
the closest codeword to x. �

156 Chapter 12. Code-based cryptography

In particular, this proof showed us that if S is an information set such that (b) holds, then the closest
codeword will be

c = GG−1
S xS ∈C.

Moreover, since G is an injective map from Fk to Fn, it means that when S is successful, we have

m = G−1
S xS.

This is part of a more general observation: given any information set S of size k, if Gm = c then
m = G−1

S cS. That is, this is one way to find m once you know c; you don’t need to row reduce the entire
overdetermined linear system to solve for m.

� Example 12.25 Suppose G is in standard form

G =

[
Ik
A

]
,

and S = {1,2, · · · ,k}. Then GS = Ik is invertible, so S is an information set for a systematic code. In
this case,

c = GG−1
S xS = GxS =

[
xS

AxS

]
,

which will be the correct codeword if and only if xS = m. �

Let’s now understand the conditions in Step 2, towards deciding if this algorithm will actually always
terminate.

Lemma 12.26 Let C be a linear (n,k) code with dmin(C) = d and generator matrix G. Then there
exists a size-k information set S. If k = n−d +1 then every subset of {1,2, · · · ,n} of size k is an
information set but if k < n−d +1 then this does not hold.

By the Singleton bound we have k ≤ n−d +1, so this says it is only for MDS codes that every k× k
submatrix of G is invertible.

Proof. The matrix G has rank k, so the rank of GT is also k. Row reduce GT to RREF and let
S = {i1, i2, · · · , ik} denote the indices of the columns containing leading ones. Then GS is a matrix
whose transpose row reduces to the identity matrix, so is invertible.

Now let S be an arbitrary set of k indices. Recall that a square matrix is invertible iff its nullspace is
just the zero space. So suppose that m ∈ ker(GS) is nonzero. Then c = Gm is also nonzero (since G is
an injective map). However,

GSm = (ΩSG)m = ΩS(Gm) = (Gm)S = cS,

which is 0 since m ∈ ker(GS). Therefore 0 < wt(c)≤ n−|S|= n− k.

Thus, if C is a code such that dmin ≥ n− k+ 1, this can never happen and every set of size k is an
information set. By the Singleton bound, we know k ≤ n−dmin +1; therefore this condition on C is
actually equality and we are in the setting of MDS codes.

12.5 Attacking McEliece 157

Conversely, if we have a nonzero codeword c of weight less than or equal to n− k (so: not an MDS
code), then choosing S among the indices where the coordinate ci = 0 yields cS = 0 so a matrix GS that
is not invertible. �

Thus if the matrix GS is not invertible then the set S (or the corresponding rows of G) does not have
enough information to reconstruct the codeword — the set S does not identify enough “information."

Lemma 12.27 Suppose that e is the error vector (of weight at most t) corresponding to the input x
of the algorithm, and that S is an information set for C. Then Step 2 succeeds, with output e = e, if
and only if S is disjoint from the positions of the errors, that is, if and only if eS = 0.

Proof. Note that
(GG−1

S xS)S = ΩSGG−1
S xS = GSG−1

S xS = xS,

so if e = x−GG−1
S xS, then eS = xS− xS = 0. Therefore if the algorithm returns e (which implies by

Lemma 12.24 that it is the correct answer e) then necessarily eS = 0. Conversely, if eS = 0 and x = c+e
then xS = cS and therefore GG−1

S xS = c. Thus the algorithm outputs e = e. �

Finally: why must the algorithm terminate?

Lemma 12.28 For any vector e ∈ Fn such that wt(e)≤ t, there exists an information set S of size k
such that eS = 0.

Proof. Suppose not. This would imply that there exists a vector e ∈ Fn such that wt(e) ≤ t and for
all information sets S of size k, eS 6= 0. Let T be the set of indices corresponding to the coordinates
where e is zero. Then the hypothesis implies that GT has no k× k invertible submatrices, which by the
process of row reduction, implies that the rank of GT is less than k so the kernel of GT has dimension
at least 1. Let m ∈ ker(GT) be a nonzero element of the kernel; then wt(Gm)≤ n−|T |= wt(e), which
is a contradiction since wt(e)≤ t < dmin(C). �

12.5 Attacking McEliece

To apply the information set decoding algorithm to attack Classic McEliece, we construct a generator
matrix

Ĝ =

[
−T
Ik

]
and use the word x = (y,0, · · · ,0) ∈ Fn

q that we construct as the first step of the decryption algorithm
(which is not secret).

How long will it take this algorithm to crack the message?

Suppose we choose a set S of size k. There are
(n

t
)

possible subsets of the error positions of e and of
those possibilities,

(n−k
t
)

of them correspond to options for which the error positions all lie outside of S.
So given an information set, the odds of success are about

(n−k
t
)
/
(n

t
)
.

158 Chapter 12. Code-based cryptography

� Example 12.29 If n = 4608, k = 3360 and t = 96, then this yields1(
n
t

)
=

(
4608
96

)
≈ 1.853769798×10201

whereas (
n− k

t

)
=

(
1248
96

)
≈ 4.085867957×10145

Therefore, given S, the odds that it does not intersect the error positions in e is to the order of
10145−201 = 10−56. �

On the other hand, the odds that S will give rise to an invertible matrix GS are much higher. Supposing
that our public key is indistinguishable from a random n×k matrix, then we can estimate this probability
as the probability that a randomly generated k× k matrix is invertible. Taking q = 2 for simplicity, this
probability is approximately

a(k) = (1− 1
2
)(1− 1

4
)(1− 1

8
) · · ·(1− 1

2k)

(see exercises). Taking the limit as k→ ∞, we get2

lim
k→∞

a(k)≈ 0.2887880950866024212788997219294585937270.

Thus, for k sufficiently large, the chance of a random subset of indices being an information set is about
29%.

Thus the probability of success on each iteration of the Information Set Decoding algorithm is simply
about 0.29

(n−k
t
)
/
(n

t
)
; another way of saying it is that we expect to have to do about(n

t
)

0.29
(n−k

t
)

iterations of the algorithm before succeeding. In our example above this comes out to approximately
2187.

Information set decoding is the most effective attack known against Classic McEliece.

1using an online calculator https://www.calculatorsoup.com/calculators/discretemathematics/

combinations.php whose accuracy I cannot verify!
2This is from the Online Encyclopaedia of Integer Sequences

https://www.calculatorsoup.com/calculators/discretemathematics/combinations.php
https://www.calculatorsoup.com/calculators/discretemathematics/combinations.php

13. Cryptography from errors

Why is decoding so difficult? After all, if we receive x = Gm+ e for some small error vector e, then
this is almost a linear system; if e = 0 we could solve it with row reduction. The issue: the system
Gm = x doesn’t have a solution — it’s an inconsistent linear system, and all the known techniques for
solving linear systems do not give any information about approximate solutions.

This problem, in one form or another, is at the core of several post-quantum cryptosystems (including
NTRU). This connection was established in a paper by Oded Regev in 2009 [Reg09], where he defined
LWE and showed that if there were an efficient algorithm to solve it, then there would be an efficient
algorithm to decode random linear codes, and an efficient quantum algorithm to solve the shortest
vector problem. LWE can be defined as follows.

13.1 Learning with Errors (LWE)

Note: For LWE, we use boldface letters e for vectors, and the convention that ei is the ith coordinate
vector of e. If A is a matrix, then ai denotes the ith row of A. We will interpret vectors as row or column
vectors as convenient.

Problem 13.1 — Learning with errors. Setup: Let F = Zp and m > n > 0 be integers. We choose
an m× n matrix A, and a vector s ∈ Fn, uniformly at random. Let χ : F → R be a probability
distribution (centred at 0) for errors, and generate an error vector e ∈ Fm by sampling e1, · · · ,em from
this distribution. Let

b = As+ e ∈ Fm.

Problem: given A and b, determine s.

But wait, you say. In linear algebra, we learned how to find the least-squares best solution to an

160 Chapter 13. Cryptography from errors

inconsistent system: to approximately solve the inconsistent system Ax = b, project b orthogonally
onto the column space of A, giving a nearby vector c, and then solve Ax = c. By [GJN21, Theorem
20.2.2], this comes down to solving the consistent linear system

AT Ax = AT b.

Why can’t we apply that here? You’ll explore this in the exercises, but in a nutshell: we do not have a
well-defined notion of orthogonal projection onto a subspace when working over the integers, or over a
finite field.

Regev also proposed a public key cryptosystem based on LWE [Reg09, §5]. To set it up, we need to be
more precise about the probability distribution χ in the statement of LWE.

Algorithm 13.2 — LWE: specifications. Choose n > 1 and p a prime number between n2 and 2n2.
Set F = Zp and choose m such that 2m > pn+1. Recall from our NTRU chapter that we defined

Sp = {−
p−1

2
, · · · ,−2,−1,0,1,2, · · · , p−1

2
}.

Choose a value δ > 0 and an “error distribution" χ : Sp→ R for which the following holds: for any
1≤ k ≤ m, the sum E of k values sampled from χ satisfies

− p−1
4
≤ E ≤ p−1

4

with probability at least 1−δ .

� Example 13.3 Suppose n = 2; then p = 5 satisfies n2 ≤ p ≤ 2n2, so we choose F = Z5 =
{−2,−1,0,1,2}. Let’s take m = 7, then 2m = 128 > 125 = p3. Suppose for simplicity we choose the
probability distribution χ` : S5→ R given by

χ(n) =

1
` if n = 1
`−1
` if n = 0

0 otherwise,

where ` > 2. Suppose we independently sample (ei)
k
i=1 from this distribution and set E = ∑ei. In this

case, p−1
4 = 1, so we want to know with what probability we have −1≤ E ≤ 1. Well, Pr(E =−1) = 0,

Pr(E = 0) =
k

∏
i=1

`−1
`

and Pr(E = 1) =
k
`

k−1

∏
i=1

`−1
`

.

So for example if `= 32 then Pr(|E| ≤ 1)< 0.99 so we can choose δ = 0.01. In practice, you might
choose your error tolerance δ first and solve for `! �

Algorithm 13.4 — LWE: key generation. Following the LWE specifications, create the datum
(A,s,b) as in the setup to the LWE problem. Define Bob’s private key to be s. Define the public key
to be the pair (A,b).

13.1 Learning with Errors (LWE) 161

� Example 13.5 Continuing as above, we might generate

A =

1 2
2 −1
0 1
1 −1
2 0
1 1
0 0

, s =

[
−1
2

]
, e =

0
0
0
1
0
0
0

, and b = As+ e =

−2
1
2
−2
−2
1
0

where A and s were chosen uniformly at random, but we have sampled the coordinates of e from χ as
in the preceding example.

Then s = (−1,2) is Bob’s private key, while the public key is the pair consisting of the matrix A and
the vector b. �

We see that we could apply the principles of information set decoding to try to recover s from the public
key. To do so we would replace Step 2(b) with “if the sum of the coordinates of e, viewed as elements
of Sp, is less than (p−1)/4 in absolute value, then stop and return e". This would succeed whenever
the error vector e has at least n coordinates equal to 0 (and the corresponding row vectors of A are
linearly independent).

There are a few ways to make this attack infeasible: one is to choose p sufficiently large so that we can
make most terms nonzero; another (following our analysis in the previous section) is to choose n and m
sufficiently large so that the probability of avoiding errors is vanishingly small.

Algorithm 13.6 — LWE: encryption. To encrypt a bit α ∈ {0,1}, first choose a random subset
S ⊂ {1,2, · · · ,m}, and define 1S as the indicator vector of S, that is, it is the row vector with m
coordinates 0 and 1 such that the ith coordinate is 1 if and only if i ∈ S. Then ciphertext is a pair
(a,b) where

a = 1SA, b =
p−1

2
α +1Sb.

R One can also think of a as ∑i∈S ai; then we similary have 1Sb = ∑i∈S bi.

One way for Eve to find α from (a,b) would be to try to guess S, and thus recreate the sum. Thinking of
A as the transpose of a matrix H reveals that this is, in the binary case, the same problem as brute-force
syndrome decoding (finding a linear combination of the columns of H that yield a).

On the other hand, Bob doesn’t need to discover S at all.

Algorithm 13.7 — LWE: decryption. If Bob receives (a,b), then he uses his secret key s to compute

b−a · s

where · denotes the dot product. If the answer is closer to 0 than to p−1
2 , he decrypts to α = 0,

otherwise, he decrypts to α = 1.

162 Chapter 13. Cryptography from errors

This time, our decryption is not guaranteed to work, but we have some control over the possibility of
decryption failure. Note that a value x ∈ F , viewed as an element of Sp, will be closer to 0 than to
(p−1)/2 exactly when − p−1

4 ≤ x≤ p−1
4 .

Lemma 13.8 — Regev, Lemma 5.1. With parameters as above, upon receipt of an encryption of
the bit α , the decryption algorithm returns α with probability at least 1−δ .

Proof. Recall that b = As+ e, where e was a small error vector with coefficients distributed according
to χ . Suppose the secret set is S, so that a = 1SA (as a row vector) and b = 1Sb+ p−1

2 α . Then Bob’s
computation can be written as

x = b−a · s = (1Sb+
p−1

2
α)−1SAs

= 1S(b−As)+
p−1

2
α

= 1Se+
p−1

2
α.

Since 1Se = ∑i∈S ei and |S| ≤ m, our hypothesis on e ensures that |1Se| ≤ p−1
4 (viewed as elements of

Sp) with probability at least 1−δ , in which case x will round down to 0 if α = 0 and to 1 otherwise. �

� Example 13.9 With our public key as before, Alice chooses S = {1,4,6} and creates the vector
1S = 1001010 and computes

a = 1SA =
[
−2 2

]
, 1Sb = 2.

Then since (p−1)/2 = 2, she encrypts the bit α = 1 as

(a,b) = (a,1Sb+2) = ((−2,2),−1).

Bob, upon receiving this pair, computes

b−a · s =−1− (−2,2) · (−1,2) =−2

and, deciding that this is closer to 2 than to 0, decrypts α = 1.

Our example is too simple to foil Eve, though! See the exercises. �

Well, this LWE cryptosystem is nice and all — but that’s a lot of work to encrypt a single bit! The
value in this system is that it provides a proof of concept of using the LWE problem — a problem that,
roughly speaking, if solvable in an efficient way (classical or quantum) would essentially provide an
efficient solution for all lattice-based and code-based cryptosystems.

13.2 Crystals Kyber

For our final cryptosystem, we describe (with minor simplifications) one of the algorithms selected for
standardization by NIST in 2022, called Kyber [ABD+21]. It is part of the CRYSTALS (CRYptographic

13.2 Crystals Kyber 163

SuiTe for Algebraic LatticeS) [ABD+22] collection of cryptographic algorithms, that include a signature
scheme called Dilithium.1 It is based on ideas arising from NTRU, McEliece, and above all, LWE.

As with Classic McEliece, and the Diffie–Hellman key exchange, it is a Key Encapsulation Mechanism
(KEM), meaning that rather than encrypting a message per se, it generates a secret key that Alice and
Bob subsequently share.

Choose n a power of 2 and a prime q such that n|(q− 1). In practice, they propose n = 256 and
q = 3329. Choose a small integer k (say, k ∈ {2,3,4}). Define

R = Z[x]/〈xn +1〉 and Rq = Zq[x]/〈xn +1〉.

Note that these are NOT the same rings used in NTRU — the ideal is generated in this case by xn +1.
(Since n = 28, it is known that this is a cyclotomic polynomial, which is irreducible over Q but in
general will factor over Zq into a product of irreducible factors of the same degree.)

We specify a noise distribution χη that is a centred binomial distribution taking values between −η

and η , where η ∈ {2,3}.

Algorithm 13.10 — Kyber: Key Generation. Generate a random k× k matrix A with entries in Rq,
and choose two vectors s,e ∈ Rk

q whose entries are polynomials with coefficients sampled from χ .
The private key is s; the public key is the pair (A,b = As+ e).

In other words, we follow the same format as for LWE, with the difference that A is a square matrix,
and the entries come from the ring Rq rather than Z2.

� Example 13.11 For a toy example, let’s take n = 2 and q = 11, with k = 2. Then we could generate

A =

[
−2+4x 3−2x

5x −3+ x

]
, s =

[
x

1+ x

]
, e =

[
0
x

]
.

Then (remembering that we are working mod 11 and mod x2 +1 so that x2 =−1:

b = As+ e =
[
−2+4x 3−2x

5x −3+ x

][
x

1+ x

]
+

[
0
x

]
=

[
−2x+4x2 +(3−2x)(1+ x)+0

5x2 +(−3+ x)(1+ x)+ x

]
=

[
−2x−4+3+3x−2x+2
−5−3−2x−1+ x

]
=

[
1− x
2− x

]
.

Our public keys are A and b but s is our private key. �

Algorithm 13.12 — Kyber: Encryption. To encrypt a message from Zn
2 to Bob, Alice expresses it

as a polynomial m ∈ Rq with binary coefficients. She then samples vectors r, f ∈ Rk
q and an element

e0 ∈ Rq according to the distribution χ . Her ciphertext is the pair (u,v) that she computes as:

u = AT r+ f ∈ Rk
q and v = bT r+ e0 +

q−1
2

m ∈ Rq.

1All Star Wars and Star Trek fans will know the origins of the names of these two algorithms!

164 Chapter 13. Cryptography from errors

Note that if r = 1S then AT r and bT r+ q−1
2 m would be precisely the analogue of LWE (generalizing

from Z2 to Rq) — see the exercises. However, for added security there is an additional noise term
added to each of the parts of the ciphertext.

� Example 13.13 Continuing with our example above, suppose we wish to encrypt m(x) = x ∈ Rq.
Since k = 2 we could choose

r =
[

1
−x

]
, f =

[
x
0

]
, e0 =−1.

Then we have

u = AT r+ f =
[
−2+4x 5x
3−2x −3+ x

][
1
−x

]
+

[
x
0

]
=

[
−2+4x−5x2 + x

3−2x+3x− x2 +0

]
=

[
3+5x
4+ x

]
and

v = bT r+ e0 +
q−1

2
m

= (1− x,2− x) · (1,−x)+(−1)+5(x)

= 1− x−2x+ x2−1+5x

=−1+2x

�

Algorithm 13.14 — Kyber: Decryption. Given the ciphertext (u,v) and his private key s, Bob
computes

y = v− sT u ∈ Rq,

and writes his answer with coefficients from the set Sq. He then decodes each coefficient as a 0 if it
lies between −q−1

4 and q−1
4 and as a 1 if not, thus recovering a binary polynomial m.

� Example 13.15 If we receive the ciphertext u = (3+ 5x,4+ x) and v = −1+ 2x, then with our
private key (x,1+ x) we compute

y = v− sT u
=−1+2x− (x,1+ x) · (3+5x,4+ x)

=−1+2x− (3x+5x2 +4+5x+ x2)

=−1+2x−8x−6x2−4

= 1+5x.

Since 1 ∈ [−10/4,10/4] but 5 is not, we decipher 0+ x, which was our original message. �

The parameters for Kyber are chosen so as to ensure that the probability of decryption failure is
δ ≈ 2−139, that is, in practical terms Bob will always recover the message.

What we see is that Kyber combines the fundamental problem of LWE and code-based cryptography
with the efficient and excellent shuffling properties of polynomial multiplication (as used in NTRU) to
make a fairly compact encryption system! There is much more to explore about Kyber — but for now,
the expectation is that it will be a good bet for the post-quantum world.

13.3 Exercises 165

13.3 Exercises

1. Bob needs to generate a random k× k binary matrix that is invertible. How many elements are
there in Mk(Z2) and how many of them are invertible? Generate a random 5×5 binary matrix.

2. Prove that the set of matrices {GS | S ∈ GLk(F)} is exactly the set of all generator matrices for
C. (Here, GLk(F) denotes the set of all invertible k× k matrices with entries in F.)

3. Discuss the effect of choosing a random invertible n×n matrix P in place of a permutation matrix
in the key generation step.

4. For the McEliece cryptosystem, and for the Niederreiter variant: How much storage space is
required for the private and public keys corresponding to a binary (1024,524) code C? Compare
with RSA, where the public and private keys may each be up to 4 Kilobytes.

5. Suppose Eve intercepts the ciphertext and decides to use syndrome decoding to recover m. How
many syndromes are there to compute, if we use a (1024,524) binary code that can correct
t = 50 errors?

6. Prove that the code Ĉ = ker(Ĥ) in the Niederreiter variant is equivalent to Bob’s secret code C.
7. The “message" in classic McEliece is a vector m ∈ Fn of weight exactly t. Would m be a good

choice for a random key to use in a subsequent symmetric cipher?
8. Describe an algorithm to generate a binary vector of weight t and length n, such that each such

vector is equally likely to occur.
9. Can you think of an algorithm to encode a message as a weight-t vector in Fn

q for some q?
10. Let C be the (3,1) binary repetition code, with generator matrix G. Suppose we receive the word

y = 110. Show that the linear system GT Gm = GT y has a unique solution but this solution does
not give the closest codeword.

11. Let A be an n× k matrix of rank k < n. Show that ker(AT) = (Col(A))⊥. Show that if Col(A)∩
Col(A)⊥ = {0}, then AT A is invertible.

12. Give an example of a code C such that C⊥∩C 6= {0}. Let G be a generator matrix for C. Find an
example of a vector y such that neither Gm = y nor GT Gm = GT y has a solution.

13. We say that a vector v ∈ Fn has an orthogonal projection onto a subspace W if there exists w ∈W
and w′ ∈ Fn such that v = w+w′ and w ·w′ = 0. Give examples of one-dimensional subspaces
W and W ′ of Z5

2 such that every vector has an orthogonal projection onto W but such that there
exist vectors that have no orthogonal projection onto W ′.

14. In Rn, every vector has an orthogonal projection onto every subspace W . Let w ∈W be the
projection of v; show that the minimum value of {‖v−u‖ : u ∈W} is attained for u = w. Now
examine your proof of this fact and identify the part(s) that fail when we replace R with a finite
field F and ‖x‖ with the Hamming weight wt(x).

15. For Goppa codes of the size used in Classic McEliece, it is known that about 29% of information
sets S of size k will yield an invertible matrix GS. If the code has length n and dimension k, and
there are t errors in the message, what is a formula for the percentage of information sets will
successfully avoid the error locations? Can you estimate this value for the given parameter sets?

13.4 Final thoughts

Algebraic structures are the ideal framework for computer applications: the objects are often efficiently
enumerable, come in infinite variety, and are amenable to rigourous analysis. Where are the frontiers of
research today?

166 Chapter 13. Cryptography from errors

With LDPC and turbo codes, engineers are able to use communication channels at very close to capacity.
Structured codes, like BCH, are valuable for applications, like cryptography, where one needs to be
able to analyse an entire scalable class of codes, and prove various properties of the code and of its
decoding algorithm. As such, there is still room to advance the subject; in recent years, the study of
Goppa codes has led the way.

Public-key cryptographic protocols rely on algebraic structures. Some examples of subject areas that are
widely used in cryptographic applications, but that we did not discuss, include lattices (modules over an
integral domain) and systems of multivariate polynomials over a finite field. As these cryptosystems rely
on advanced mathematical structures (such as the ones you’ve learned in this course), the cryptographic
community capable of analysing and implementing them is relatively small. In the coming years, as the
new generation of PQC is broadly implemented, ring theory will become a plus on one’s CV!

Finally, the advent of quantum computers brings its own fascinating collection of challenges — from
quantum error correction to finding sets of easy-to-implement unitary matrices that generate large
groups — challenges that are solved with tools from algebra, graph theory and lots of advanced linear
algebra.

Enjoy!

IV Appendix

The word “code” evokes two
essentially opposite ideas:

• increasing the clarity of
a message (so that the
recipient can decode it,
even when the message
is damaged in transmis-
sion)

• obfuscating a message
(so that none but the in-
tended recipient can de-
code it)

Both are key important prob-
lems in communications the-
ory, and we will study both
in this course. The first is
the domain of error-correcting
codes; the second is cryptog-
raphy .

A Mathematical background 169
A.1 The Euclidean algorithm and Extended Euclidean

Algorithm . 169
A.2 Working in base n . 171
A.3 Working mod n . 172
A.4 Permutations . 174
A.5 Exercises . 176

B Elliptic curves over finite fields 177
B.1 Definitions . 177
B.2 The group law on E(K) 179
B.3 ECC: Elliptic Curve Cryptography 181

C Solutions . 185
C.1 Section 2.4 . 185

Bibliography . 187

Index . 191

A. Mathematical background

Let’s now introduce some of the key mathematical constructions we’ll need to define, analyse and
construct codes.

A.1 The Euclidean algorithm and Extended Euclidean Algorithm

The Euclidean algorithm first appeared the book Elements1 by the Greek mathematician Euclid, circa
300 BCE. It computes the greatest common divisor (gcd) of two positive integers so efficiently that it is
still basically the algorithm implemented on computers today.

Recall that if a,b are integers with a 6= 0 then we say a divides b if there exists a quotient q ∈ Z such
that b = qa. When a does not divide b, there is a unique quotient q and remainder r satisfying 0≤ r < a
such that b = qa+ r.

We state it for integers, but if you have read Section 6.3 then you realize a variant of it applies in any
ring where we have a replacement for the notion of size.

Algorithm A.1 — Euclidean algorithm. Given two positive integers a≤ b, the following algorithm
outputs gcd(a,b):

1. Perform division with remainder to get b= qa+r where q is the quotient and r is the remainder;
thus 0≤ r < a.

2. If r = 0, then output a, and we are done.
3. If r > 0, then repeat step 1 with the pair (r,a) in place of (a,b).

� Example A.2 To find gcd(144,30) we do
Step 1 144 = 4×30+24

1See http://www.physics.ntua.gr/~mourmouras/euclid/index.html or a more modern take such as https:
//archive.org/details/euclid-elements-redux_201809/euclid-a4/mode/2up.

http://www.physics.ntua.gr/~mourmouras/euclid/index.html
https://archive.org/details/euclid-elements-redux_201809/euclid-a4/mode/2up
https://archive.org/details/euclid-elements-redux_201809/euclid-a4/mode/2up

170 Appendix A. Mathematical background

Step 2 No, not done yet
Step 3 Now calculate gcd(24,30)
Step 1 30 = 1×24+6
Step 2 No, not done yet
Step 3 Now calculate gcd(6,24)
Step 1 24 = 4×6+0
Step 2 Yes, gcd(24,6) = 6.
So the algorithm says the answer is gcd(144,30) = 6. �

But why is this true? Let’s prove that the algorithm outputs gcd(a,b).

Proof. Suppose a≤ b. Then the algorithm starts with r0 = b and r1 = a, and in each iteration produces
a new remainder ri. Since these remainders are a decreasing sequence of nonnegative numbers,
the algorithm must terminate after finitely many steps. So suppose the sequence of remainders is
r0,r1,r2, · · · ,rn,0, so that the output of the algorithm is rn.

We first claim that rn divides all ri with i ≤ n. We proceed by backward induction Since rn−1 = qrn

with no remainder, rn divides rn−1 (and it also divides itself). Suppose rn divides rn,rn−1, · · · ,ri. Then
since ri−1 = qri + ri+1 for some quotient q, rn divides the right hand side by the induction hypothesis
and thus also the left side, so rn divides ri−1. Thus by induction, rn divides r0 = b and r1 = a.

We need to show it is the greatest common divisor, by showing that every common divisor of a and b
also divides rn. Suppose s divides both a and b. Then since b = qa+ r2, we deduce that s divides r2. In
fact, if s divides ri and ri+1, then since ri+1−qri = ri−1 for some quotient q, s must divide the right
hand side as well. Thus by induction, we infer that s divides rn. Hence rn = gcd(a,b). �

One can show that the number of steps needed for this algorithm to terminate on a given pair of inputs
(a,b) is proportional on average to max{ln(a), ln(b)}. Thus even for very large inputs it converges
quickly.

A consequence of the Euclidean algorithm is that you can always express gcd(a,b) as an integer linear
combination of a and b!

Theorem A.3 — Generalized Euclidean Algorithm. Let a≤ b be positive integers and let d =
gcd(a,b). Then there exist s, t ∈ Z such that

d = sa+ tb,

and moreover these coefficients can be calculated from the steps of the Euclidean algorithm.

We illustrate with an example.

� Example A.4 Consider the calculation that produced gcd(144,30) = 6 in Example A.2. We had

144 = 4×30+24

30 = 1×24+6

24 = 4×6

A.2 Working in base n 171

Let’s solve for 6, starting from the second-last equation and working upwards, writing a = 30 and
b = 144 when they occur to help us keep track of what we’re doing:

6 = 30−1×24

= a−1×24

= a−1× (144−4×30)

= a− (b−4a)

= 5a−b.

Check: 5×30−144 = 6. So s = 5 and t =−1. �

Let’s prove the theorem.

Proof. Let us reprise our notation from the proof of the Euclidean algorithm and set r0 = b and r1 = a,
so that the steps of the Euclidean algorithm are

r0 = q1r1 + r2 =⇒ r2 = b−q1a

r1 = q2r2 + r3 =⇒ r3 = a−q2r2

...
...

ri−2 = qi−1ri−1 + ri =⇒ ri = ri−2−qi−1ri−1

...
...

rn−2 = qn−1rn−1 + rn =⇒ rn = rn−2−qn−1rn−1

rn−1 = qnrn +0.

Since each ri is expressed as a linear combination of r j with j < i, we can proceed backwards through
the list of equations on the right, substituting the appropriate equation for each occurrence of r j with
2≤ j < n, until rn is expressed just in terms of a and b, as required. �

A.2 Working in base n

We usually work with decimal numbers, that is, numbers in base 10. This expresses itself by our
shorthand notation:

534 = 5×102 +3×101 +4×100,

where the coefficients in front of each power of 10 in this expansion are chosen to lie in the set
{0,1, · · · ,9}. We needn’t have chosen 10; for example, the ancient Mayans independently developed
the place-number system in mathematics (in fact, a few centuries earlier than its discovery in Asia),
using base 20, and therefore 20 distinct coefficient symbols2.

Thus for example, if we use base 2, where our coefficients are just {0,1}, we can write

1101102 = 1×25 +1×24 +0×23 +1×22 +1×21 +0×20 = 32+16+4+2 = 54

2Check them out on the Wiki page: https://en.wikipedia.org/wiki/Maya_numerals.

https://en.wikipedia.org/wiki/Maya_numerals

172 Appendix A. Mathematical background

where the subscript 2 lets us know that this is shorthand for the binary expansion of a number (although
we omit it when there is no possibility of confusion). Another convenient base is 16, which gives rise
to hexadecimal numbers; in this case the coefficient symbols are denoted {0,1, · · · ,9,A,B,C,D,E,F}
and some common notation includes, for example,

0x6F := 6F16 = 6×16+F = 96+15 = 111.

To state the following lemma, recall that the ceiling function is defined on y ∈ R by dye= min{k ∈ Z |
k ≥ y} and the floor function is defined on y ∈ R by byc= max{k ∈ Z | k ≤ y}.

Lemma A.5 Let x,n be integers with n > 1 and x > 0. Set k = blogn(x)c. Then there exist unique
integers ai ∈ {0,1, · · · ,n−1}, for i ∈ {0, · · · ,k}, such that

x = aknk +ak−1nk−1 + · · ·+a1n+a0. (A.1)

Proof. We begin by noting that x = 1 has a unique expansion of the form (A.1): if any ai with i > 0
were nonzero, then the sum of these positive numbers would be greater than n, and n > 1 by hypothesis;
and taking ai = 0 for i > 0 and a0 = 1 yields x.

Suppose now that we have shown the existence and uniqueness of the expression (A.1) for all positive
integers less than x. Set k = blogn(x)c. Then k ≤ logn(x) < k + 1 so since n > 1 we conclude
nk ≤ x < nk+1. Since

nk = 1×nk < 2×nk < · · ·< (n−1)×nk < n×nk = nk+1,

there is a unique ak ∈ {1, · · · ,n−1} such that aknk ≤ x < (ak +1)nk. Set x̄ = x−aknk and note that
this is less than both x and nk by construction.

Therefore by induction, x̄ has a unique base n expansion x̄ = ak−1nk−1 + · · ·+ a1n+ a0, where the
coefficient of ak−1 may be zero and all coefficients lie in {0,1, · · · ,n−1}. The lemma follows. �

The proof of the lemma gives an effective algorithm for computing the base n expansion of any positive
integer.

A.3 Working mod n

Let n > 1 and define addition and multiplication on the set Zn = {0,1, · · · ,n−1} by the rule: first add
or multiply as integers, and then take the remainder upon division by n.

� Example A.6 In Z5, we have the identities

2+2 = 4, 2+3 = 0, 2+4 = 1, , · · ·

and
1×3 = 3, 2×3 = 1, 3×3 = 4, , · · · .

�

A.3 Working mod n 173

� Example A.7 In the binary field Z2, the operations on {0,1} are those of boolean arithmetic. That is,
we have

a+b = a∨b, ab = a∧b.

So 1+1 = 0 but all other sums and products are as for Z. In computer science, we often write a⊕b for
this sum operation, to distinguish it from the ordinary sum. �

A more elegant explanation of modular arithmetic is via equivalence classes.

Definition A.8 Let n > 1. Two elements a,b ∈ Z are said to be equivalent mod n if there exists an
integer k such that a−b = kn.

The proof of the following result is a lovely exercise with equivalence relations, and is left to the reader.

Proposition A.9 Equivalence mod n defines and equivalence relation on Z, whose classes are
represented by Zn. Addition and multiplication in Z induce well-defined operations on these
equivalence classes that coincide with taking remainders mod n.

In this context, we write Z/nZ for the set of equivalence classes.

Addition and multiplication in Zn satisfy several useful and familiar properties:
A1 For all a,b we have a+b = b+a (commutativity of addition);
A2 For all a,b,c we have a+(b+ c) = (a+b)+ c (associativity of addition);
A3 There exists an element b ∈ Zn such that for all a we have a+ b = a (existence of additive

identity) which we henceforth denote 0;
A4 For all a there is an element b ∈ Zn such that a+b = 0 (existence of an additive inverse) which

we henceforth denote −a;
M1 For all a,b we have ab = ba (commutativity of multiplication);
M2 For all a,b,c we have a(bc) = (ab)c (associativity of multiplication);
M3 There exists an element b ∈ Zn such that for all a we have ab = a (existence of multiplicative

identity) which we henceforth denote 1;
D1 For all a,b,c we have a(b+ c) = ab+ac (distributivity of multiplication over addition).

Any set G with an operation + : G×G→G satisfying A1-A4 is called an additive (abelian) group (see
Section 2.1); sets with two operations satisfying all these properties are called (commutative unital)
rings (see Chapter 6).

What about inverses? It doesn’t make sense to ask if
1
2

is an element of Z5 — Z5 consists of equivalence

classes of integers, not rational numbers. Instead, we ask: does Z5 contain an element b that acts like 1
2 ,

in that

2b = 1

with respect to the multiplication in Z5? The answer is yes: take b = 3. We call 3 the multiplicative
inverse of 2 mod 5.

Theorem A.10 Let n > 1. Then for any a ∈ Z, a has a multiplicative inverse mod n if and only if
gcd(a,n) = 1.

174 Appendix A. Mathematical background

Proof. Let d = gcd(a,n). Then by the generalized Euclidean algorithm we can solve for integers s, t
such that

d = sa+ tn.

Considering this equation modulo n, we have sa = d mod n. Therefore if d = 1 then a is invertible.

Conversely, if d > 1 then it is a factor of both a and n. Since it is a factor of n, we see directly that for
any integer k,

dk ∈ {d,2d, · · · ,(n/d−1)d,n} mod n,

that is, the cycle repeats and does not include 1. Since a is a multiple of d, any multiple of a is a
multiple of d, and none of these multiples is congruent to 1 mod n. �

A.4 Permutations

Let T be a finite set.
Definition A.11 A permutation of T is a bijection from T to itself. The set of all permutations of a
set of cardinality n is denoted Sn.

Note that |Sn|= n!.

Suppose T = {1,2, · · · ,n}. Let us write our permutations with cycle notation. A cycle

σ = (a1a2 · · ·ak−1ak)

(where k ≤ n, and the ai are distinct elements of T) means that

σ(a1) = a2, σ(a2) = a3, · · · σ(ak−1 = ak, σ(ak) = a1,

and that σ(b) = b for any element b ∈ T \{a1, · · · ,ak}.

3

5
8

1
7

2

9

4

6

10

Figure A.1: The action of the permutation σ = (1 7 3 5 8)(2 9 4) on T = {1,2, · · · ,9,10}. By their
omission, σ(6) = 6 and σ(10) = 10.

Not every permutation is a cycle, but every permutation can be written as a product of disjoint cycles
(meaning: the sets of points that they move are disjoint), as in Figure A.1.

Lemma A.12 The set of permutations, with composition, forms a (nonabelian) group.

A.4 Permutations 175

Proof. Composing two permutations of T is again a permutation of T (perhaps a trivial one!), so Sn

is closed under composition. Composition of functions is associative. (How does one check? Let
f ,g,h : T → T . To compare f ◦ (g◦h) with (f ◦g)◦h we have to apply both sides to an element x ∈ T
and be sure the answer is the same. Recall that (a◦b)(x) = a(b(x)). So we have

(f ◦ (g◦h))(x) = f ((g◦h)(x)) = f (g(h(x)))

and
((f ◦g)◦h)(x) = (f ◦g)(h(x)) = f (g(h(x)).

So that’s the same.) Composition of function is not usually commutative!

The identity element is the function e : T → T defined by e(x) = x for all x. This is a permutation (a
trivial one). The inverse of a permutation is obtained by reversing all the arrows of the cycles; this is
again a permutation. Thus Sn is a group.

To see that it is nonabelian in general, note that

(12)◦ (23) = (123) but (23)◦ (12) = (132)

so Sn is nonabelian for n≥ 3. �

Permutations can also act by linear transformations, as follows. Define a map ϕ : Sn→ GL(Fn) =
{g ∈Mn×n(F) | det(g) 6= 0} that takes σ ∈Sn to ϕ(σ) = Pσ , where Pσ is the linear transformation
defined on the standard basis of Fn by

Pσ (ei) = eσ(i) for all i = 1,2, · · · ,n.

The matrix of Pσ is obtained from that of the identity by permuting the columns, so has exactly one 1
in each row and column. It is called a permutation matrix, and its determinant is either 1 or −1.

This permutation action can seem counterintuitive, as in the following lemma.

Lemma A.13 Let v = (v1,v2, · · · ,vn) ∈ Fn and let σ ∈Sn. Then

Pσ (v1, · · · ,vn) = (vσ−1(1),vσ−1(2), · · · ,vσ−1(n)).

Proof. Let {e1, · · · ,en} denote the standard basis of Fn. Then v = (v1,v2, · · · ,vn) is shorthand for

v = v1e1 + · · ·+ vnen.

Therefore

Pσ (v) = Pσ (v1e1 + · · ·+ vnen)

= v1Pσ (e1)+ · · ·+ vnPσ (en)

= v1eσ(1)+ · · ·+ vneσ(n).

Now to rewrite this as a coordinate vector, we have to put the basis vectors back in order. Note that if
σ(i) = j then σ−1(j) = i, and so

vieσ(i) = vie j = vσ−1(j)e j.

The result follows. �

176 Appendix A. Mathematical background

We sometimes write σ(v) instead of Pσ (v).

A.5 Exercises

1. Apply the extended Euclidean algorithm to find x,y such that ax+ by = 1, where a = 4 and
b = 13.

2. Use the Euclidean algorithm to find gcd(1056,249). Then solve for this gcd as a linear combina-
tion of 1056 and 249 with integer coefficients.

3. The algorithm converges most slowly if all of the quotients are 1. Construct an example of a pair
(a,b) such that the Euclidean algorithm takes 8 steps to converge to the answer.

4. Compute 157 in base 2, base 3 and base 150. Is it necessary for the base to be a prime number?
5. What decimal numbers are represented by 1010102, 123115 and 2416?
6. Define an and .
7. Prove Proposition A.9.
8. Compute the following mod 17: 12+8, 12×8, 8−12.
9. Solve 12x = 8 mod 17.

10. Find all invertible elements (with respect to multiplication) in Z10.
11. Use the Euclidean algorithm to find the inverse of 230 modulo 1201.
12. Consider the permutation of T = {1,2,3,4,5} that sends 1 7→ 2, 2 7→ 5, 3 7→ 4, 4 7→ 3, 5 7→ 1.

Write this as a product of disjoint cycles.
13. Find the permutation matrix corresponding to σ = (12)(35) ∈S5.

B. Elliptic curves over finite fields

We learned in Chapter 10 that finite fields are an easy and very natural source of cyclic groups;
unfortunately, the discrete logarithm problem on finite fields, particularly on fields of order 2k for some
k > 0, can be solved in a reasonable amount of time on a classical computer (at least, in any case nice
enough for anyone to try to implement ElGamal in the first place). (This saga was played out in the
1980s, particularly by researchers in Waterloo.)

Elliptic curves were proposed in the 1980s for cryptographic purposes, and are where fields of the form
F2k are being used in cryptography today.

B.1 Definitions

Let K be a field and let K denote an algebraic closure of K. (Recall that an algebraically closed field
is characterised by the property that every polynomial with coefficients in K factors completely into
linear factors over K.) If K = Fq is the finite field with q elements (where q = pr for some r ≥ 1 and p
prime) then the algebraic closure of K is

K =
⋃

m≥1

Fqm .

Definition B.1 The projective plane P2(K) over K is the set of all lines in K3; that is, it is the set of
equivalence classes of the relation ∼ on K3 \{(0,0,0)}, where (X ,Y,Z)∼ (X ′,Y ′,Z′) if there is a
scalar λ ∈ K such that X ′ = λX , Y ′ = λY and Z′ = λZ. We write (X : Y : Z) for the equivalence
class of (X ,Y,Z).

A homogeneous polynomial in several variables is F ∈ K[X1,X2, · · · ,Xn] is one in which each term
has the same total degree, where the total degree of X i1

1 X i2
2 · · ·X in

n is i1 + i2 + · · ·+ in. So X1X2 +X2
2 is

homogeneous but X1 +X2
1 is not.

178 Appendix B. Elliptic curves over finite fields

Given a homogeneous polynomial over K in three variables, such as

F(X ,Y,Z) = Y 2Z−X3 +XZ2

we consider its zero set
{(X ,Y,Z) | F(X ,Y,Z) = 0}.

Since F is homogeneous, F(X ,Y,Z) = 0 if and only if F(λX ,λY,λZ) = 0 (for any λ 6= 0). So in fact,
we can think of the zero set (excluding (0,0,0)) as a subset of P2(K) and set

E(K) = {(X : Y : Z) ∈ P2(K) | F(X ,Y,Z) = 0}.

We could equally consider the larger set

E(K) = {(X : Y : Z) ∈ P2(K) | F(X ,Y,Z) = 0}.

We say that E is an algebraic variety (which we identify with the set E(K)) and the set E(K) is its set
of K-rational points.

� Example B.2 If K = F3 and F is as above, then

E(K) = {(0 : 1 : 0),(1 : 0 : 1),(2 : 0 : 1),(0 : 0 : 1)}

whereas there are infinitely many points on E(K). �

The main idea of algebraic geometry is to look at curves and surfaces which are defined as zero sets
of polynomials. Here, we are using projective geometry, and so restrict our attention to zero sets of
homogeneous polynomials. The homogeneity of the polynomial implies that if a point is a zero of the
polynomial, then so is any scalar multiple of that point; in other words, the surface defined as the zero
set of this polynomial is composed entirely of straight lines through the origin.

This isn’t the easiest way to think of these zero sets, or of projective space, though. Since projective
P2(R) is the set of all lines in R3, then if we consider just the points of unit length in R3, we’ll have
representatives for every equivalence class in P2(R) and these lie on the unit sphere. More accurately,
we have exactly two representatives for each class, given by a point on the sphere and its negative
(which lies exactly opposite, like the north and south pole do). If we were to just take the top half of the
sphere, then most of our equivalence classes would reduce to a single point instead of two points; but
the points on the equator are still doubly-represented. We think of this as: a very large part (a big open
subset) of P2(R) looks just like regular Euclidean R2 (by doing a projection from the origin through
the top half of the sphere onto the plane z = 1, for example); but then there’s a bit more.

Definition B.3 An elliptic curve is the zero set E in P2(K) of a nonsingular polynomial of the form

F(X ,Y,Z) = Y 2Z +a1XY Z +a3Y Z2−X3−a2X2Z−a4XZ2−a6Z3,

where a1,a2,a3,a4,a5 ∈K, where nonsingular (sometimes: smooth) means that for all (x : y : z)∈ E,
at least one of the partial derivatives

∂F
∂X

,
∂F
∂Y

,
∂F
∂Z

is nonzero at the point (x,y,z).

B.2 The group law on E(K) 179

We note that O := (0 : 1 : 0) ∈ E and that this is the only point (X : Y : Z) in E for which Z = 0. Hence,
on E \{O} we can make the change of variables

x = X/Z,y = Y/Z

and then it makes sense to say

E = {O}∪{(x,y) ∈ K2 | y2 +a1xy+a3y = x3 +a2x2 +a4x+a6}.

We say this is an expression for E (or for F) in affine coordinates and we call O the point at infinity of
E.

R How this makes sense geometrically: the only point of the elliptic curve which lies on
the equator is the point O; so if we just take the portion of our elliptic curve which lies
on the top half of the sphere (plus this extra point we need to keep track of), then the
projection discussed above is realized algebraically by this change of coordinates. “Most”
of our elliptic curve (including its most interesting features) takes place in the top half
of the sphere, and by making this change of coordinates we’re moving from projective
geometry to Euclidean geometry, which is much simpler to draw and think about.

By making further changes of variables, we can simplify the above general expression even more.
Namely, every elliptic curve can be represented in affine coordinates as the point at infinity together
with all solutions in K2 of:

• y2 = x3 +ax+b, where the RHS has no multiple roots, if p 6= 2,3
• y2 = x3 +ax2 +bx+ c, where the RHS has no multiple roots, if p = 3;
• either y2 + cy = x3 +ax+b or y2 + xy = x3 +ax2 +b (no condition) if p = 2.

Let’s concentrate on the case of p 6= 2,3 for now.

B.2 The group law on E(K)

We can depict the group structure on E(K) geometrically, for K =R; we then derive formulas to realize
it algebraically, and these formulas are valid over any field (of characteristic different from 2 and 3).

Namely, given any two points P and Q on the curve, draw the straight line connecting them. It either
intersects the curve in a third point, or else is a vertical line. In the second case, we deem that P is the
additive inverse of Q, written P =−Q1; in the first we deem the point of intersection to be −(P+Q).
This is consistent with identifying O as the additive identity of the group.

To double a point, draw a line tangent to P; this intersects the curve at the point P with multiplicity 2
and then also either intersects the curve at one other point, which we denote −2P, or else is vertical, in
which case we say that 2P = O .

More precisely:

• If P = O then define P+Q = Q+P = O for all Q and define −P to be O .
• If P 6= O has affine coordinates (x,y), then define −P to be the point with affine coordinates
(x,−y); this is the other point of intersection of the vertical line through P with E (and could be
equal to P).

1Note that if Q = (x,y) then −Q = (x,−y) NOT (−x,−y)

180 Appendix B. Elliptic curves over finite fields

• If P,Q 6= O and P 6= Q then define P+Q as −R, where R is the third point of intersection of the
line through P and Q with E.

• If P = Q 6= O then define 2P = P+P to be −R, where R is the third point of intersection of the
line tangent to E at P with E.

Does this define a group structure on the set E(K)? Firstly: Bezout’s theorem promises that a
line which intersects a curve of degree 3 in two points (counting multiplicities) must intersect it in a
third point (including potentially O); thus addition is well-defined. It is clearly commutative.

Secondly: applying the addition rule to O and P gives a vertical line through P; we deduce that
O +P = P.

Thirdly, each element has an additive inverse (by taking the vertical line through P).

Lastly: associativity. This requires some rather nice geometric arguments, but at least with a picture it
seems plausible, for the moment.

What is an algebraic formula for addition? First: the general case. If P = (x1,y1) and
Q = (x2,y2) with x1 6= x2 then the line through them is

y =
(

y1− y2

x1− x2

)
(x− x2)+ y2 = αx+β .

If P = Q then instead we want the tangent line, so we differentiate y2 = x3 +ax+b to obtain 2yy′ =
3x2 +a, whence the slope of the tangent line at (x1,y1) is

α =
3x2

1 +a
2y1

;

we could also compute the y-intercept β .

The third point of intersection is then a point (x,y) on this line such that y2 = x3 + ax+ b, that is,
corresponds to x such that

(αx+β)2 = x3 +ax+b

so
x3− (αx+β)2 +ax+b = 0

This factors as
(x− x1)(x− x2)(x− x3) = 0

since x1 and x2 are both roots already. Consequently, x3 = α2− x1− x2 (from the coefficient of x2 on
both sides). We simplify to get the following formulae.

Lemma B.4 If P = (x1,y1) and Q = (x2,y2) then the sum P+Q is O if x1 = x2 and y1 =−y2 and
otherwise is the point (x3,y3) where

x3 = α
2− x1− x2, y3 = α(x1− x3)− y1,

B.3 ECC: Elliptic Curve Cryptography 181

and

α =

{
y1−y2
x1−x2

if P = (x1,y1) 6= Q = (x2,y2), x1 6= x2;
3x2

1+a
2y1

if P = Q, y1 6= 0.

Using these equations, one could verify associativity directly (though very painfully).

More importantly: these equations give the group law on E(K), for any field K (of characteristic
different from 2 or 3), since applying the formulas will work regardless of the underlying field.

� Example B.5 Let y2 = x3 +1 and K = F5. Find all multiples of P = (2,3).

Solution: We first note that (2,3) is indeed a K-rational point on this curve. By the above formula:

α =
3(4)+0

2(3)
= 2;x3 = 4−2(2) = 0,y3 = 2(2−0)−3 = 1

so 2P = (0,1). Now 2P+P is given by

α =
2
2
= 1, x3 = 1−2−0 =−1,y3 = 1(0− (−1))−1 = 0

so 3P = (−1,0). We get 4P = 2(2P):

α =
3(0)+0

2(1)
= 0; x3 = 02−2(0) = 0,y3 = 0−1 =−1

that is, 4P = (0,−1). Writing 5P = 2P+3P gives

α =
1
1
= 1; x3 = 1−0+1 = 2;y3 = 1(0−2)−1 =−3

so 5P = (2,2). Finally, 6P = 2(3P) =O since the line tangent to 3P has vertical slope (α is undefined).

So we have deduced that the cyclic subgroup generated by P is the set

{O,(2,3),(0,1),(−1,0),(0,−1),(2,2)}

which is in fact the entire set E(K). Hence E(K) is a cyclic group of order 6. �

This latter was a pleasant surprise: although it’s clear that if a group has prime order, then it must be
cyclic (and any point P 6= O must be a generator), in this example the group of points was cyclic even
though its order was not prime.

B.3 ECC: Elliptic Curve Cryptography

There are a number of cryptosystems built upon cyclic groups which can be adapted for use with elliptic
curves in a straightforward way. Let’s describe two of the ones we already know; see also Koblitz for a
description of the Massey-Omura cryptosystem, for example.

182 Appendix B. Elliptic curves over finite fields

Diffie-Hellmann key exchange on elliptic curves For this method, Alice and Bob publicly
agree on an elliptic curve E defined over a field Fq and a base point P ∈ E(Fq), such that the order N of
P (meaning, the least positive n such that nP = O) is very large. Then the subgroup of E(Fq) generated
by P is the cyclic subgroup of the classical Diffie-Hellmann key exchange.

Now Alice chooses a large integer a, of the same order of magnitude at N; she calculates aP and
sends it to Bob; similarly, Bob chooses b and sends bP to Alice. Finally, Alice and Bob each compute
abP = a(bP) = b(aP). Then they can, for example, use the x-coordinate of their answer as their shared
secret key.

Meanwhile, Eve has access to P, aP and bP; if the discrete logarithm problem is hard on E, then it is
assumed (the computational Diffie-Hellmann problem) that Eve cannot recover abP.

ElGamal over elliptic curves For this public key method, there is a publicly-available elliptic
curve E defined over Fq as well as a publicly known point P ∈ E(Fq) which generates a large cyclic
subgroup of E(Fq).

To compute his public and private keys, Bob chooses a large integer b, calculates bP and publishes this
as his public key; he keeps b as his private key.

To send a message m to Bob, Alice encodes m as a point Pm ∈ E(Fq) and chooses a large random
integer a. She then sends to Bob the pair:

(Q,R) = (aP,Pm +a(bP)).

Bob, upon receiving this pair, recovers Pm as

Pm = R−bQ = Pm +a(bP)−b(aP).

Again, Eve needs to discover either a or b to recover Pm, but to do so from the information available
requires Eve to solve the DLP on the elliptic curve.

Computational costs As always, we should consider the cost (and possibility!) of implementing
each of our cryptosystems, before exploring their security. These costs include:

• Set-up costs: choosing an elliptic curve and a large cyclic subgroup with generator P; finding the
number of points on the curve.

• Operational costs: computing aP for a large; adding two points on the curve; associating
messages m to points Pm on the curve.

So far, we have only answered part of the second question: complexity of point addition and scalar
multiplication. Namely, to add two points involves about 10 arithmetic operations (addition, subtraction,
multiplication, division) over the finite field. Thus if our field is Zp, the complexity is O(10log2 p) =
O(log2 p). If our field is an extension of Zp, then this complexity depends on the implementation of the
field arithmetic (and so this algorithm would only be feasible if the field operations were). To calculate
aP, for large a, we use the “double and add” technique achieved by expressing a in binary; as above
this gives, over Zp, a cost of O(log3 p).

In the sections that follow, let us take up the challenge of some of the other questions above.

The number of points on an elliptic curve It’s easy to see that

y2 = x3 +ax+b

B.3 ECC: Elliptic Curve Cryptography 183

has at most 2q+1 solutions in K2: the point at infinity, plus at most q pairs (x,±
√

x3 +ax+b). If we
set χ(x) = 1 if x is a square in K∗, χ(0) = 0, and −1 otherwise, then the number of points on E(K) is

1+ ∑
x∈K

(1+χ(x3 +ax+b)) = q+1+ ∑
x∈K

χ(x3 +ax+b).

Since χ(x) is about equally likely to be +1 as −1, one expects that χ(x3 + ax + b) would have
approximately the same behaviour; the sum then becomes a random walk and probability theory
suggests the sum will be bounded by

√
q in absolute value, with almost uniform distribution. In fact,

this is true!

Theorem B.6 — Hasse’s theorem. The number of points N on the Fq-rational points of an elliptic
curve E satisfies

q+1−2
√

q≤ N ≤ q+1+2
√

q

and furthermore, the number of curves of size N = q+1+ t is approximately 1
π

√
4q− t2.

There exist polynomial time algorithms due to Schoof, Elkies and Atkin, to calculate the precise number
of points on an elliptic curve over Fq. Unfortunately, they range in O(log5 q) to O(log8 q), and for a
400-bit prime, it could take a year to complete the calculation! When q = 2k, there are more efficient
algorithms available, that make even k = 10,000 bits possible.

What this implies: if you fix a prime power q and some primes near q+ 1, then there is a good
probability of choosing an elliptic curve over Fq of prime order.

The structure of the group of points on an elliptic curve. It turns out that the group E(Fq) is
very often a cyclic group, or close to it. For instance, if |E(Fq)|= n where n is a prime number, then
necessarily E(Fq) is cyclic and any point P ∈ E(Fq), P 6= O , is a generator. (Exercise)

More generally, we have the following theorem; the first part is due to Shoof.

Theorem B.7 Let q = pn for a prime p and suppose E is an elliptic curve such that |E(Fq)|= m =
q+1− t. Then E(Fq) is cyclic

• if t =±√q and n is even or gcd(p−1,3) = 1; OR
• if t =±√pq, and n is odd and p ∈ {2,3}; OR
• if t = 0, n is odd and q 6= 3 mod 4; OR
• if t = 0, p 6= 1 mod 4 and q 6= 3 mod 4.

In general, E(Fq) is either cyclic or a product of at most two cyclic subgroups.

There exist extensive tables of elliptic curves over various finite fields, together with generators (or,
generators for their maximal cyclic subgroups). Elliptic curves are of interest far beyond cryptography;
they originally arose in number theory and are characterised in algebraic geometry as nonsingular
projective curves of genus 1. For example, Koblitz’s interests in elliptic curves (see chapter VI) extend
into the Weil conjectures about zeta functions.

Finding points on an elliptic curve and associating messages to points Finding points
on an elliptic curve E(F) is fairly easy for fields F = Fp, p a prime. If E is defined by the equation
y2 = x3 +ax+b, for example, then

184 Appendix B. Elliptic curves over finite fields

• choose x ∈ Fp at random until x3 + ax+ b is a square, which can be done with the theory of
quadratic residues mod p;

• compute the two square roots of x3+ax+b mod p (for which there are efficient algorithms, such
as Shanks–Tonelli).

It also reasonably efficient to find random points on elliptic curves over Fq.

This ability to find points is important for a number of practical reasons, including the need to identify
points on our elliptic curve with our plaintext messages. A standard way to do this latter (see [Kob87,
Chapter VI.2]): fix k sufficiently large so that the size of the alphabet times k is less than q.

• given an integer m (eg: a binary string identified as an integer in base-2)
• write it in base p
• identify this string with a polynomial f ∈ Fp[X]

• (assuming q = pr and deg(f)< r) identify f with an element x of Fq

• test if x3 +ax+b has a square root y; if so, identify m with (one choice of) (x,y) ∈ E(Fq).
• otherwise, replace x with each of x+1,x+2, · · · in turn, until a point is found.

This algorithm is deterministic and invertible: if a point (x,y) ∈ E(Fq) represents a value m, then
bx/kc= m.

There is lots more to say, including about generating curves and the points on them. Moreover, we
haven’t explained the “magic" of why E(K) is a group — it’s a consequence of a fundamental concept
of algebraic geometry (and number theory!), which defines the group of divisors on a curve.

C. Solutions

C.1 Section 2.4

Question 1 : The standard set of representatives is {0,1,2,3,4} but any set will do; another common
choice (see Section 11) is {−2,−1,0,1,2}. The following tables come out the same for this second
case when we replace 3 with −2≡ 3 and 4 with −1≡ 4:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that the addition table is very regular but the multiplication table is more chaotic; this has
cryptographic implications. Note that in this case, each row of the multiplication table contains every
element exactly once. Why?

Question 2 : We verify that (Z6,+) satisfies the axioms of an additive group, where Z6 = {0,1,2,3,4,5}:
closure Adding two integers and taking the remainder mod 6 gives an integer between 0 and 5.
commutativity Addition in the integers is commutative, so this also holds here.
associativity Addition in the integers is associative, so this also holds here.
identity The identity element 0 also acts as the identity element in the integers, so this also holds here.
inverse The inverse of a∈ {0,1,2,3,4,5} is b = 6−a because b is in the set and a+b = a+(6−a) =

6≡ 0.
Note that this was NOT the subgroup test, because the operation is NOT the same as in the integers.
In fact, as a subset of the integers, {0,1,2,3,4,5} is not a subgroup — it’s not closed under normal
addition. Nonetheless, we can leverage our understanding of the integers to infer this is a group (as

186 Appendix C. Solutions

above).

We can write out the multiplication table for Z6 to find all the elements without multiplicative inverses:

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Thus 0,2,3,4 do not have multiplicative inverses modulo 6. Alternatively, we may note that these are
all the elements whose gcd with 6 is not 1.

It follows that Z6 is not a group under multiplication, since the axiom about inverses fails.

Question 4 : We can write out the addition and multiplication tables (noting for example that
x+ x = 2x = 0):

+ 0 1 x 1+ x
0 0 1 x 1+ x
1 1 0 1+ x x
x x 1+ x 0 1

1+ x 1+ x x 1 0

· 1 x 1+ x
1 1 x 1+ x
x x 1+ x 1

1+ x 1+ x 1 x

We have used calculations like (1+ x)(1+ x) = 1+2x+ x2 = 1+0+(1+ x) = 2+ x = x to complete
the second table. Note that we removed 0 since the requirement is that F \{0} is a group.

We already knew the addition and multiplication are commutative, associative and distributive because
this holds for polynomials; these tables show in addition that the sets are closed under the operations,
that there is an identity in each case, and that every element has an inverse. Thus it’s a field with 4
elements, denoted F4.

To show that F4 6∼= Z4, note that Z4 \{0} is not a field since 2 is not invertible. Or else note that (Z4,+)
is cyclic, with a generator of order 4, but that (F4,+) is not cyclic: every nonzero element has order 2.

Question 8 : We can freely choose y and z in Z7; for any such pair (y,z), we have a unique choice
x =−y− z ∈ Z7 for which (x,y,z) ∈W . Thus if we choose (y,z) = (1,0) we get (6,1,0) ∈W and if
we choose (y,z) = (0,1) we get (6,0,1) ∈W .

These are linearly independent (because a set of two vectors is linearly independent iff neither is a scalar
multiple of the other), so dim(W)≥ 2. Since W (Z3

7, which has dimension 3, we have dim(W) = 2
and {610,601} is a basis.

Question 9 : If W is a vector space of dimension n over a field with q elements, then there is a
basis B = {w1, · · · ,wn} of W . This means that every vector in W can be written as a unique linear

C.1 Section 2.4 187

combination of the vectors in B. That is, W is in bijection with Fn by the map sending

w =
n

∑
i=1

ciwi ∈W

to its coordinates (c1, · · · ,cn) ∈ Fn. Thus |W |= |Fn|= |F |n = qn.

Bibliography

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle. Crystals-kyber
(version 3.02) – submission to round 3 of the nist post-quantum project: Specification
document. https://pq-crystals.org/, under Resources, 2021.

[ABD+22] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle. Crystals:
Cryptographic suite for algebraic lattices. https://pq-crystals.org/, 2022.

[Ber68] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill Book Co., New York-
Toronto-London, 1968.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., 24:713–735,
1970.

[BRC60] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group codes.
Information and Control, 3:68–79, 1960.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Math. Comp., 36(154):587–592, 1981.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, IT-22(6):644–654, 1976.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.

[Gal30] Évariste Galois. Sur la théorie des nombres. Bulletin des sciences mathématiques, physiques
et chimiques, 13:428–435, 1830.

[GJN21] Thierry Giordano, Barry Jessup, and Monica Nevins. Vector Spaces First: An Introduction
to Linear Algebra. uO Research, http://hdl.handle.net/10393/43955, 2021.

[Hoc59] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–156, 1959.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a ring-based public key
cryptosystem. In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture
Notes in Comput. Sci., pages 267–288. Springer, Berlin, 1998.

[HPS14] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to mathematical
cryptography. Undergraduate Texts in Mathematics. Springer, New York, second edition,
2014.

190 BIBLIOGRAPHY

[Jor70] Camille Jordan. Traité des substitutions et des équations algébriques. Les Grands Clas-
siques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Sceaux,
1989, 1870. Reprint of the 1870 original.

[Kob87] Neal Koblitz. A course in number theory and cryptography, volume 114 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1987.

[LIN75] J. H. VAN LINT. A survey of perfect codes. The Rocky Mountain Journal of Mathematics,
5(2):199–224, 1975.

[Mac03] David J. C. MacKay. Information theory, inference and learning algorithms. Cambridge
University Press, New York, 2003.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. JPL DSN
Progress Report, pages 114–116, 1978.

[MZ23] Robert Morelos-Zaragoza. The error correcting codes (ecc) page. http://www.eccpage.com/,
Last accessed 2023.

[Nic12] W. Keith Nicholson. Introduction to abstract algebra. Wiley-Interscience [John Wiley &
Sons], Hoboken, NJ, fourth edition, 2012.

[OR01] J.J. O’Connor and E.F. Robertson. Alexandre-théophile vandermonde. MacTutor History
of Mathematics, (University of St Andrews, Scotland), 2001.

[Ple98] Vera Pless. Introduction to the theory of error-correcting codes. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York, third
edition, 1998. A Wiley-Interscience Publication.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8:S5–S9, 1962.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6), sep 2009.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423,
623–656, 1948.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell System Tech. J., 28:656–
715, 1949.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

Index

abelian group, 18
additive group, 17
affine coordinates, 179
algebraic variety, 178

BCH code, 117
binary, 172
binary field, 18, 173
binary symmetric channel, 25
block error, 26
blocks, 14

ceiling function, 172
channel, 14
channel capacity, 26
characteristic, 97
closed ball of radius r centered at x, 28
code rate, 23
codeword, 14, 23
commutative ring, 65
constant polynomials, 66
correct t errors, 31
coset, 49
coset leaders, 50
coset representatives, 50
cryptography, 11, 13, 63, 129, 167
cycle notation, 174
cyclic, 58
cyclotomic polynomial, 84

decodes, 14
degree n extension, 100
designed distance, 117
detect t errors, 31
Diffie–Hellman assumption, 135
dimension, 20
discrete logarithm, 134
discrete logarithm problem, 134
division algorithm, 67
dual code, 44

elliptic curve, 136, 178
encodes, 14

entropy, 26
ephemeral key, 135
equidistant code, 61
equivalence classes, 176
equivalence relation, 176
equivalent codes, 39
error locator polynomial, 120
error polynomial, 119
error vector, 27, 31
error-correcting codes, 11, 13, 14, 63, 129, 167
error-detecting codes, 14
Euclidean ring, 66
evaluation map, 76
extension field, 99

factor ring, 73
field, 18, 65
floor function, 172
formal polynomials, 85
Frobenius map, 87

Galois field, 98, 106
generator matrix, 40
Gilbert–Varshamov bound, 37
Goppa codes, 147
group, 18

Hamming bound, 34
Hamming code, 56
Hamming distance, 27
Hamming weight, 27
hexadecimal numbers, 172
homogeneous polynomial in several variables,

177

ideal, 71
ideal generated by p, 71
indicator vector, 161
information set, 153
irreducible, 69, 99

lattice reduction algorithms, 144
length of a code, 23

192 Index

linear block code, 23
linear code, 23
linearly independent, 20
Luhn algorithm, 36

maximal ideal, 98
maximum distance separable, 35
maximum-likelihood decoder (ML), 27
metric, 27
minimal polynomial, 104, 105
minimum distance, 30

noisy, 14

one-time pad, 132
one-way, 134
open ball of radius r centered at x, 28

parity check matrix, 46
perfect code, 35
permutation, 174
point at infinity, 179
polynomial, constant term, 66
polynomial, degree, 66
polynomial, leading term, 66
polynomial, monic, 66
primitive nth root of unity, 109
primitive element, 102
principal ideal, 71
projective plane, 177

quotient ring, 73

received word, 14
reciprocal polynomial, 91
Reed-Solomon code, 118
ring, 65
ring homomorphism, 76

scaled equivalence, 40, 48
scrambler matrix, 148
shift register, 94
shortest vector problem, 143, 144
simplex code, 61
Singleton bound, 31
size of the code, 23
skew field, 18
spans, 20
sphere-packing bound, 34

splitting field, 106
standard array, 51
standard form, 41, 102
subfield, 99
subgroup, 18
subspace, 20
subspace test, 20
syndrome, 52
systematic code, 41

transmission, 13
trapdoor, 134
trivial coset, 49

unit, 68
unital ring, 65
units of R, 65

Vandemonde determinant, 111
vector space, 20

zero set, 178

	Acknowledgements
	Preface
	I Codes
	1 Introduction
	2 Algebraic structures
	2.1 Groups
	2.2 Finite Fields
	2.3 Vector spaces
	2.4 Exercises

	3 Linear codes
	3.1 Definitions and examples of linear codes
	3.2 Binary symmetric channels
	3.3 Maximum-likelihood decoding
	3.4 Hamming weight and Hamming distance
	3.5 The minimum distance of a code
	3.6 Error-correction and error-detection
	3.7 Hamming bound
	3.8 Exercises

	4 Towards a systematic construction of codes
	4.1 Equivalent codes
	4.2 Systematic codes
	4.3 Exercises
	4.4 The dual code
	4.5 Dot products over a finite field
	4.6 Parity check matrices
	4.7 Exercises

	5 Decoding
	5.1 The idea : cosets
	5.2 The Standard Array and Coset Leaders
	5.3 Syndromes
	5.4 Exercises
	5.5 Hamming codes
	5.6 The search for perfect codes
	5.7 Another desirable structure: cyclic codes
	5.8 Exercises

	II Linear codes from polynomial rings
	6 Rings
	6.1 Definition of a ring
	6.2 Polynomial rings over fields
	6.3 Greatest common divisor
	6.4 Irreducible polynomials
	6.5 Exercises
	6.6 Ideals
	6.7 Quotient rings
	6.8 Writing elements of a quotient of the polynomial ring explicitly
	6.9 Exercises

	7 Cyclic codes, revisited
	7.1 Cyclic codes as subspaces of F[x]/xn-1
	7.2 Factors of xn-1 over Q: cyclotomic polynomials
	7.3 Another constraint on cyclic codes over Zp
	7.4 Exercises
	7.5 A first generator matrix for a cyclic code
	7.6 Parity check matrices for cyclic codes
	7.7 Alternate generator matrix
	7.8 Encoding cyclic codes with shift registers
	7.9 Exercises

	8 Finite fields, beyond Zp
	8.1 Looking for other finite fields
	8.2 Using quotient rings to construct fields
	8.3 Exercises
	8.4 Representing elements of a finite field in two ways
	8.5 Application: minimal polynomials
	8.6 Exercises
	8.7 Main theorems about finite fields
	8.8 Proof of the primitive element theorem
	8.9 Exercises

	9 BCH codes and Reed-Solomon Codes
	9.1 The Vandermonde determinant
	9.2 The BCH theorem
	9.3 Designed distance codes or BCH codes
	9.4 A new kind of parity check matrix for BCH codes
	9.5 Reed-Solomon codes
	9.6 Decoding BCH codes: the theory
	9.7 Decoding BCH codes: examples
	9.8 Further topics of interest
	9.9 Exercises

	III Cryptography
	10 Public-Key Cryptography
	10.1 Perfect secrecy: the one-time pad
	10.2 New directions in cryptography
	10.3 Diffie–Hellman key exchange and the discrete logarithm
	10.4 The ElGamal public-key cryptosystem
	10.5 Exercises
	10.6 Post-quantum cryptography

	11 NTRU
	11.1 NTRU algorithm
	11.2 Analysis of NTRU
	11.3 The NTRU Lattice
	11.4 Conclusions
	11.5 Exercises

	12 Code-based cryptography
	12.1 McEliece cryptosystem
	12.2 Niederreiter cryptosystem
	12.3 Classic McEliece
	12.4 Information set decoding
	12.5 Attacking McEliece

	13 Cryptography from errors
	13.1 Learning with Errors (LWE)
	13.2 Crystals Kyber
	13.3 Exercises
	13.4 Final thoughts

	IV Appendix
	A Mathematical background
	A.1 The Euclidean algorithm and Extended Euclidean Algorithm
	A.2 Working in base n
	A.3 Working mod n
	A.4 Permutations
	A.5 Exercises

	B Elliptic curves over finite fields
	B.1 Definitions
	B.2 The group law on E(K)
	B.3 ECC: Elliptic Curve Cryptography

	C Solutions
	C.1 Section 2.4

	Bibliography
	Index

