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Abstract. Quantum computers promise efficient algorithms for solving the Hidden
Subgroup Problem (HSP) in certain groups. The following report will outline
the HSP and the relevant research being conducted in this field, including some
open problems. Its main focus, however, will be the usage of the Clebsch-Gordon
transform to efficiently solve the HSP in a specific class of extraspecial p-groups.
Finally, the success of this methodology for other groups, specifically nilpotent
wreath product groups, will be explored.
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Chapter 1

Introduction

1.1 Overview

The Hidden Subgroup Problem (HSP) is a relevant problem in quantum computing, due to the increased
efficiency of algorithms implemented on such computers, using techniques such as the quantum Fourier trans-
form (QFT), over their classical counterparts [19]. Furthermore, the hardness of this problem is related to
the security of a variety of cryptographic schemes; most notably, Shor’s algorithm for factoring integers solves
the HSP in the abelian case [26], which is relevant for RSA schemes. Furthermore, the graph isomorphism
problem and shortest vector problem are equivalent to a certain subset of the HSP in the symmetric and
dihedral groups, respectively, and thus finding an efficient algorithm for these open problems would indicate
that currently relevant cryptographic schemes may not be secure in a post-quantum world [19].

The following report will begin by introducing the HSP and some relevant results, and will provide a summary
of relevant representation theory. Then, in Chapter 2, it will discuss extraspecial p-groups and two closely
related algorithms for solving the HSP in such groups which both rely on a Clebsch-Gordon transform and
exploit the conjugacy classes and representation theory of the groups at hand. Finally, in Chapter 3 a certain
class of wreath product groups will be explored in order to adapt the methodology in Chapter 2 to this other
class of groups.

While definitions will be given when considered necessary, a basic background in group theory, linear algebra,
and quantum information theory is assumed.

1.2 Hidden Subgroup Problem

First, we must define the Hidden Subgroup Problem (HSP). Consider a group G and a set X and suppose
there is a hiding function f : GÑ X with the property that, for some hidden subgroup H of G, f is constant
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and distinct on the left cosets of H. That is, for all g, h P G, it has the property that

fpgHq “ fphHq ô g´1h P H

The goal of the HSP is to find a generating set for H given repeated evaluations of f . Note that the function
f is unknown.

Of course, one could simply query the function on each element g P G, and thus after |G| queries H can be
completely determined. While this suffices for small groups, it is not nearly efficient enough for groups of
larger order. As such, algorithms for solving the HSP aim to reduce the query complexity to Oppolylogp|G|qq,
which includes the quantum part of the algorithm and any classical post-processing [19].

A related problem is the “Hidden Subgroup Conjugacy Problem” (HSCP), where instead of a generating set
for the hidden subgroup H all that needs to be determined is which conjugacy class the subgroup belongs
to. For some groups, solving the HSCP followed by some post-processing allows one to solve the HSP.

The standard algorithm for solving the HSP in a group G with hiding function f and hidden subgroup H,
as described in [6] and [19], is as follows:

1. Prepare a uniform superposition over the group G with an additional “output” register,

|Gy|0y “
1

a

|G|

ÿ

gPG

|gy|0y

2. Apply the function f on each g P G,

|Gy|fpGqy “
1

a

|G|

ÿ

gPG

|gy|fpgqy

3. Measure the second register to obtain some value fpg0q, which collapses to state so that only states
which contain that value in the second register. These are precisely the elements in the coset g0H.
One can then discard the second register, obtaining the coset state

|g0Hy “
1

a

|H|

ÿ

hPH

|g0hy

Note that g0 is a uniformly random element. As such, the above state, called a pure state, may
equivalently be represented by a density matrix, which corresponds to a completely mixed state,

ρH “
1

|G|

ÿ

gPG

|gHyxgH|

4. Compute the QFT on the coset state, resulting in the state

ÿ

σP pG

dσ
ÿ

i,j“0

d

dσ
|G||H|

p
ÿ

hPH

σpg0hqqi,j |σ, i, jy

where pG is a complete set of irreducible representations of G, and dσ denotes the dimension of σ.
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5. One can then measure the above state. Weak Fourier sampling results in only measuring an irrep label
σ: this is sufficient for abelian and many nearly-abelian groups. On the other hand, strong Fourier
sampling measures the label σ and indices i, j.

6. Finally, based on repeated measurements, conduct classical post-processing to extract the hidden
subgroup.

Of course, when the group is non-abelian the existence of an efficient QFT, post-processing, and useful choice
of basis for the irreps is not guaranteed. As such, the general non-abelian case remains an open problem.

Aside from an efficient algorithm for the abelian case [26], other noteworthy algorithms have been found,
namely for “nearly abelian” groups. Namely, [10] gives an algorithm for finding the normal core of a hidden
subgroup in a nonabelian group, thus providing an efficient algorithm to solve the HSP when the hidden
subgroup is normal. Numerous positive results have been given for the Weyl-Heisenberg groups [2], [17],
[13], as well as other groups with nilpotency class of two [14]. Furthermore, there have been a variety of
algorithms given for different classes of semidirect product groups. This includes [20], which provided an
algorithm for affine groups and q-hedral groups Zp¸Zq under certain conditions for p, q; [25], which examines
wreath product groups of the form Zn2 o Z2; and [12], which looked specifically at Zmpr ¸ Zp as a black-box
group.

There are numerous open problems which remain. While it has been shown that using a polynomial number
of entangled registers one can information-theoretically solve the HSP in an arbitrary group [9], this is
by no means efficient. However, exploiting entangled registers does provide some positive results, as will be

shown in subsequent sections. Furthermore, while Kuperberg gives a 2Op
?
p logpNqqq-time and -quantum space

algorithm for determining an order two hidden subgroup of the dihedral group, implemented as a sort of
“quantum sieve” and relying on the abelian Fourier transform, [18], with an optimal measurement given in
[3], no significant improvements have been made on the efficiency of this algorithm. Since the dihedral HSP
is equivalent to the fpnq-uniform shortest vector problem (uSVP); that is, the SVP in which it is guaranteed
that there is a unique nonzero vector which is shorter than all other, non-parallel, non-zero vectors by a
factor of fpnq [16], finding an efficient solution, or proving its hardness, would have important implications
for post-quantum cryptography.

Similarly, the HSP for symmetric groups Sn is equivalent to solving the graph isomorphism and automorphism
problems, which has applications in zero-knowledge proofs [22]. Unfortunately, mainly negative results have
been shown for this group: strong Fourier sampling in some arbitrary basis cannot efficiently solve the HSP
in this group [22].

There are, of course, a variety of other algorithms, groups, and results, which not have been mentioned
here, including some for infinite groups. For further information any of the papers cited above provide
useful background, and specifically [19] is recommended as an in-depth introduction to the HSP and recent
research.
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1.3 Representation Theory

The following section will provide some useful definitions. Unless otherwise stated, these definitions and
theorems are modified from [27]. For additional information, Steinberg’s book [27] or the self-contained
summary of the HSP by Lomont [19], which includes relevant information on representation theory, are
useful reads.

Definition 1 (Representation). Suppose G is a group and V a vector space over C. Then, a homomorphism
φ : GÑ GLpV q is called a representation of G. The degree of a representation dφ is the dimension of V .

Note that one could consider a vector space over any field F instead, but for the remainder of this report we
will assume that the vector space is finite dimensional over the complex numbers, and that the group G is
finite.

Definition 2 (Equivalence). Let G be a group and let σ : GÑ GLpV q, ρ : GÑ GLpW q be two representa-
tions of G, where V,W are vector spaces. Then, σ, ρ are said to be equivalent if there is a linear isomorphism
T : V ÑW satisfying the relation

TσgT
´1 “ ρg

for all g P G. In this case, write σ „ ρ.

Definition 3 (G-invariant subspace). Let G be a group and φ : G Ñ GLpV q a representation. Then, a
subspace W of V is called G-invariant if φpgqw PW for all w PW .

Definition 4 (Irreducible). A representation φ : G Ñ GLpV q of a group G is called irreducible if the only
G´invariant subspaces of V are V and t0u.

For brevity, the remainder of this report will refer to these irreducible representations as irreps.

Definition 5 (Character). The character of a representation is defined as the trace of the matrix rep-
resentation. Specifically, given a representation ρ : G Ñ GLpV q for a group G, its character is a group
homomorphism χ : GtoC is given by χ “ trpρq.

Note that the character of a representation is constant on conjugacy classes, due to the fact that the
TrpA´1BAq “ TrpBq for matrices A,B. This gives a one-to-one correspondence between conjugacy classes
of a group and its unique characters.

Definition 6 (Restriction). Consider a group G with representation φ : GÑ GLpV q and with a subgroup
H ď G. Then, a restriction of φ to H is given as φ|H : H Ñ GLpV q where φ|Hphq “ φphq for all h P H.

Definition 7. Consider a group H which is a subgroup of G with a representation φ : H Ñ GLpW q with
dimension dφ. Then, the induced representation of φ to a representation of G is a dφrG : Hs-dimensional
representation denoted IndGHφ : GÑ GLpW q where W is a dφrG : Hs-dimensional space given by

W “ ‘tPTVt

where T is a complete set of coset representatives of rG : Hs. Then, if one writes g P G as g “ tghg for some
tg P T, hg P H, then the action of g on this larger vector space W is given by

gW “ tghgp‘tPTVtq “ ‘tPThgVtgt
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As an important result, recall that a matrix U is unitary if U :U “ UU : “ I.

Proposition 1.3.0.0.1 (3.2.4 [27]). Let G be a finite group and φ : G Ñ GLpV q a representation. Then,
any such representation is equivalent to a unitary representation.

This is relevant due to the importance of unitary matrices in quantum mechanics.
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Chapter 2

Extraspecial p-Groups

2.1 Overview

Let us begin with a few definitions before exploring the nature of extraspecial p-groups.

Definition 8 (p-group). Let p be a prime. Then, a p-group is a group in which every element has order pk

for some k ě 0.

If such a group is finite then we must have that |G| “ pn for some n P N. There are a number of interesting
properties of such groups. This section will explore some relevant groups and their properties in the hopes
of generalizing the HSP to some class of p´groups.

Definition 9 (Frattini subgroup). The Frattini subgroup of a group G, denoted φpGq, is the intersection of
all maximal proper subgroups of G.

Some noteworthy properties of Frattini subgroups, given in [1] include:

1. It is a characteristic subgroup of G – that is, a subgroup where for all ψ P AutpGq, ψpφpGqq “ φpGq.

2. If G{φpGq is cyclic then so is G

3. If G is a p-group then φpGq is the smallest normal subgroup such that G{φpGq is elementary abelian
– that is, a subgroup where every element has order p.

Definition 10 (Commutator subgroup). Given a group G, its commutator subgroup (or derived subgroup)
is the group

G1 “ xtrg, hs : g, h P Guy

where rg, hs “ g´1h´1gh.
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Finally, recall that the center of a group is the subgroup of elements which commutes with every element in
the group. Specifically, it is given as

ZpGq “ th P G : gh “ hg@g P Gu

and if G is abelian then ZpGq “ G.

Definition 11 (Extraspecial p-group). Let p be a prime and let G be a p-group. G is said to be an
extraspecial p-group if ZpGq “ φpGq “ G1 and |ZpGq| “ p. Notice that this implies that G{ZpGq is an
elementary abelian p´group.

Definition 12 (Upper central series). Let G be a group. The upper central series of G is the tower

t1u “ Z0 Ÿ Z1 Ÿ Z2...

where Zi`1 “ tx P G : rx, gs P Zi @g P Gu. In addition, Z1 “ ZpGq and so one can define Zi`1 instead
according to the relation Zi`1{Zi “ ZpG{Ziq.

Definition 13 (Lower central series). Let G be a group. Then, the lower central series of G is the tower

G “ A0 ŹA1 ŹA2...

where Ai`1 “ rAi, Gs “ xra, gs : a P Ai, g P Gy. Clearly, A1 “ G1.

Definition 14 (Nilpotent group). A nilpotent group of class n, or, more briefly, a nil-n group, is a group G
where An “ t1u, or, equivalently, Zn “ G.

Nilpotent groups are related to p groups in a number of ways. First, all p groups are nilpotent. Specifically,
extraspecial p groups are nil-2 groups.

Claim 2.1.0.0.1. Let G be an extraspecial p group of order p2n`1. Then, G is a nil-2-potent group.

Proof. We know that ZpGq “ G1 – Zp for an extraspecial p group G. Then,

Z2 “ tx P G : rx, gs P ZpGq,@g P Gu “ G

since ZpGq “ rG,Gs and so rx, gs P ZpGq@x, g P G. We thus get the upper central series

1Ÿ ZpGq ŸG

Equivalently, we could instead consider the lower central series. Since A1 “ G1 “ rG,Gs “ ZpGq – Zp,

A2 “ xrz, gs : z P ZpGq, g P Gy “ t1u

since ZpGq commutes with everything and so rz, gs “ 1@g P G, z P ZpGq, where 1 is the identity. Thus, we
have the lower central series

GŹG1 Ź 1
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By definition, we can see that Zi`1{Zi is an abelian group and so it is solvable. In addition, if G is finite and
nilpotent then it is isomorphic to a direct product of its Sylow p-groups, all of which are normal in G ([7]).

This means that for a finite nilpotent group G, if we can find an algorithm to solve the HSP in Sylow
p-groups, then, since computing the direct product is efficient, and since all the Sylow subgroups are unique,
we can efficiently determine the HSP in the nilpotent group. Finally, elements of coprime order commute.
This makes finite nilpotent groups “almost abelian”.

Suppose G is an extraspecial p-group as defined above. Let us examine r , s : GˆGÑ G in this case, using
the methodology in [15], in order to justify that only two classes of such groups exist, distinguished by their
exponent.

Let g, h, k P G. Then, since G1 “ ZpGq we know that all elements in G1 commute with G. Then,

rgh, ks “ pghq´1k´1pghqk “ h´1g´1k´1ghk

“ h´1pg´1k´1gkqk´1hk “ rg, ksh´1k´1hk

“ rg, ksrh, ks

and
pghqn “ gnhnrh, gs

npn´1q
2 .

Let G be an extraspecial p-group of order p2n`1 (by [15] there are no extraspecial groups of order p2n). Then,
ZpGq – Zp, and one can identify the vector space V “ Z2n

p with G{ZpGq “ tp0, b, cqZpGq : b, c P Znpu – Z2n
p

where (b,c) “ p0, b, cqZpGq. Then,

Claim 2.1.0.0.2. The map b : G{ZpGq ˆ G{ZpGq Ñ ZpGq given by (
¯
g,hq “ rg, hs is bilinear and skew

symmetric.

Proof. Let x “ px1, x2q,y “ py1, y2q, z “ pz1, z2q P V and a, c scalars. Then, we have already shown that
rgh, ks “ rg, ksrh, ks, g, h, k P G. Then, since G is a group and thus closed, if we set g :“ ax, h :“ cy, k :“ z
we can see that

bpax+cy, zq “ rax` cy, zs “ rg ` h, ks “ rg, ks ` rh, ks

“ rax, zs ` rcy, zs “ arx, zs ` cry, zs “ abpx, zq ` cbpy, zq

The other side follows from a similar proof.

To show that b is skew symmetric, note that it is alternating; that is, bpx,xq “ 0. This is because rx, xs “ eG
where e is the identity in G. Since ZpGq – Fp which is an additive group we have that eG – 0 and so
bpx,xq “ rx, xs “ eG “ 0 as required.

Now, since b is bilinear we must have that 0 “ bpx´ y, y´ xq “ bpx, y´ xq ´ bpy, y´ xq “ bpx, yq ´ bpx, xq ´
bpy, yq ` bpy, xq “ bpx, yq ` bpy, xq and thus bpx, yq “ ´bpy, xq. Thus, it is also skew symmetric.

Finally, let us check that the Jacobi identity holds: that is, that

bpx, bpy, zqq ` bpy, bpz, xqq ` bpz, bpx, yqq “ 0
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Since our vector space V is spanned by te, fu for standard basis vector over the field Fp we can simply
check the Jacobi identity for these two vectors, since it must hold for the rest of V by linearity. Note that
e “ p1, 0q – p0, 1, 0qZpGq P G{ZpGq and f “ p0, 1q – p0, 0, 1qZpGq P G{ZpGq. Then,

bpe, bpe, fqq ` bpe, bpf, eqq ` bpf, bpe, eqq “ bpe, bpe, fqq ´ bpe, bpe, fqq ` bpf, 0q “ 0

as required.

Unfortunately, this is not quite a Lie algebra, but perhaps we can find one later.

Now, in order to distinguish between the two classes of extraspecial p-groups, [15] defines a second map
q : G{ZpGq Ñ ZpGq as well, given by qpgq “ gp.

Then, the following lemma is given in [15]:

Lemma 2.1.0.0.1. Given a vector space V with basis tv1, ..., vnu over Fp, a bilinear map b : V ˆ V Ñ Fp,
and a map q : V Ñ Fp,

G “ xv1, ..., vn, z|z
p “ 1, vpi “ qpviq, rvi, zs “ 1, rvi, vjs “ bpvi, vjqy,

where ZpGq “ xzy, is an extraspecial p-group.

Using this lemma the two classes of extraspecial p-groups of order p3 are given in [15] as:

Hp3 “ te, f, z : ep “ fp “ zp “ 1, re, zs “ rf, zs “ 1, re, f s “ zu

Mp3 “ te, f, z : ep “ 1, fp “ z, zp “ 1, re, zs “ rf, zs “ 1, re, f s “ zu

Where the map q is the zero map for Hp3 and a non-zero linear map where qpeq “ 0, qpfq “ 0 for symplectic
basis elements e, f of V .

To give a general definition which does not rely on b, q, the following classification is given in [24] for groups
of order p2n`1:

Hp2n`1 “te1, ..., en, f1, ..., fn, z : rei, ejs “ rfi, fjs “ rei, fjs “ 1, i ‰ j,

rei, zs “ rfi, zs “ 1, rei, fis “ z, epi “ fpi “ zpi u

Mp2n`1 “te1, ..., en, f1, ..., fn, z : rei, ejs “ rfi, fjs “ rei, fjs “ 1, i ‰ j,

rei, zs “ rfi, zs “ 1, rei, fis “ z, epi “ zpi “ fj “ 1, j ‰ n, fpn “ zu

Where e1, ..., en, f1, ..., fn gives a basis for Z2
pn and z for Zp; alternatively, they are generating elements for

G{ZpGq and ZpGq, respectively.

It is also mentioned in [15] that all extraspecial p-groups of order p2n`1, p ‰ 2, are the central product of
either n copies of Hp3 or n ´ 1 copies of Hp3 and one copy of M3, where “central product” of two groups
G,H is defined as the factor group GˆH

N and where N “ tpz´1, θpzq : z P ZpGqu is a normal group and θ is
an isomorphism between ZpGq, ZpHq.
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2.1.1 Hp2n`1

Suppose p ‰ 2 and consider the group which will be referred to as the “Weyl-Heisenberg group” in subsequent
sections, with the notation Hp2n`1 “ Wp “ tpa, b, cq : a P Fp, b, c P Fnpu. This group, which corresponds to
extraspecial p-groups of exponent p, will be discussed in depth later in its relation to the HSP. For this
reason its subgroup structure and representation theory will be omitted in this section and discussed later.
This subsection will aim to better understand the nature of this group by relating it to Lie algebras.

Consider the n` 2 by n` 2 matrix representing group elements,

g “

»

–

1 c a
0 In b
0 0 1

fi

fl

in GLn`2pFpq, where c, b are vectors in Fnp . Then we have a vector space

W “

$

&

%

»

–

0 c a
0 r0s b
0 0 0

fi

fl : c, b P Fnp , a P Fp

,

.

-

In fact, W is the Lie algebra of Wp; firstly, let b : W ˆW ÑW be a map where bpx, yq “ xy´ yx. This is a
skew-symmetric, bilinear map which satisfied the Jacobi identity and thus W is a Lie algebra. The following
are the basis elements:

Lemma 2.1.1.0.1. W is a (restricted) Lie algebra with the associated map b : W ˆ W Ñ W given by
bpx, yq “ xy ´ yx.

Proof. Clearly, W is a vector space with basis elements

Xi “

»

–

0 eTi 0
0 0 0
0 0 0

fi

fl , Yi “

»

–

0 0 0
0 0 ei
0 0 0

fi

fl , Z “

»

–

0 0 1
0 0 0
0 0 0

fi

fl

where ei is the ith standard basis element in Fnp .

Let a “ pa1, ..., anq, b “ pa1, ..., anq P Fnp , c P Fp, and let X “
ř

iďnXi, Y “
ř

i Yi, A,B,C P W . Then, the
map b is bilinear:

bpaA` cB,Cq “ paA` cBqC ´ CpaA` cBq “ apAC ´ CAq ` cpBC ´ CBq “ abpA,Cq ` cbpB,Cq

Skew-symmetric:
bpA,Bq “ AB ´BA “ ´pBA´ABq “ ´bpB,Aq

And satisfies the Jacobi identity; it suffices, by bilinearity, to simply check for basis elements:

bpXi, bpYj , Zqq ` bpYi, bpZ,Xiqq ` bpZ, bpXi, Yjqq “ bpXi, 0q ` bpYj , 0q ` bpZ,Xijq “ 0

where Xij is Xi if i “ j, otherwise it is all zeroes.

For elements A PW we have the p´operation taking A ÞÑ Arps defined by raising A to the power p; that is,
we define Arps :“ Ap, making W a restricted Lie algebra.

12



Then it is clear to see that bpXi, Yiq “ Z, bpXi, Yjq “ bpXi, Zq “ bpYi, Zq “ bpXi, Xjq “ bpYi, Yjq “ bpZ,Zq “
0.

Lemma 2.1.1.0.2. W is the (restricted) Lie algebra of the group Wp.

Proof. Note that while we have defined Wp over Fp it is often generalized for elements in R, in which case one
can form a real Matrix Lie group and proper associated Lie algebra. However, if one restricts the Lie group
to the integers, and then reduces mod p with a p´operator, then we the current construction remains.

Now, we must show that for all t P Fp, A PW , expptAq PWp, where exp : W ÑWp is given by

exppvq “
8
ÿ

n“0

1

n!
vn @ v PW

Any element A PW can be written as A “
ř

ipaiXi ` biyiq ` cZ and thus as

¨

˝

0
ř

i aie
T
i c

0 0
ř

i biei
0 0 0

˛

‚.

Then,

expptAq “
8
ÿ

n“0

ti

i!
Ai

“ Ii`2 `

2
ÿ

n“1

ti

i!
Ai

“ In`2 ` tA`
ÿ

j

t2

2

¨

˝

0 0 ajbj
0 0 0
0 0 0

˛

‚

“

¨

˝

1 t
ř

j aje
T
j

ř

j
1
2ajbjt

2 ` ct

0 1 t
ř

j bjej
0 0 1

˛

‚PWp

Note that W is not only a vector space, but a group under addition, as well, with the identity element being
the zero matrix.

Claim 2.1.1.0.1. The set of matrices given by exppW q “ texppwq : w P W u forms a group. Specifically,
exppW q “Wp

Proof. We have already seen that exppW q ĂWp Then, we have seen that @A PW , exppAq terminates, since
A3 is the zero matrix. Also, |W | “ p2n`1 “ |Wp| and since it is surjective and injective. Thus, this map has

13



an inverse, log : Wp ÑW given by

logphq “
8
ÿ

n“1

p´1qn`1 ph´ Iq
n

n

Since exppW q “Wp and Wp is a group, exppW q is a group.

Then, since X2
i “ Y 2

i “ Z2 “ 0, we obtain the following basis elements for Wp

xi “ exppXiq “ In`2 `Xi “

»

–

1 eTi 0
0 1 0
0 0 1

fi

fl

yi “ exppYiq “ In`2 ` Yi “

»

–

1 0 0
0 1 ei
0 0 1

fi

fl

z “ exppZq “ In`2 ` Z` “

»

–

1 0 1
0 1 0
0 0 1

fi

fl

Now, we can define the map r , s : Wp ÑWp by

rg, hs “ exppbplogpgq, logphqqq,

Claim 2.1.1.0.2. The map r, s defined above has the property that @g, h, k PWp and scalars a, b, rgahb, ks “
rg, ksarh, ksb and rg, hakbs “ rg, hsarg, ksb. It is also skew symmetric, and satisfies a variant of the Jacobi
identity (with the operation being matrix multiplication).

Proof. Let g “ exppGq, h “ exppHq, k “ exppKqk, g, h P Wp, G,H,K P W and let a, c P Fp. Note that in
Wp we are working with matrix multiplication, whereas in W our operation is addition. Then,

rgahc, ks “ exppbpaG` cH,Kqq “ exppabpG,Kq ` cbpH,Kqq

“ exppapGK ´KGq ` cpHK ´KHqq

“ exppabpG,KqqexppcbpH,Kqq˚

“ exppbpG,KqqaexppbpH,Kqqc “ rg, ksarh, ksc

since pGK ´KGqpHK ´KHq “ GKHK ´GK2H ´KGHK `KGKH and pHK ´KHqpGK ´KGq “
HKGK ´HK2G´KHGK `KHKG.

Then, notice that @A,B P W,AB is the upper triangular matrix with a potentially non-zero value in
the upper rightmost corner and zeroes everywhere else. Then, @A,B,C,D P W,ABCD “ 0n`2. Thus,
pGK ´KGqpHK ´KHq “ 0 “ pHK ´KHqpGK ´KGq and thus the equality at * follows. The other side
follows in a similar manner.

14



Next,
rg, hs “ exppbpg, hqq “ expp´bph, gqq “ rh, gs´1

and thus r, s is skew symmetric.

Finally, let us check a modified Jacobi identity on the basis elements.

rxi, ryj , zssryjrz, xissrz, rxi, yis “ exppbpXi, bpYj , ZqqqexppbpYi, bpZ,XiqqqexppbpZ, bpXi, Yjqqq

“ exppbpXi, 0qqexppbpYi, 0qqexppbpZ,Xijqq

“ expp0qexpp0qexpp0q “ In`2

Since expp0q “ In`2 . Thus, this identity holds.

By the way it is defined and the above claim, r, s satisfies the same relations as b. That is, rxi, yis “
z, rxi, yjs “ rxi, xjs “ rz, zs “ ryi, yjs “ I

Additionally, notice that @g P Wp, g
p “ exppp logpgqq “ expp0q “ 1, since we are working over Fp, so the

order of each element is p (or one).

This gives us the Weyl-Heisenberg group, as expected. Notice that it satisfies the requirements given in the
definition for Hp2n`1

Using these relations let us confirm that the properties of an extraspecial group hold; that is, that ZpGq “
φpGq “ G1 and |ZpGq| “ p for G “ Wp. First, however, let us relate the map r, s defined above to the
standard commutator map.

Lemma 2.1.1.0.3. Let r, s be as defined above. Then, @g, h PWp, rg, hs “ g´1h´1gh

Proof. Let g, h PWp, G “ logpgq, H “ logphq PW . Then,

rg, hs “ exppbpG,Hqq “ exppGH ´HGq

Alternatively, consider
g´1h´1gh “ phgq´1gh “ expp´HG`GHq

Thus, rg, hs “ g´1h´1gh.

Notice that the image of r, s is, in fact, contained in the center of Wp, since GH ´ HG “ aZ, a P Fp, and
thus W 1

p “ trg, hs : g, h PWpu Ă ZpWpq. We wish to show that this is, in fact, an equality.

Claim 2.1.1.0.3. Let W 1
p be the commutator subgroup of Wp. Then, W 1

p “ texppdZq : d P Fpu

Proof. Consider W 1
p “ xrg, hs : g, h PWpy. In this case this corresponds to

W 1
p “ trg, hs : g, h PWpu “ texppbpG,Hqq : G “ logpgq, H “ logphq, g, h PWpu
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Since

bpG,Hq “ bp
ÿ

i

paiXi ` biYi ` cZ,
ÿ

j

a1jXj ` b
1
jY
1
j ` c

1Zq

“
ÿ

i

paibpXi,
ÿ

j

a1jXj ` b
1
jY
1
j ` cZq ` bibpYi,

ÿ

j

a1jXj ` b
1
jY
1
j ` cZq ` cbpZ,

ÿ

j

a1jXj ` b
1
jY
1
j ` c

1Zqq

“
ÿ

i,j

paipa
1
jbpXi, Xjq ` b

1
jbpXi, Yjq ` c

1bpXi, Zqq ` bipa
1
jbpYi, Xjq ` b

1
jbpYi, Yjq

` c1bpYi, Zqq ` cpa
1
jbpZ,Xjq ` b

1
jbpZ, Yjq ` c

1bpZ,Zqqq

“
ÿ

i

paib
1
iZ ` bib

1
iZ ` cb

1
iZq

“ dZ, for some d P Fp.

Thus we have that W 1
p “ texppdZq : d P Fpu.

Claim 2.1.1.0.4. Let W 1
p be as defined above. Then, W 1

p ‰ tIn`2u. That is, there exists at least one element
d P F˚p such that exppdZq PW 1

p. In fact, |W 1
p| “ p and thus |W 1

p| – Fp

Proof. Recall that rxi, yis “ z. Thus, simply take d “ 1. Then,

rxi, yis “ z “ exppZq ñ exppZq PW 1
p ñW 1

p ‰ tIn`2u

In addition, we know that r, s is a bilinear map. As such, forall a P Fp, since exppZq PWp1 we have that

raxi, yis “ exppaZq PW 1
p

and thus |W 1
p| “ p (it cannot contain more than p elements by how it is defined).

Finally, we have a natural isomorphism ψ : W 1
p Ñ Fp given by ψpexppaZqq “ a. This is clearly a surjective

and injective map. It also has the homomorphism property:

ψpexppaZ ` bZqq “ ψpexpppa` bqZqq “ a` b “ ψpexppaZqq ` ψpexppbZqq

Then, since W 1
p – Fp and ZpWpq – Fp we get that W 1

p – ZpWpq

Alternatively, we would show that the center and W 1
p are equal by examining the center, ZpWpq “ tg PWp :

gh “ hg@h PWpu, more closely.

Notice that bpX,Y q “ XY ´ Y X “ 0 ô X,Y commute. If the two matrices commute then eX`Y “ eXeY .
Now, suppose g P ZpWpq. Then, for all h PWp,

hg “ ghñ g´1hgh´1 “ 1 ñ rg, h´1s “ 1 PW 1
p
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Similarly, let k “ rg, hs “ dz PW 1
p. Then, for all x PWp,

rk, xs “ exppbplogpkq, logpxqqq “ expp
ÿ

i

paibpdZ,Xiq ` bibpdZ, Yiq ` cibpdZ,Zqqq “ expp0q “ I

and thus k, x commute and so k P ZpWpq. Thus, ZpWpq “W 1
p – Fp which is an elementary abelian p-group

and so Wp is extraspecial, as expected.

2.1.1.1 Mp2n`1

Once again, assume p ‰ 2 and consider the other class of extraspecial p groups, Mp2n`1 , of exponent p2. For
brevity let us denote M :“Mp2n`1 . We will begin by considering the case when n “ 1;that is, |M | “ p3.

First, let z PM be an element such that xzy “ ZpMq and let f PM be an element of order p2 where fp “ z.

Since M is a semidirect product; that is, M – Zp2 ¸φ Zp, we need to determine how Zp acts on Zp2 . We
know that it acts non-trivially, since M is nonabelian.

That is, for elements pa, bq, pa1, b1q PM , where a, a1 P Zp2 , b, b1 P Zp, we have the group operation

pa, bqpa1, b1q “ pa` φbpa
1q, b` b1q

We must now determine the homomorphism φ : Zp Ñ AutpZp2q.

Fix an element y P Zp. Since φy : Zp2 Ñ Zp2 is an isomorphism we must have that φyp0q “ 0 and
xxy “ xφypxqy, x P Zp2 ; that is, it must map generators to generators.

Since the elements that generate Zp2 are of the form pg ` pkq, k ě 0, 1 ď g ď p ´ 1 we have that φypxq “
pg ` pyqx. However, since we must have that φ0pxq “ x we are required to take g “ 1. It is then easy to see
that φ0pxq “ x “ p1` ppqx “ φppxq and φyp0q “ 0.

That is, we have the group operation

pa, bqpa1, b1q “ pa` p1` pbqa1, b` b1q

Next, we need to find the generators of M . Since fp
2

“ 1, an obvious choice is f “ p1, 0q P M, 1 P Zp2 .
Similarly, e “ p0, 1q PM, 1 P Zp.

To find the final generator, consider

re, f s “ e´1f´1ef “ p0,´1qp´1, 0qp0, 1qp1, 0q “ pp, 0q

and call this z. Clearly, zp “ pp, 0qp “ p0, 0q.

Remark 2.1.1.1.1. A final way to think about this group is as a matrix group representing the linear
functions Zp2 Ñ Zp2 given by x ÞÑ ax ` b where a “ 1 mod p, a, b P Zp2 . We can then write each element
in M as

ˆ

a b
0 1

˙

17



In this case, we have the following three generators:

E “

ˆ

1´ p p
0 1

˙

, F “

ˆ

1` p 1
0 1

˙

, Z “

ˆ

1 p
0 1

˙

Then, since

F x “

ˆ

1` px x`
`

x
2

˘

p
0 1

˙

, Ex “

ˆ

1´ xp xp
0 1

˙

, Zx “

ˆ

1 xp
0 1

˙

Thus it is clear that F p “ Z, F p
2

“ Ep “ Zp “ I2. In addition, the matrices satisfy the relations required
for an extraspecial group. Additionally, Z clearly generates the center.

We now have defined the extraspecial p-group

M “ te, f, z : rz, f s “ re, zs “ eM , re, f s “ z, ep “ zp “ fp
2

“ eMu

where z generates ZpMq and eM denotes the identity element.

We wish to associate the quotient M{ZpMq and ZpMq with a vector space. Note that we have already
done most of the work in the discussion above. Call the associated vector spaces V, V 1, respectively. Since
ZpMq “ tppx, 0q : x P Fpu we have that V 1 is simply Fp. Also, we know that dimV “ 2, and that it must be
a vector space over Fp and

M{ZpMq “ tpa, bqZpMq : a, b P Fpu
with p2 elements. Each element has order p: suppose pa, bqZpMq P M{ZpMq. Then, ppa, bqZpMqqx “
pa, bqxZpMq “ papx`

`

x
2

˘

pbq, xbqZpMq “ ZpMq if x “ p.

Then, we have that V must be Zp ˆ Zp since M{ZpMq is abelian with nontrivial elements having order p
and with p2 elements.

V has the basis tp1, 0q, p0, 1qu, which corresponds to our choice of f, e (or F,E) from before. That is, we can
identify e with p0, 1q and f with p1, 0q. In addition, identify 1 P Fp – V 1 with z. More precisely, we have
W “ V ‘ V 1, and thus define π : M ÑW by

πpeq “ p0, 1, 0q, πpfq “ p1, 0, 0q, πpzq “ p0, 0, 1q

Then clearly πpxq “ pπ1pxq, π2pxqq where π1 : M Ñ V, π2 : M Ñ V 1, π1peq “ p0, 1q, π1pfq “ p1, 0q, π1pzq “
p0, 0q, and π2pzq “ 1 and zero for e, f .

Now, focusing on V ĂW , with elements of the form pa, bq, a, b P Fp and let s : V ˆ V Ñ Fp be the map

sppa, bq, pa1, b1qq “ ab1 ´ ba1

This is a symplectic bilinear form, and notice that

spp1, 0q, p0, 1qq “ 1, spp1, 0q, p1, 0qq “ spp0, 1q, p0, 1qq “ 0

Let φ : W Ñ V be the map φppa, b, cqq “ pa, bq. Then, we can extend the map s to W by S : W ˆW Ñ W
which is given by

Sppa, b, cq, pd, e, fqq “ p0, 0, spφpa, b, cq, φpd, e, fqqq
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Finally, notice that this map S corresponds to the commutator r, s given for the group M , and, in fact, its
image is the center of M . That is, our defining relations are preserved, and we could define b : M ˆM ÑM
by

bpg, hq “ π´1Spπpgq, πphqq.

Then, clearly,
bpe, fq “ π´1Spp0, 1, 0q, p1, 0, 0qq “ π´1p0, 0, 1q “ z

bpe, eq “ bpf, fq “ π´1p0, 0, 0q “ eM

bpe, zq “ bpf, zq “ π´1p0, 0, 0q “ eM

2.1.1.2 Subgroup structure of M

This section will outline some relevant subgroups of M .

Recall the group operation pa, bqpa1, b1q “ pa` p1` pbqa1, b` b1q; then for elements pa, bq, px, yq PM ,

p´p1´ pbqa,´bqpx, yqpa, bq “ papp1´ bpqx` ypq, yq (2.1)

Claim 2.1.1.2.1. N “ xp1, 0qy – Zp2 is a normal subgroup of M .

Proof. Since
p1, 0qk “ pk, 0q P N

and thus we have a cyclic abelian group. Since |N | “ p2 and p1, 0qp
2

“ p0, 0q we have that N – Zp2 . Finally,
let pa, bq PM , so that pa, bq´1 “ pppb´ 1qa,´bq. Then,

p´ap1´ pbq,´bqpx, 0qpa, bq “ pp1´ pbqx, 0q P N

and thus N ŸM .

In fact, this is not the only normal subgroup: we have p2 ´ 1 generators for non-trivial normal subgroups
xpx, 0qy ŸM,x P Zp2 , although if gcdpx, p2q “ 1 then xpx, 0qy “ xp1, 0qy. Thus we have two nontrivial unique
normal subgroups of this form, N from above and xpp, 0qy, the latter being the only subgroup of that form
as xppy, 0qy “ xpp, 0qy since ppy, 0qx “ ppyx, 0q “ pppyxq, 0q “ pp, 0qyx. A third normal subgroup is given by
xpp, 1qy, which can be shown to be normal using Equation 2.1 with (x,y) = (p,y) since

papp1´ pbqp` ypq, yq “ papp1` yq, yq P xpp, yqy

In particular, this holds when y “ 1 as above. However, we do have p ´ 1 distinct groups xpp, yqy, y P Z˚p
since

pp, yqx “ ppx, yxq R xpp, 1qy

To summarize, we have the following normal groups:

N “ xp1, 0qy, Ny :“ xpp, yqy, y P Zp, xe, fy, xe, zy

Let Aa,b “ xpa, bqy “ tpapx`
`

x
2

˘

pbq, xbq : x P Zp2u, a P Zp2 , b P Zp
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Claim 2.1.1.2.2. Aa,b is an abelian subgroup of M of order p2

Proof. Clearly, since Aa,b is cyclic it must be abelian. Then, let x be the smallest nonzero power where
pa, bqx “ p0, 0q. We then get the equation

pa, bqx “ papx`

ˆ

x

2

˙

pbq, xbq “ p0, 0q ñ xb “ 0 mod p, x`

ˆ

x

2

˙

pb “ 0 mod p2

where we know that opbq “ p and so x must be a multiple of p, say x “ py. Then,
`

x
2

˘

pb “ pyppy´1qpb
2 “

0 mod p2 for any value of y.

Finally, we are left with ax “ apy “ 0 modp2 ñ py “ p2 ñ y “ p. Thus, x “ p2. Since x is the order of
pa, bq we get that |Aa,b| “ p2.

2.1.1.3 Representation theory

Now, let us briefly discuss the representations of this group. Note that we will be using the notation e, f, z
and p0, 1q, p1, 0q, pp, 0q interchangeably when denoting elements in M .

First, since ZpMq – Zp, and because M is an extraspecial p-group, we know that M{ZpMq “ tpa, bqZpMq :
a, b P Fpu – Zp ˆ Zp and thus we have the p2 representations

χpa,bqpc, dq “ ωac`bd, ω “ e
2πi
p , a, b P Zp, pc, dq PM

Next, since ZpMq – Zp, it has p one dimensional representations φkppx, 0q “ ωkpx, 0 ď k ă p. Also,
ZpMq ŸN , and thus

N{ZpMq “ tpxp, 0qZpMq : x P Zpu.

Thus, we can induce φk to a representation of N , determined by its behavior on the coset representatives
ti :“ pip, 0q, i P Zp of N{Zp. Let g “ px, 0q P N and recall that pp, 0q generates ZpMq. Then,

px.0q ¨
ÿ

i

pip, 0q b pp, 0q “
ÿ

i

px` ip, 0q b pp, 0q

and thus we are simply permuting the characters.

Alternatively, consider inducing this in matrix form, obtaining

Indφkpgq “
ÿ

i,jPZp

φkpt
´1
j gtiq

1ei

where φkpgq
1 “ 0ifg R ZpMq and ei is a standard basis vector for Cp. Since p´jp, 0qpx, 0qpip, 0q “ px`ppi´

jq, 0q,

φkpt
´1
j gtiq

1 “

#

ωkpi´jq, x “ 0 mod p

0, else

20



In fact, since N is cyclic of order p2 it has p2 character representations. Let ψ denote the representation of
N . Then,

ψkpx, 0q “ pe
2πi
p2 qkx, k, x P Fp2

Notice that if we restrict this to elements in ZpMq we get ψlppy, 0q “ ωly. This directly corresponds to the
p characters of the center when l ď p.

That is, since l P Zp2 we can write l “ a` pk for some a, k P Zp. Then, we know that

IndNZpMqφkpx, 0q “ ‘aPZpψa`kp

is a p´dimensional diagonal matrix and thus the direct sum of characters.

Then, ψa`kppx, 0q “ pe
2πi
p2 qxpa`kpq. Since this is true for all values of a we can take a “ 0 to obtain

ψkppx, 0q “ pe
2πi
p qkx “ φkppx, 0q

Finally, recall that the elements in N are of the form pa` pb, 0q “ fazb. Thus,

ψpkpa` pb, 0q “ pe
2πi
p2 qpa`pbqpkpq “ ωak

Thus, we can restrict ourselves to p distinct irreps of N , as these induce to p distinct irreps of M . These can
be defined by ψkppx, 0q “ 1, ψkpx, 0q “ ωkx, x P Zp, k P Zp.

Now, since N Ÿ M we can induce ψk to a representation of M . Note that if k “ 0 then the induced
representation of ψ0 would decompose as a direct sum of the one-dimensional irreps χ0,0 defined above and
so choose instead k P Z˚p .

We have the quotient
M{N “ tp0, aqN : a P Zpu

Denote the p coset representatives by hi “ p0, iq, i P Zp.

Let g “ pa, bq PM . Then, h´1
j ghi “ pp1´ pjqa, b` i´ jq, which is an element of N if pb´ j ` iq “ 0 mod p.

Then,
Indψkpgq “

ÿ

i,jPZp

ψkph
´1
j ghiq

1ei

where ei is a standard basis vector for Cp and

ψkph
´1
j ghiq

1 “

#

ψkpp1´ pjqa, 0q, b` i´ j “ 0 mod p,

0, else

Alternatively, consider the action of generators e, f, z. Let σk denote the final, p-dimensional representation
of M . Then, any element in N is of the form fx for some x P Zp2 , and the coset representative hi “ ei.Then,

e
ÿ

iPZp

ei b v “
ÿ

iPZp

ei`1 b v

21



and thus this is simply a permutation of basis vectors. This then implies

σkpeq “
ÿ

iPZp

|i` 1yxi|

Then, since re, f s “ z we get that fe “ efz´1. We can generalize this to obtain fek “ pez´1qkf , since z, f
commute. e, z also commute and so we get the relation fek “ ekz´kf . Recall that fp “ z and so we could
simply write this as fek “ ekf1´pk. Thus,

f
ÿ

iPZp

ei b v “
ÿ

iPZp

eif1´pi b v “
ÿ

iPZp

ei b ω´ikv

This gives us the corresponding representation

σkpfq “
ÿ

iPZp

ω´ik|iyxi|

Finally, since z, e commute and z “ fp we get

z
ÿ

iPZp

ei b v “
ÿ

iPZp

eiz b v “
ÿ

iPZp

ei b ωkv

and thus
σkpzq “

ÿ

iPZp

ωk|iyxi|

Now, since any element in M can be written as exfyzk “ exfy`pl since

fyexzl “ fyzlex “ fy`plex “ exf py`plqp1´pxq “ exfy`ppl´xyq

we can compute
exfy`pl

ÿ

iPZp

ei b v “
ÿ

iPZp

ex`ify`ppl´yiq b v “
ÿ

iPZp

ex`i b ωkpl´yiqv

Thus we get that
σkpe

xfyzlq “
ÿ

iPZp

ωkpl´yiq|x` iyxi|

which gives us p´ 1 pn-dimensional representations, with k P Z˚p .

2.1.2 General group of exponent p2

Now that we understand M when |M | “ p3, let us look at the general case,

Mp2n`1 “te1, ..., en, f1, ..., fn, z : rei, ejs “ rfi, fjs “ rei, fjs “ 1, i ‰ j,

rei, zs “ rfi, zs “ 1, rei, fis “ z, epi “ zpi “ fpj “ 1, j ‰ n, fpn “ zu
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Claim 2.1.2.0.1. The group Mp2n`1 can be obtained using the central product: Mp2n`1 –M ˝Hp˝Hp˝...˝Hp

where Hp appears n´ 1 times and ˝ denotes the central product.

Proof. A concrete proof is given in [15, Theorem 4.3], however this will be discussed informally below.

Consider one copy of M,Hp, with both having centers isomorphic to Zp with the isomorphism zi ÞÑ i mod p.
Let ψ : ZpMq Ñ ZpHp be the isomorphism ψpziq “ zi. Then, we have the group

N “ tpg´1, ψpgqq : g P ZpMqu “ tpz´i, ziq : i P Zpu

which is normal in M ˆHp. Notice that pzi, ziq P N ñ i “ 0. Then, since M ˆHp “ tpe
af bzc, xiyjzkq : b P

Zp2 , a, c, i, j, k P Zpu we get that

M ˝Hp “M ˆHp{N “ tpeaf bzc, xiyjzkqN : b P Zp2 , a, c, k, i, j P Zp, p´ c ‰ ku

Then, we have an isomorphism ψ : M ˝Hp ÑMp5 which maps generators as follows:

ψppe, 0qNq “ e1, ψpp0, xqNq “ e2, ψppf, 0qNq “ f1, ψpp0, yqNq “ f2, ψppz, 0qNq “ z

since then the identities are satisfied, with fp1 “ z.

Next, consider
Hp ˝Hp “ tpx

aybzc, xiyjzkqN : a, b, c, i, j, k P Zp, p´ c ‰ ku

where N “ tpz´i, ziq : i P Zpu.

Then, this is isomorphic to Wp with |Wp| “ p5 with an isomorphism ρ : Hp ˝Hp Ñ Wp which, defined on
generators, is

ρppx, 0qNq “ x1, ρppy, 0qNq “ y1, ρpp0, xqNq “ x2, ρpp0, yqNq “ y2, ρppz, 0qNq “ ρpp0, zqNq “ z

Then, in the general case, we have Wp with |Wp| “ 2pn´1q`1 “ 2n´1 where xi – p0, ..., x, 0..., 0q P ˝
n´1Hp;

that is, one can think of it as ith standard basis vector for Zn´1
p except with x in place of the one. The same

is true for yi.

Then, consider

M ˝Hp2n´1 “ tpeaf bzc,
ÿ

i,jPZp

xliy
m
j z

kqN : b P Zp2 , l,m, c, a P Zp, p´ c ‰ ku

where xi, yi are the ith standard basis element as discussed above and in Section 2.1.1.

We then have the isomorphism φ : M ˝Hp2n´1 ÑMp2n`1 given by

φpp0, xiqNq “ ei`1, φppe, 0qNq “ e1, φpp0, yjqNq “ fj`1, φppf, 0qNq “ f, φppz, 0qNq “ φpp0, zqNq “ z,

where ”0” denotes the identity. Then, letting 1 denote the identity, we see that,

epi “ fpi “ zp “ 1, fp “ z, rei, fis “ rei, f s “ z
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2.1.2.1 HSP in M

The following subsection will briefly summarize the subgroups of M discussed above, with a focus on solving
the HSP in this group.

Consider the subgroups of M . These include the normal subgroups

N “ xfy – Zp2 , Ny “ xeyzy, y P Zp

Notice that ZpMq Ă N,Ny. Also, xf i, ejy “M @i, j ‰ 0 mod p.

Next, consider xey – Zp, which is an abelian subgroup. In fact, the remaining subgroups are the cyclic
subgroups

Aa,b “ xf
aeby “ tfapx`p

x
2qpbqexb : x P Zp2u

where a P Zp2 , b P Zp. If a “ pc, c ‰ 0 then Apc,b “ xz
ceby “ Nb. Similarly, if b “ 0 then Aa,0 “ xf

ay – Zp2 .
Finally, a “ 0 gives us xey.

Let us try to determine which subgroups are distinct. First, notice that since e, z commute we have that

Apc,b “ xz
ceby “ tzcxebx : x P Zpu

Then, all such subgroups are isomorphic; that is, Apc,b – Ap,1 – Zp ˆ Zp, c, b P Z˚p .

Some are also equivelant; take Apc,c “ xz
cecy for example, with elements zcxecx. If we let cx “ 1 mod p

then this is simply Ap,1.

In addition, consider any Apc,d “ xz
cedy where every element if of the form zcxedx. If we choose x such that

cx “ 1 mod p we get the element zedx, and since this is a cyclic group we have Apc,d “ xze
dxy “ Ap,dx “ Ndx

Then, in order to solve the HSP we wish to determine the value of a, b.

Claim 2.1.2.1.1. Let Aa,b be a cyclic group as described above. Then, if a ‰ 0 then ZpMq ď Aa,b and the
group has order p2. Otherwise, ZpMq XA0,b “ t1u and every element in A0,b has order p or 1.

Proof. Let Aa,b “ xxy where x “ faeb. Then, since this is a cyclic group, xp P Aa,b, where

xp “ pfaebqp “ fapp`p
p
2qpbqebp “ fap “ za

Suppose a ‰ 0. Then, since Aa,b is a group we have that xzay ď Aa,b ñ ZpMq ď Aa,b since xzay “ xzy and
clearly, pzaqp “ zap “ 1.

On the other hand, suppose a “ 0. Then xp “ za “ 1 and we must have that |A0,b| “ p, which forces all
elements to have order p or 1. Let y P ZpMq X A0,b. Then, y “ zi “ xk for some i, k P Zp. Since x “ eb we
have that

xk “ ekb P ZpMq ô kb “ 0 ñ i “ 0

Thus, we have that y “ 1 and so the intersection is simply t1u.
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Now, we will consider one of the reductions given in [13]. Let π : M Ñ V be the map given by πpeif jzkq “
EiF j where V is a two-dimensional vector space with basis tE,F u, i, j P Zp and let G “ tπpxq : x P Mu.
This is analogous to what was done in Section 2.3. In fact, this vector space is isomorphic to M{ZpMq with
basis teZpMq, fpZpMqqu

Then, let us define the group operation on G by πpxq ‹ πpyq “ πpxyq for elements in G. That is, if
EaF b, EiF j P G then EaF b ‹ EiF j “ Ea`iF b`j and G –M{ZpMq – Zp ˆ Zp and is thus abelian.

Finally, by [13, Lemma 2] we have that finding Aa,bZpMq can be reduced to finding πpAa,bZpMqq in G.
Since G is abelian this is simply an analogue of the abelian HSP.

Then, if ZpMq ď Aa,b then Aa,bZpMq “ Aa,b and so one can immediately find Aa,b. On the other hand, if
ZpMq XAa,b “ t1u then we have shown that there is no element of order p2 in Aa,b. Thus, this subgroup is
isomorphic to a subgroup in Hp and so one can use the methodology for solving the HSP in Hp. Then, if f is
the hiding function, one can restrict f to Aa,b and then extend to a function F on Hp which hides the group
isomorphic to Aa,b in Hp. Specifically in [13] F is defined on elements x̄iȳj z̄k P Hp and eizk P Aa,b ďM as

F px̄iȳj z̄kq “ pj, fpeizkqq

This is true for the general group Mp2n`1 , as well, where if ZpMq XAa,b “ t1u then Aa,b is isomorphic to a
subgroup of Hp2n`1 . In this case the hiding function would be

Now, in [13] an algorithm is given which requires four entangled coset states, however in [17] this is reduced
to two states when solving a group of exponent p. We will attempt to use the latter methodology for solving
the HSP in M and Mp2n`1 . First, recall that when solving the HSP in Wp and Hp, we were relying on the
conjugacy classes of Aa,b. Thus let us first determine what these are in M .

Claim 2.1.2.1.2. The conjugate groups of Aa,b are of the form Aα,b for some α P Zp2 .

Proof. Let Aa,b “ xf
aeby, fueyzk PM . Then, consider conjugation on the generator:

pfueyzkq´1pfaebqpfueyzkq “ pfaebzbu´ab´ayq

If a “ 0 then this is simply ebzbu P Apbu,b and so α “ pbu. Notice that ZpMq ď Aα,b in this case. In fact,

Apbu,b “ xe
bzbuy “ xezuy ŸM

Otherwise, if a ‰ 0, then pfaebzbu´ab´ayq P Aa,b since ZpMq ď Aa,b and so zbu´ab´ay P Aa,b. That is, Aa,b
is normal.

Now, if a “ pk, k ‰ 0 then Aa,b “ xe
bzy ŸM , if a “ 0 then Aa,b “ xe

by which is simply xeyM if b ‰ 0, and if
a ‰ 0 mod p then Aa,b ŸM and if b ‰ 0 then, in fact, Aa,b “M .

Then, the only non-normal case is when a “ 0.
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Claim 2.1.2.1.3. A0,b “ xe
by – H where H ď Hp. Specifically, H “ t1u if b “ 0. Otherwise, H “ xxy.

Proof. Suppose we have the group A0,b ďM . First, suppose b “ 0. Then, A0,b “ x1y “ t1u, which is clearly
isomorphic to t1u ď Hp.

Next, suppose b ‰ 0. Then let ψ : A0,b Ñ Zp be given by ψpeiq “ i, i P Zp. This is clearly an isomorphism
and so A0,b – Zp.

Let H “ xxy where x is a generator of Hp such that xp “ 1, and let φ : H Ñ Zp be the isomorphism
φpxiq “ i, i P Zp.

Thus, A0,b – H. Recalling our notation in Section 2.2.3 for the cyclic subgroups, H is in fact A0,b “ A0,1 “

xp0, 1, 0qy.

Thus, we can simply use the procedure in Section 2.2.3 to solve the HSP when our hidden subgroup is A0,b.
As such, given a hiding function f and hidden subgroup Aa,b we can proceed as follows:

First, query fp1q and fpziq for some i P Z˚p . If fp1q “ fpziq then ZpMq ď Aa,b and so Aa,b ŸM . In this
case, one can use the efficient algorithm given by [10] for normal subgroups, discussed in Section ??.

If fp1q ‰ fpziq then our hidden subgroup is of the form A0,b “ xe
by – H ď Hp where H “ xp0, b, 0qy is an

abelian subgroup of Hp. Thus, we can use the methodology of [2] or [17] to solve for b. In fact, it suffices to
simply determine if b “ 0 or b ‰ 0 since b “ 0 ñ A0,0 “ t1u and b ‰ 0 ñ A0,b “ A0,1 “ xey.

2.1.2.2 HSP in Mp2n`1

In the above section we saw that solving the HSP in M reduces to either solving the HSP in Hp or solving
using the method for normal subgroups.

Now, consider

Mp2n`1 “te1, ..., en, f1, ..., fn, z : rei, ejs “ rfi, fjs “ rei, fjs “ 1, i ‰ j,

rei, zs “ rfi, zs “ 1, rei, fis “ z, epi “ zpi “ fpj “ 1, j ‰ n, fpn “ zu

with normal subgroups
N “ xfy – Zp2 , NI,J “ xf i11 , ..., f

in
n , e

j1
1 , ..., e

jn
n y

where I “ pi1, ..., inq P Zn´1
p ˆ Zp2 where at least one ik ‰ 0, J “ pj1, ..., jnq P Znp . Clearly, if jn ‰ 0 or

ja, ia ‰ 0 then, since fpn “ rfa, eas “ z ZpMp2n`1q is contained in the subgroup; otherwise this is not a
normal subgroup and is instead the abelian subgroup discussed below. For brevity call the center Z 1.

Also, we have the the cyclic abelian subgroups

KA,B “ xf
a1
1 ...fann eb11 ...e

bn
n y

where A “ pa1, ..., anq P Zn´1
p ˆ Zp2 , B “ pb1, ..., bnq P Znp .
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Recall that fpn “ z and so if an ‰ 0 then Z 1 Ă KA,B , since Z 1 “ rM,M s, and so KA,B ŸMp2n`1 .

If an “ 0 then the subgroup is
KA,B “ xf

a1
1 ...f

an´1

n´1 e
b1
1 ...e

bn
n y

and since zi R KA,B we have that Z 1 XKA,B “ t1u. As before, since all elements in KA,B in this case have
order p or 1, KA,B – H ďWp.

Recall the non-normal subgroups of Wp are

Ai,J,K “ xpi, J,Kqy “ xz
ixj11 ...x

jn
n y

k1
1 ...y

kn
n y

for J,K P Znp , i P Zp.

If we let i “ 0 and kn “ 0 then Ai,J,K – KA,B with an isomorphim ψ : KA,B Ñ Ai,J,K given by ψpeiq “
xi, ψpfiq “ yi. If we then solve the HSP for Ai,J,K using the methodology in [17] we can solve for KA,B .

As such, as before, we first need to determine if the hidden subgroup is normal by checking if fp1q “ fpzq
for a hiding function f . If it is then proceed using the method for normal groups; see Section ?? for details.
If it isn’t then use the methodology in [17], where we can define the function f on Wp as F , as seen in [13],

where F pxi11 , ..., x
in
n , y

j1
1 , ..., y

jn
n , z

lq “ pi1, fpx
i2
2 , ..., x

in
n , y

j1
1 , ..., y

jn
n , z

lq

2.1.3 Conclusion

Since solving the HSP in extraspecial p-groups of exponent p2 can be reduced to solving the HSP in ex-
traspecial p-groups of exponent p, the latter case will be focused on in the subsequent sections, beginning
with the Heisenberg group – that is, groups of the form H2n`1 when n “ 1, followed by the more general
case, for all n.

2.2 Heisenberg Group

This section will examine the Heisenberg group. It will give a slightly different construction to the one
discussed above, and will closely follow the paper [2]. This section will begin with a discussion of the
representation theory of this group, followed by an implementation of the Clebsch-Gordon (CG) transform
given in [2]. Finally, the method given in that paper for solving the HSP will be described.

Let Hp “ pZp ˆ Zpq ¸ Zp be the Heisenberg group with multiplication defined as

pa, b, cqpa1, b1, c1q “ pa` a1 ` b1c, b` b1, c` c1q
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2.2.1 Representation theory

Then, we know that there is a bijection between degree one representations of Hp and irreps of Hp{H
1
p by a

lemma from [27], where H 1p denotes the commutator subgroup of Hp.

Since
px, y, zqpa, b, cqp´x` yz,´y,´zq “ pa´ yc` bz, b, cq

we can see that elements of the form pa, 0, 0q are in the center of Hp, which is the commutator subgroup in
this case. In addition, we have a series of other subgroups:

There are a series of normal groups, generated by Ni “ tpa, xi, xq : a, x P Zpu, for each i P Zp. There is
an additional normal group N “ tpa, b, 0q : a, b P Zpu – Zp ˆ Zp; thus there are a total of p ` 1 normal
subgroups.

We also have a series of subgroups of order p: p2 subgroups Aa,b “ tpa, b, 1qx : x P Zpu and p subgroups
Ak “ xpk, 1, 0qy.

Now, notice that H 1p – ZpŸHp and Hp{H
1
p “ tp0, a, bq`H

1
p|a, b P Zpu – ZpˆZp is an abelian group. Thus,

we can use it to find the degree one representations of Hp. As in the previous section, these can be denoted

χpx,yqpa, b, cq “ ωby`cx, px, yq P Zp ˆ Zp, ω “ e
2πi
p

There are p2 such degree one representations. Thus, there are p´ 1 representations left, each with degree p,
since p2pp´ 1q ` p2 “ |Hp|.

Recall that N “ xp1, 0, 0q, p0, 1, 0qy Ÿ Hp. This is an abelian subgroup and thus has unique degree one
representations given by ψx,ypa, b, 0q “ ωay`by, 0 ď x, y ă p. In addition, consider H 1p “ xp1, 0, 0qy which

has 1-dimensional representations φkpa, 0, 0q “ ωak, 0 ď k ă p. Since H 1p Ÿ N we can induce φk to a
representation of N by noting that the coset representatives of N{H 1p are T “ tp0, i, 0q : i P Zpu; denote each
representative ti “ p0, i, 0q.

Then, the action of any pa, b, 0q P N on the induced representation is given by

pa, b, 0q ¨
ÿ

i,jPZp

p0, i, 0q b pj, 0, 0qq “
ÿ

i,jPZp

p0, i` b, 0q b φapj, 0, 0q

Let π denote this induced representation. Then, we can consider how it acts on g “ pa, b, cq instead by
noting that t´1

j gti “ pa, b` i´ j, 0q for each ti, tj P T . Then,

πg “
ÿ

i,jPZp

φ1
t´1
j gti

ei

where φ1h “ 0ifh R H 1p and ei is a standard basis vector for Cp. We then end up with a permutation matrix
with the entries φa. As expected, when b “ 0 this is simply φa b Ip.

Now, consider ψx,y|H1p – φx; this can be seen easily if one lets ψx,y|H1p “ ψx,0. Then, by Schur’s lemma we
know that HomH1p

pψ|H1p , φq “ C and, by Frobenius reciprocity, the same is true for HomH1p
pψ, πq. It then
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follows that πx “ ψx,0 so we can define πxp0, b, 0q “ 1, and thus we have πxpa, b, 0q “ ωax which is one
dimensional and thus irreducible.

Now, one can induce this to a representation of the whole group Hp by determining how it acts on the
generators p1, 0, 0q, p0, 1, 0q, p0, 0, 1q. Since Hp{N “ tp0, 0, iq ` N : i P Zpu, |Hp{N | “ p and the vector
space being induced to is Cp, we have the usual basis vectors tei : i P Zpu. Then,

p0, 0, 1q
ÿ

iPZp

p0, 0, iq b v “
ÿ

iPZp

p0, 0, 1` iq b v

which is just a ”reshuffling” of sorts; that is, for the representation σ : GÑ GLpV 3q we get that

σkp0, 0, 1q “
ÿ

iPZp

|i` 1yxi|

Similarly, consider

p0, 1, 0q
ÿ

iPZp

p0, 0, iq b v “
ÿ

iPZp

p0, 1, iq b v “
ÿ

iPZp

p0, 0, iqp´i, 1, 0q b v

“
ÿ

iPZp

p0, 0, iq b ψkp´i, 1, 0qv

“
ÿ

iPZp

p0, 0, iq b ψkp´i, 1, 0qv

“
ÿ

iPZp

p0, 0, iq b ω´iv

We can reindex i and thus define the action of σk as

σkp0, 1, 0q “
ÿ

iPZp

ωik|iyxi|

Combining the above calculations one can get the final solution:

σkpa, b, cq “ ωak
ÿ

iPZp

ωibk|i` cyxc|

2.2.2 Clebsch-Gordan Transform

Now, we are ready to try the Clebsch-Gordan (CG) transform described in [2]. First, let us start with two
degree one representations. This clearly yields a one-dimensional irrep:

χpx,yqpa, b, cq b χpu,vqpa, b, cq “ ωby`cx b ωbv`cu “ ωbpv`yq`cpx`uq “ χpx`u,y`vqpb, cq
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Then, this is already an irrep and no CG transform must be enacted. Next, consider a degree 1 and degree
p irrep:

χpx,yqpa, b, cq b σkpa, b, cq “ ωby`cx b ωak
ÿ

iPZp

ωibk|i` cyxc| “ ωak`by`cx
ÿ

iPZp

ωibk|i` cyxc|

Notice that this is simply another p-dimensional irrep, call it σf . The question remains: what unitary matrix
V would be able to transform the above equation into ωaf

ř

iPZp ω
ibf |i` cyxc|?

The one given in the paper in equation (60) works.

Example 2.2.2.0.1. Suppose p “ 3 and consider the irreps χp2,1q, σ2 acting on p1, 2, 0q.Then,

σkp2, 0, 1q “

»

–

0 0 ω
ω 0 0
0 ω 0

fi

fl , χp2,1qp2, 0, 1q “ ω2, χpx,yqpa, b, cq b σkpa, b, cq “

»

–

0 0 1
1 0 0
0 1 0

fi

fl

V “ p|2yx0| ` |0yx1| ` |1yx2|qp|0yx0| ` ω´2|1yx1| ` ω´1|2yx2|q “

»

–

0 ω´2 0
0 0 ω´1

1 0 0

fi

fl

After applying this to the tensored representations we get

σf p2, 0, 1q “

»

–

0 0 ω
ω 0 0
0 ω 0

fi

fl

And thus f “ 2.

Now, take two p dimensional irreps, σk1 and σk2 . Then,

σk1pa, b, cq b σk2 “ ωak1
ÿ

iPZp

ωibk1 |i` cyxc| b ωak2
ÿ

iPZp

ωibk2 |i` cyxc|

Which results in a p2 dimensional matrix. Recall that there are p2 1-dimensional representations. Then,
this matrix may decompose into these, or it could instead decompose into a degree p representation with
multiplicity p. Using the unitary matrices from [2] in the following example we will see that this depends on
what the labels of the representations sum to; that is, if k1`k2 ‰ r0sp then the tensored representation is, in
fact, reducible to p copies of σk1`k2 . On the other hand, if this sum is 0 then this is a series of representations
of degree 1.

Example 2.2.2.0.2. Suppose p “ 3 and consider σ2p2, 0, 1q from before, as well as

σ1p2, 0, 1q “

»

–

0 0 ω2

ω2 0 0
0 ω2 0

fi

fl

For clarity let us use block matrix notation, where r0s denotes the 3-by-3 zero matrix.
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Begin by considering the case when k1 ` k2 ‰ 0, such as when the labels are 2, 2, respectively. Then, we
obtain:

σ2p2, 0, 1q b σ2p2, 0, 1q “

»

–

r0s r0s ωσ2p2, 0, 1q
ωσ2p2, 0, 1q r0s r0s

r0s ωσ2p2, 0, 1q r0s

fi

fl

This is clearly

I3 b ω
2

»

–

0 0 1
1 0 0
0 1 0

fi

fl “ I3 b σ1p2, 0, 1q

where I3 is the 3-by-3 identity matrix, and using the unitary matrix defined in [2] would yield this same
result. Notice that 2` 2 “ r1s3 as expected.

Finally, consider the case where k1 “ 1, k2 “ 2, 1` 2 “ r0s3, and note that σ0 is not defined. Then,

σ1p2, 0, 1q b σ2p2, 0, 1q “ I3 b

»

–

0 0 1
1 0 0
0 1 0

fi

fl

Using the unitary transform in [2], one can obtain

I3 b

»

–

1 0 0
0 ω2 0
0 0 ω

fi

fl

Which is simply a series of degree one representations. Note that this doesn’t occur very often; with high
probability after sampling the registers one obtains a representation of degree p that is the tensor of two
degree p irreps.

2.2.3 HSP

Let us now look at solving the HSP for the Heisenberg group by using the methodology in [2]: the following
section will act to interpret and explain the results of this paper. Note that we only need to consider the
subgroups Aa,b for this problem, as all other subgroups are normal in Hp and thus one can use the HSP
method for normal groups to solve.

Recall that each element in Aa,b can be written as pax `
`

x
2

˘

b, xb, xq. The conjugate subgroups of Aa,b are
Ac,b, c P Zp :

px, y, zqpal `

ˆ

l

2

˙

b, lb, lqp´x` yz,´y,´zq “ plpa´ y ` bzq `

ˆ

l

2

˙

b, lb, lq

This will be important when considering the HSCP, as we can see that one only needs to know b to determine
the conjugacy class of Aa,b.
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In addition, the p2 cosets of Aa,b have coset representatives of the form pl,m, 0q, l,m P Zp, giving us the
coset state

|pl,m, 0qAa,by “
1
?
p

ÿ

hPAa,b

|pl,m, 0qhy “
1

p

ÿ

xPZp

|pl ` xa`

ˆ

x

2

˙

b,m` xb, xqy

We then have the mixed state

ρH “ ρAa,b “
1

p2

ÿ

l,mPZp

|pl,m, 0qHyxpl,m, 0qH|

Now, we wish to re-express ρH in terms of the irreducible representations discussed above. This can be done
by performing a Fourier transform, which results in the density matrix

ρ̂H “
1

p3
‘ψ pψpHq b Idψ q, ψpHq “

ÿ

hPH

ψphq

for irreps ψ with degree dψ.

Specifically for the Heisenberg group, we know that the irreps are either of the form χc,d or σk from before.
Thus,

χc,dpHq “
ÿ

xPZp

χc,dpax`

ˆ

x

2

˙

b, xb, xq “
ÿ

xPZp

ωdxb`cx (2.2)

σkpHq “
ÿ

xPZp

σkpax`

ˆ

x

2

˙

b, xb, xq “
ÿ

xPZp

ωpax`p
x
2qqk

ÿ

iPZp

ωibxk|i` xyxi| (2.3)

Notice that

χc,dpAa,bq “

#

p, db` c “ 0

0, else
,

trpσkppax`

ˆ

x

2

˙

b, xb, xqq “ p, since x “ 0

Thus, ρ̂H is a block-diagonal square matrix with dimension p3, with the irreps on the diagonal. The proba-
bility of observing either a 1- or p-dimensional irrep can be calculated using the formula

P pψq “
dψ
p3

ÿ

hPH

trpψphqq

. Thus,

P pχc,dq “
1

p3
χc,dpAa,bq “

#

1
p2 , db` c “ 0

0, else
, P pσkq “

1

p

For an arbitrary b there are p solutions to the equation db ` c “ 0. As such, the overall probability of
observing a one-dimensional representation is 1

p . Since probabilities must sum to 0, it follows that we will

observe any p-dimensional representation with probability p´1
p , although this can be verified by noting that
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there are p ´ 1 p-dimensional representations, each with probability 1
p of being measured for an arbitrary

subgroup, and so the overall probability is p´1
p .

Now, when solving the HSCP, we are trying to determine the conjugacy class of a subgroup. As such, our
desired state, which contains a conjugate subgroup with uniform probability, is ([2, Eq. 36, 38])

ρrHs “
1

p3

ÿ

gPHp

ρgHg´1 “
1

p3

ÿ

gPHp

RRpgqρHRRpg
´1q

where RR is the right regular representation. After performing the FT we have a state very similar to ρ̂ ([2,
Eq. 40]):

ρrHs “ ‘ψpcψpHqIdψ b Idψ q, cψpHq “
1

p3dψ

ÿ

hPH

trpψphqq˚

Now, since

cχc,dpHq “

#

1
p2 , db` c “ 0

0, else
, cσk “

1

p4

ÿ

xPZp

p “
1

p2

Now, suppose the hidden subgroup is the trivial subgroup. We then have that

trpσkpp0, 0, 0qq “ p ùñ P pσkq “
1

p
ùñ P pσq “

p´ 1

p

P pχc,dpp0, 0, 0qqq “

#

1
p2 , c “ 0

0 else
ñ P pχq “

1

p

Thus, the probability distribution for observing a particular representation for Aa,b is the same as for the
trivial group. For this reason, it is beneficial to consider multiple hidden subgroup states to solve the HSCP.
This is done in [2, Section 5.2]. Denote these ρrHs,m where m is the multiplicity of the state. Then, consider

ρrHs,2 “
ÿ

gPHp

ρb2
gHg´1 “

ÿ

gPHp

Rb2
R pgqρ

b2
H Rb2

R pg
´1q

Consider ρrHs. This, when measured, yields a particular coset state ρK where K is a conjugate of H. Then,

when considering the multi-copy state, ρb2
H would yield a state, upon measurement, which is ρKbρK1 , where

K 1 is a potentially different conjugate subgroup of H. This would not be particularly useful. Instead, we
wish to entangle the two coset states first before measuring, thus yielding a state of the form ρK b ρK ; this
is the state we obtain if we measure ρrHs,2

One can perform QFT on the two hidden subgroup states ρH to obtain a state which is in the basis with
representations as described above. After measuring we are left with the tensor of two irrep labels, say
ψ1 b ψ2, and the space on which they act, |1, ..., dψ1y b |1, ..., dψ2y. This will be the input for the CG
transform. That is, we have the state ψ1pAa,bq b ψ2pAa,bq.

Now, there are four possible options for this state, as described in Section 2.2. The probability of observing
a one-dimensional state is 1

p , and thus the probability of observing a p-dimensional state is 1´ 1
p . Then,

P pχb χq “
1

p2
, P pχb σq “ P pσ b χq “

p´ 1

p2
, P pσ b σq “ p

p´ 1

p
q2
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As such, the last case occurs with the highest probability. As discussed in Section 2.2 if we have two p-
dimensional irreps so that σk1 bσk2 one must consider the sum k1`k2. Since k1`k2 “ r0sp ñ k1 “ r´k2sp,
sampling such a tensor product occurs with probability p´1

p2 . Thus, with high probability, the sampled tensor

product is two p-dimensional representations with k1 ` k2 ‰ r0sp.

Consider the case where where have the state σk1pAa,bq b σk2pAa,bq where k1 ` k2 “ k1 ‰ r0sp, and recall
(2.3). Then,

σk1pAa,bq b σk2pAa,bq “
ÿ

xPZp

ωpax`p
x
2qbqk1

ÿ

iPZp

ωibxk1 |i` xyxi| b
ÿ

yPZp

ωpay`p
y
2qbqk2

ÿ

jPZp

ωjbyk2 |j ` yyxj|

“
ÿ

x,yPZp

ωpax`p
x
2qbqk1`pay`p

y
2qbqk2

ÿ

i,j

ωibxk1`jbyk2 |i` x, j ` yyxi, j|

The state we obtain will contain these irreps with high probability so that our state is ρk1pAa,bqbρk2pAa,bq “
1
p2σk1pAa,bq b σk2pAa,bq. We can conjugate this by the unitary matrix

W “
ÿ

r,dPZp

|r ´ dyxr| b |pk1r ` k2dqpk1 ` k2q
´1yxd|

given in [2, Eq. 63], to obtain

1

p2

ÿ

x,y,r,dPZp

ωpax`p
x
2qb`bxrqk1`pay`p

y
2qb`bydqk2 |r ´ d` x´ yyxr ´ d|

b |pk1pr ` xq ` k2pd` yqqpk1 ` k2q
´1yxpk1r ` k2dqpk1 ` k2q

´1|

Here, the second register may be measured; there are p possible outcomes. Since with the CG decomposition
are irreps of interest lie on the diagonal we only need to consider the diagonal entries of the second register.
These occur when k1x ` k2y “ 0; thus we can make the substitution y “ ´k´1

2 k1x. In addition, we can
relabel u “ r ´ d. This results in the density matrix

1

p

ÿ

x,uPZp

ωbk1xp
xp1`k

´1
2 k1q

2 `uq|u` xp1` k´1
2 k1qyxu|

Finally, one can relabel this with s1 “ u` xp1` k´1
2 k1q and collapse the result to the pure state

1
?
p

ÿ

sPZp

ωts
2

|sy, where t “
k1k2b

2pk1 ` k2q
(2.4)

We wish to find b, however this requires a unitary transform which decomposes the state so it does not
contain a square.
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Specifically in [2] it is claimed that there is a unitary transform

U2 :
1
?

2
p|
?
ty ` | ´

?
tyq Ñ |ty and U2 : |0y Ñ |0y

See Claim 2.3.3.0.1 and the discussion below for some additional details.

Now, we can consider the above sum as being over x P Zp where x “ s2; then s “ ˘
?
x, so Eq 2.4 becomes

1
?
p
p

ÿ

xPZp,x‰0,s“
?
x

ωtx|
?
xy `

ÿ

xPZp,x‰0,s“´
?
x

ωtx| ´
?
xy ` |0yq

“
1
?
p
p

ÿ

xPZp,x‰0

ωtxp|
?
xy ` | ´

?
xyq ` |0yq (2.5)

Applying U2 to Eq 2.5 we obtain

c

2

p

ÿ

xPZp,x‰0

ωtx|xy `
1
?
p
|0y

Then, after an inverse QFT and measurement one obtains t with P ptq “ 1
2 ` Op 1

p2 q from which one can
determine b.

What if instead of a degree p representation we measure χc1,d1bχc2,d2 ; that is, two degree one representations?
In this case,

χc1,d1pAa,bq b χc2,d2pAa,bq “
ÿ

x1,x2

ωbpx1d1`x2d2q`c1x1`c2x2 “

#

p2, with prob 1
p2

0

That is, given an arbitrary χc1,d1 b χc2,d2 we will measure the value p2 with probability 1
p2 . Since the

probability of measuring a one-dimensional irrep is 1
p we have that the overall probability of measuring two

one-dimensional irreps is 1
p
1
pp

2 1
p2 “

1
p2 . And so the probability of obtaining any information from this case

is quite small. However, this would result in χc1`c2,d1`d2pAa,bq and so standard techniques could be used to
solve, since c1, c2, d1, d2 are all known.

If one of the irreps is of degree one the process would be similar. The resulting state would be nonzero
with probability 1

p ; overall the chance of this happening would be 2
p3 . Since the label of each irrep is known

determining b would be simple from χc,d.

Finally, if both irreps are of degree p but k1 ` k2 “ r0sp then their direct product is a series of degree one
representations. Thus, summing over all of it would yield similar results to above. In addition, this would
occur with very small probability.

35



2.3 Weyl-Heisenberg Group

The following section interprets and describes the methodology and results of [17], which is similar to the
methodology described in Section 2.2.3 by [2] but has been generalized to extraspecial p-groups of exponent
p and order p2n`1 for any n ě 1. Such groups are called Weyl-Heisenberg groups and are of the form
Zn`1
p ¸ Znp .

The definition of this group is very similar to that of the restricted Heisenberg group: Wp “ tpa, b, cq : a P
Zp, b P Znp , c P Znpu where the group operation is defined by

pa, b, cqpa1, b1, c1q “ pa` a1 ` b1 ¨ c, b` b1, c` c1q

as before, except now b1 ¨ c is a dot product of vectors.

Let us denote the vector space Z2n
p by V and let π : Wp Ñ V be the projection map defined by πppa, b, cqq “

pb, cq.

Claim 2.3.0.0.1. The map π defined above is a homomorphism where πpghq “ πpgq ` πphq @g, h PWp

Proof. Let g “ pa, b, cq, h “ px, y, zq PWp. Then, gh “ pa` x` yc, b` y, c` zq PWp. Now,

πpghq “ πppa` x` yc, b` y, c` zqq “ pb` y, c` zq “ pb, cq ` py, zq “ πpgq ` πphq

since V is a vector space and thus linear in addition.

2.3.1 Subgroup structure

The subgroup structure of this group is a generalized version of the Heisenberg group.

Claim 2.3.1.0.1. The center of the group Wp is the commutator subgroup W 1
p “ xp1, 0, 0qy – Zp.

Proof. W 1
p is clearly a cyclic subgroup. As such, it commutes with every element of Wp:

Let g “ pa, b, cq PWp, px, 0, 0q PW
1
p. Then,

pa, b, cqpx, 0, 0q “ pa` x, b, cq “ px, 0, 0qpa, b, cq

Also, it is normal:

pa, b, cqpx, 0, 0qp´a` bc,´b,´cq “ px´ a` bc´ ab, b´ b, c´ cq “ px, 0, 0q PW 1
p

However this also follows from the fact that W 1
p is the kernel of π:

πppa, b, cqq “ p0, 0q ô pb, cq “ p0, 0q ô pa, b, cq PW 1
p
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Since the kernel of a homomorphism is a normal subgroup, we get that W 1
p must be normal in Wp.

Finally, let ψ : W 1
p Ñ Zp be a map defined by ψpx, 0, 0q Ñ x. This is an isomorphism:

It is clearly surjective. It is also injective: suppose px, 0, 0q, py, 0, 0q PW 1
p. Then,

ψppx, 0, 0qq “ ψppy, 0, 0qq ô x “ y ô px, 0, 0q “ py, 0, 0q

Finally, it has the homomorphism property:

ψppx, 0, 0qpy, 0, 0qq “ ψppx` y, 0, 0qq “ px` yq “ pxq ` pyq “ ψppx, 0, 0qq ` ψppy, 0, 0qq

Thus, we have that W 1
p – Zp.

In fact, more can be said about the vector space V : we can associate it with the quotient Wp{W
1
p “

tp0, b, cqW 1
p : b, c P Znpu. That is, recalling the projection map π, notice that this gives an isomorphism on

tp0, b, cq : b, c P Znpu. Thus, if we associate each coset with an element in the above set we see that π allows
us to associate the quotient with Znp .

Next, we have the subgroups Ni “ tpa, xi, xq : a P Zp, x P Znpu, i P Zp, N “ tpa, b, 0q : a P Zp, b P Znpu.

Claim 2.3.1.0.2. The subgroups Ni, N are normal.

Proof. We know that for any two elements g “ px, y, zq, h “ pa, b, cq PWp,

ghg´1 “ pa´ yc` bz, b, cq

Now, suppose h “ pa, vi, vq P Ni, v P Znp . Then,

ghg´1 “ pa´ yv ` viz, vi, vq “P Ni since a´ yv ` viz P Zp

Similarly, if h “ pa, b, 0q P N then

ghg´1 “ pa` bz, b, 0q P N since a` bz P Zp

Finally, we have cyclic subgroups of the form

H “ xpa, b, cqy “ tpax`

ˆ

x

2

˙

b ¨ c, bx, cxq : a, x P Zp.b, c P Znpu

These can be divided into two subclasses, with either c being the zero vector or a vector with only ones and
zeroes as entries.

The first subclass, call this Aa,b,c can be enumerated by allowing a to range through all of Zp and b over Znp .

On the other hand, there are
řn
i“1

`

n
i

˘

possible choices for c, with each c having i ones and n´ i zeroes.
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The other subclass, Aa,b, is given by letting c be the zero vector, allowing a to range over all of Zp, and b
to be vectors in Znp with ones and zeroes as entries. Note that if b is the zero vector then this subgroup is

simply the center. Not including b “ 0 P Znp there are
řn
i“1

`

n
i

˘

choices for b.

Moving forward, a cyclic subgroup H “ xpa, b, cqy will be considered to be generated as described above, in
order to avoid considering duplicate subgroups; this will be referred to as ”standard”.

Claim 2.3.1.0.3. Let H “ xpa, b, cqy be a cyclic subgroup of Wp. Then its conjugate subgroups are of the
form xpα, b, cqy, α P Zp. That is, its conjugacy class is determined by the value of b, c.

Proof. Suppose g “ pd, y, zq PWp and let h “ pax`
`

x
2

˘

b ¨ c, bx, cxq P H where x P Zp. Then,

pd, y, zqpax`

ˆ

x

2

˙

bc, bx, cxqp´d` yz,´y,´zq “ ppa´ cy ` bzqx`

ˆ

x

2

˙

cb, bx, cxq P Apa´cy`bzq,b,c

Since the values of y, z range over the whole group we have that the conjugate subgroups of H are all the
subgroups Aα,b,c, α P Zp.

Since the subgroups Ni, N are normal subgroups we will not consider these in our analysis.

Consider a subgroup H “ pa, b, cqx “ pax`
`

x
2

˘

bc, xb, xcq and define the vector space SH “ tpb, cq : pa, b, cq P
Hu “ tπphq : h P Hu. Our goal is to determine the value of b, c, since these determine the conjugacy class of
H as per the claim above.

Now, we have that
SH “ tπphq : h P Hu “ tpbx, cxq : x P Zpu,

and all that we need to determine is the value of b, c.

Claim 2.3.1.0.4. Suppose H,K are non-normal subgroups of Wp. Then, these are conjugate ô SH “ SK

Proof. Suppose H “ xpa, b, cqy,K “ xpd, e, fqy, where the generators are of the standard form mentioned
above.

Assume H,K are conjugate. This means that b “ e, c “ f . Then,

SH “ tπphq : h P Hu “ tpbx, cxq : x P Zp

SK “ tπpkq : k P Ku “ tpby, cyq : y P Zpu

These are clearly equal. However, this can also be shown be letting pbx, cxq P SH . Then, since x P Zp we
know that pbx, cxq P SK ñ SH Ă SK . Finally, |SH | “ p “ |SK and thus SH “ SK .

To prove the reverse direction, suppose SH “ SK . Then, we must have that

@pbx, cxq P SH , pbx, cxq P SK ñ pbx, cxq “ pey, fyq
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Since this is true for all x, take x ‰ 0, which implies that y ‰ 0. Then,

ñ pbx, cxq ´ pey, fyq “ pbx´ ey, cx´ fyq “ p0, 0q ô cx´ fy “ 0 “ bx´ ey

for some y P Zp.

Since this is true @x P Zp consider x “ 1. Then, b “ ey, c “ fy, y P Zp. Then, H “ xpa, ey, fyqy. Similarly,
we could rewrite K as K “ xpdy, ey, fyqy since every element is a generator because it has order p.

Then, by Claim 2.3.1.0.3, we have that H,K must be conjugate.

Thus, in order to solve the HSCP one must find a basis for SH .

Now, consider H “ xpa, b, cqy, h “ pax`
`

x
2

˘

bc, bx, cxq P H, g “ pu, y, zq PWp, a, u P Zp, b, c P Znp . Then,

pu, y, zqpax`

ˆ

x

2

˙

bc, bx, cxqp´u` yz,´y,´zq “ ppa´ yc` bzqx`

ˆ

x

2

˙

cb, bx, cxq

and so gHg´1 “ H ñ b ¨ z ´ y ¨ c “ 0. We wish to determine when this is the case.

To do this, let us define the operation on the vector space V where @px, yq, px1, y1q P V, Sppx, yq, px1, y1qq “
x ¨ y1 ´ y ¨ x1.

Next, let py, zq “ πpgq P V and SH “ tπphq : h P xpa, b, cqyu “ tpbx, cxq : x P Zpu from above. Also, define
SKH “ tpb, cq P V : Sppb, cq, px, yqq “ 0@px, yq P SHu.

Thus, @pbx, cxq P SH , Sppbx, cxq, py, zqq “ 0 ñ py, zq P SKH .

On the other hand, suppose py, zq P SKH . Then, Sppy, zq, pbx, cxqq “ 0 “ pbz ´ ycqx@pbx, cxq P SH .

Now, let G “ tg PWp : πpgq “ py, zqu “ tpc, y, zq : c P Zpu. Then, gHg´1 “ H@g P G.

This proves the following claim:

Claim 2.3.1.0.5. Suppose H “ xpa, b, cqy. Then, @g PWp, gHg
´1 “ H ô πpgq P SKH

Claim 2.3.1.0.6. The subgroup H “ xpa, b, cqy is abelian.

Proof. While this follows from the fact that H is a cyclic subgroup generated by one element, we can alsso
justify it by letting h “ pax`

`

x
2

˘

bc, bx, cxq, g “ pay `
`

y
2

˘

bc, by, cyq P H. Then,

pax`

ˆ

x

2

˙

bc, bx, cxqpay `

ˆ

y

2

˙

bc, by, cyq “ pax`

ˆ

x

2

˙

bc` ay `

ˆ

y

2

˙

bc` bcxy, bx` by, cx` cyq

“ pay `

ˆ

y

2

˙

bc, by, cyqpax`

ˆ

x

2

˙

bc, bx, cxq

since the dot product and scalar multiplication commute.
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Claim 2.3.1.0.7. If a subgroup H ďWp is abelian then @pb, cq, pb1, c1q P SH , bc
1´b1c “ 0 and thus SH Ă SKH .

In fact, forall one-dimensional subspaces S of V , S Ă SK.

Proof. Let h “ pa, b, cq P H and suppose H is abelian. Then, for all g “ px, y, zq P H,

ghg´1 “ pa´ yc` bz, b, cq “ pa, b, cq ñ bz ´ yc “ 0

Since h, g P H we know that πphq “ pb, cq, πpgq “ py, zq P SH . Recall the inner product defined above. Then,
@πpgq P SH ,

pb, cq ¨ py, zq “ 0 ùñ pb, cq P SKH ùñ SH Ă SKH

2.3.2 Representation theory

The representation theory for this group is analogous to that given in 2.2. We have p2n one-dimensional
representations

χa,bpx, y, zq “ ωa¨y`b¨z, ω “ e
2πi
p , a, b, y, z P Znp , x P Zp

as well as p´ 1 pn-dimensional irreps

σkpa, b, cq “ ωak
ÿ

iPZnp

ωibk|i` cyxi|, k P Z˚p

with character

χkpa, b, cq “

#

pnωak, pa, b, cq “ pa, 0, 0q

0, else

We will need to consider these as a normalized sum over all of H “ xpa, b, cqy:

χe,dpHq “
1

|H|

ÿ

xPZnp

χe,dpax`

ˆ

x

2

˙

bc, xb, cxq “
1

pn

ÿ

xPZnp

ωdxb`cex

“

#

1, db` ce “ 0 mod p ñ pe, dq P SKH
0, else

σkpHq “
1

|H|

ÿ

xPZ2
p

σkpax`

ˆ

x

2

˙

bc, xb, cxq “
1

pn

ÿ

xPZnp

ωpax`p
x
2qbcqk

ÿ

iPZnp

ωibxk|i` cxyxi| (2.6)

Since SH is a one-dimensional subspace of V , and dimV “ 2n, we know that dimpSKHq “ 2n´ 1.
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2.3.3 HSP

We are now ready to describe how [17] solved the HSP in this class of groups.

As before, we want to prepare two coset states, perform a QFT over both states, and measure the irrep label
and index for each state. The probability of measuring a certain representation µ is given by the formula

P pµq “
dµ|H|

|Wp|
tracepµpHqq

where in general P pχq and P pσq refers to the probability of measuring any 1- and p-dimensional represen-
tations, respectively. Thus we have that

P pχpc,dqq “
|H|

|Wp|
χpc,dqpHq “

#

1
pn`1 , pc, dq P S

K
H

0, else
ñ P pχq “

|SKH |

pn`1
“

1

p

P pσkq “
1

pn`1
χkpHq “

1

p
ñ P pσq “

p´ 1

p

There are four possible outcomes, which occur with probabilities:

P pχb χq “
1

p2
, P pχb σq “ 2

p´ 1

p2
, P pσ b σq “

pp´ 1q2

p2

This will result in measuring σk1 and σk2 with high probability.

Now, after Fourier sampling we have a state proportional to σkpHqbσlpHq. If k`l “ 0 then after performing
a CG transform ([17, Eq.13]) we obtain

ÿ

pa,b,cq,pa1,b1,c1qPH,u,wPZnp

ω
k
2 p2pa

1
´aq`wpb1`bq´upc1`cqq|u` b´ b1, wyxu,w ` c1 ´ c| (2.7)

Consider the entries on the diagonal of this matrix. These occur when u ` b ´ b1 “ u ñ b “ b1 and when
w ` c1 ´ c “ w ñ c “ c1. Since our subgroup is H “ypa, b, cqx, we also have that a “ a1, since the elements
in H correspond to pax `

`

x
2

˘

, bx, cxq and pay `
`

y
2

˘

, by, cyq so by “ bx ñ y “ x ñ a “ a1. Thus, we have
one-dimensional entries along the diagonal; these are

1

pn

ÿ

pa,b,cqPH,u,wPZnp

ωkpwb´ucq “ χ´u,wpHq (2.8)

While our goal would be to obtain such a state, with high probability we will instead obtain the state

σkpHq b σlpHq “
|H|2

p2n

ÿ

pa,b,cq,pa1,b1,c1qPH,u,vPZnp

ωkpa`buq`lpa
1
`b1vq|u` c, v ` c1yxu, v| (2.9)

We wish to relabel the irreps so that k “ ´l. As such, consider the equation x2l`k “ 0 which has a solution
with probability 1

2 (see below for a discussion). We then require a unitary transform V which returns the
square root of a register.
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Claim 2.3.3.0.1. There exists a unitary transform U which which acts as follows:

U :
1
?

2
p|
?
xy ` | ´

?
xyq Ñ |xy

U :
1
?

2
p|
?
xy ´ | ´

?
xyq Ñ |εxy

U : |0y Ñ |0y

Where εx “ y2 for some y P Zp.

Consider the unitary U defined above. Then, if we apply U : instead, we obtain a superposition of two square
roots of x. Measurement will allow us to obtain one of the two solutions with equal probability.

Specifically, since we wish to find
b

´k
l , consider

V |
´k

l
y|

1
?

2
p|0y ` |1yqy “

1
?

2
p|

c

´k

l
, 0y ` | ´

c

´k

l
, 1yq

Measuring the second register will yield the desired
b

´k
l with probability 1

2 . Set α “

b

´k
l and let

Uα : |uy Ñ |αuy be a unitary transform. If we apply this to the first register of the above state; that
is, to σkpHq, then we obtain

UασkpHqU
:
α “

ÿ

pa,b,cqPH,uPZnp

ωkpa`buq|αpu` cqyxαu|

“
ÿ

pa1,b1,c1qPH,u1PZnp

ωkpα
´2a1`pα´1b1qpα´1u1qq|u1 ` c1yxu|

“
ÿ

pa1,b1,c1qPH,u1PZnp

ωkα
´2
pa1`b1u1q|u1 ` c1yxu|

“ σkα´2pψαpHqq

where we have defined ψαpa, b, cq “ pα
2a, αb, αcq, and u1 “ αu.

Since we specifically chose α “
b

´k
l and α´2k “ p´lk qk “ ´l we have successfully relabeled σkpHq as

σlpψαpHqq.

Claim 2.3.3.0.2. ψα : Wp ÑWp is an isomorphism whenever α ‰ 0.

Proof. Suppose α ‰ 0. Then, consider kerψα:

pa, b, cq P kerψα ô ψαpa, b, cq “ p0, 0, 0q ô pα2a, αb, αcq “ p0, 0, 0q ô a “ b “ c “ 0

Thus ψα is injective. It is easy to see that it is also surjective: consider pa, b, cq P Wp. Then, the element
pa1, b1, c1q “ pα´2a, α´1b, α´1cq must exist in Wp and ψαpa

1, b1, c1q “ pa, b, cq.
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Claim 2.3.3.0.3. ψαpHq is a conjugate of H.

Proof. Since ψα is an isomorphism we know that |ψαpHq| “ |H|. It suffices to show that SH “ SψαpHq

SH “ tπphq : h P Hu “ tpbx, cxq : x P Zpu

SψαpHq “ tpαbx, αcxq : x P Zpu

Since α P Zp we must have that αx P Zp and thus if we let y “ αx we can rewrite SψαpHq as

SψαpHq “ tpby, cyq : y P Zpu

Clearly, SH “ SψαpHq and thus by Claim 2.3.1.0.4 H,ψαpHq are conjugate.

Claim 2.3.3.0.4. Let Aa,b,c “ xpa, b, cqy. Then, ψαpAa,b,cq “ Aαa,b,c

Proof. Note that by Claim 2.3.3.0.3 we immediately get that ψαpAa,b,cq must be a conjugate of Aa,b,c and
thus it must be of the form Aa1,b,c.

Specifically, since ψαppax`
`

x
2

˘

bc, bx, cxqq “ pα2pax`
`

x
2

˘

bcq, αbx, αcxq we get that

ψαpAa,b,cq “ xpα
2a, αb, αcqy “ tpα2pax`

ˆ

x

2

˙

bcq, αbx, αcxq : x P Zpu

Aαa,b,c “ xpαa, b, cqy “ tpαax`

ˆ

x

2

˙

bc, bx, cxq : x P Zpu

Let pα2a, αb, αcqx “ pα2pax `
`

x
2

˘

bcq, αbx, αcxq P ψαpAa,b,cq, x P Zp. Then, since α´1 P Zp we have that
x “ α´1x1 for some x1 P Zp. Thus,

pα2a, αb, αcqx “ pα2a, αb, αcqα
´1x1 “ pαax1 `

ˆ

x1

2

˙

bc, bx1, cx1q P Aαa,b,c

Similarly, let pαa, b, cqy “ pαpay `
`

y
2

˘

bcq, by, cyq P Aαa,b,c, y P Zp. As before, since α, y P Zp, let y “ αy1.
Then,

pαa, b, cqy “ pαa, b, cqαy
1

“ pα2pay1 `

ˆ

y1

2

˙

bcq, αby1, αcy1q P ψαpAa,b,cq

Thus, Aαa,b “ xαa, b, cy “ xpα
2a, αb, αcqy “ ψαpAa,b,cq as required.
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Consider the state in Eq 2.9, and suppose we have relabeled σkpHq as σ´lpψαpHqq. Then, we get

σ´lpψαpHqq b σlpHq “
|H|2

p2n

ÿ

pA,B,CqPψαpHq
pa1,b1,c1qPH,

u,vPZ2n´2
p

ω´lpA`Buq`lpa
1
`b1vq|u` C, v ` c1yxu, v|

“
1

p2n´2

ÿ

x,yPZp,u,vPZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`bpvx´yuqq|u` cx, v ` cyyxu, v|

To this we can apply the CG transform given in [17, Eq.21] to obtain

1

p2n´2

ÿ

x,yPZp,u,v,w1,w2PZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`bpvx´yuqq`

l
2 pu`cx`v`cyqw1´

l
2 pu`vqw2

|u` cx´ v ´ cy, w1yxu´ v, w2|

“
1

p2n´2

ÿ

x,yPZp,u,v,w1,w2PZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`bpvx´yuqq`

l
2 ppu`vqpw1´w2q`pcx`cyqw1

|u` cx´ v ´ cy, w1yxu´ v, w2|

Now, to simplify, we can substitute u1 “ u ´ v, v1 “ u ` v and note that v “ v`´u`v
2 “ v1´u1

2 and

u “ u`v´v`u
2 “ u1`v1

2 . Then, we get

1

p2n´2

ÿ

x,yPZp,u1,v1,w1,w2PZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`bp

v1´u1

2 x´y v
1`u1

2 qq` l
2 pv

1
pw1´w2q`pcx`cyqw1

|u1 ` cx´ cy, w1yxu
1, w2|

“
1

p2n´2

ÿ

x,yPZp,u1,v1,w1,w2PZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`

´u1b
2 px`yq`w1cpx`yq`

v1l
2 ppw1´w2q`px´yqbq (2.10)

|u1 ` cx´ cy, w1yxu
1, w2|

Ideally we would like to simplify this. Since ω is a root of unity, we know that summing over, say, ωk for all
of k P Znp , k ‰ 0 will yield 0. Thus, as seen in [17], since v1 only appears as an exponent of ω in Eq. 2.10 it
can be factored out. Thus, consider the portion of the above equation that is a sum over v1:

ÿ

v1PZnp

ω
v1l
2 ppw1´w2ql`px´yqbq

#

pn, pw1 ´ w2q ` px´ yqb “ 0

0 else

Thus, we only need to consider when pw1´w2q` px´ yqb “ 0 ñ bpx´ yq`w1 “ w2. With this substitution
and then relabelling by w “ w1 ` bpx´ yq Eq. 2.10 becomes

1

pn´2

ÿ

x,yPZp,u1,wPZnp

ωlpapx´αyq`bcpp
x
2q´αp

y
2qq`b

u1

2 px´yqq`
lc
2 ppx`yqpw´bx`byq|u1`cx´cy, w´bpx´yqyxu1, w| (2.11)
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Now, recall that the conjugate subgroups of Aa,b,c are determined by b, c. Suppose c is the zero vector; then b
in its ”standard form” is one of

řp
i“1

`

p
i

˘

possible vectors with only ones and zeroes as entries. Then Eq 2.11
is

1

pn´2

ÿ

x,yPZp,u1,wPZnp

ωlpapx´αyq`b
u1

2 px´yqq|u1, w ´ bpx´ yqyxu1, w|

If we then let x1 “ x´ y then we obtain

1

pn´2

ÿ

x1,yPZp,u1,wPZnp

ωlpapx
1
`yp1´αqq`bu

1

2 x
1
q|u1, w ´ bx1yxu1, w|

After measurement we obtain a |w´bx1y and |u1y, both with probability 1
pn , collapsing the state to a multiple

of
ÿ

y1PZp

ωlpapx
1
`yp1´αqq`bu

1

2 x
1
q

which is only nonzero if x1 ` yp1´ αq “ 0.

On the other hand, consider H “ Aa,b,c, c nonzero, for which the value of b, c determines the conjugate
subgroups. As such, we do not care about the value of a for the HSCP. Thus, we want to remove in from
our sum. To do this we can use the trick in [17], in which it is observed that for a subgroup H there is
a conjugate subgroup of the form H0 “ tp

xy
2 , x, yq : px, yq P SHu. If H “ Aa,b,c this subgroup would be

A0,b,c “ tp
bcx2

2 , bx, cxq : x P Zpu.

To obtain this conjugate subgroup, let g “ px̂, ŷ, ẑq PWp be an element such that Hg “ gHg´1 “ H0. Then,
we must have that for any px, y, zq P H,

gpx, y, zqg´1 “ px` yẑ ´ ŷz, y, zq “ p
yz

2
, y, zq

Once again, if H “ Aa,b,c then this would correspond to

gpax`

ˆ

x

2

˙

cb, bx, cxqg´1 “ pax`

ˆ

x

2

˙

cb` bxẑ ´ ŷx, bx, cxq “ p
bcx2

2
, bx, cxq

In addition, for ψαpAa,b,cq we want ψαpgq “ pα
2x̂, αŷ, αẑq so that

ψαpgqpα
2pax`

ˆ

x

2

˙

bcq, αbx, αcxqψαpgq
´1 “ pα2pax`

ˆ

x

2

˙

bcq ` α2bxẑ ´ α2ŷcx, αbx, αcxq

“ p
α2bcx2

2
, αbx, αcxq

However, since ψαpAa,b,cq “ Aαa,b,c we could instead consider some g1 “ px̂1, ŷ1, ẑ1q so that

g1pαay `

ˆ

y

2

˙

bc, by, cyqg1´1 “ pαay `

ˆ

y

2

˙

bc` byẑ1 ´ ŷ1cy, by, cyq “ p
bcy2

2
, by, cyq
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However, it is easy to see that the H0 “ A0,b,c for both Aa,b,c and Aαa,b,c and thus g “ g1. Now, consider
Eq. 2.11, with the normalization omitted, and make the required substitutions with g defined above:

ÿ

x,yPZp,u1,wPZnp

ωlp
bc
2 px

2
´y2q`ŷcpx´yq´bẑpx´yq`bu

1

2 px´yqq`
lc
2 ppx`yqpw´xb`byq|u1`cpx´yq, w´bpx´yqyxu1, w| (2.12)

Consider the substitution x1 “ x´ y, y1 “ x` y. Then Eq 2.12 becomes

ÿ

x1,y1PZp,u1,wPZnp

ωlp
bc
2 px

1y1q`ŷcx1´bẑx1`bu
1

2 x
1
q` lc2 y

1
pw´bx1q|u1 ` cx1, w ´ bx1yxu1, w|

After measuring to obtain u1 ` cx1, w1 “ w ´ bx1, we are left with a multiple of

ÿ

y1PZp

ωlp
bc
2 px

1y1q`ŷcx1´bẑx1`bu
1

2 x
1
q` lc2 y

1w1

If we modify Eq 2.12 somewhat this may yield better results. First, do not simplify ψαpHq. Second, consider
g “ px̂, ŷ, ẑq where

gpax`

ˆ

x

2

˙

bc, bx, cxqg´1 “ pa`

ˆ

x

2

˙

bc` bẑ ´ ŷc, b, cq “ p
bc

2
, b, cq

Make this substitution and φαpgq instead and relabel so that our sum runs over elements in SH ; this is allowed
as the substitution will remove the ”a” term from the equation. That is, let b :“ bx, c :“ x, b1 :“ by, c1 :“ y.
Then,

1

pn

ÿ

pb,cq,pb1,c1qPSH ,u1,wPZnp

ω
l
2 p2pŷc´bẑq´2αpŷc1´ẑb1q`u1pb`b1q`wpc`c1q|u1 ` c´ c1, w ` b1 ´ byxu1, w|

Here we have used Claim 2.3.1.0.6 and Claim 2.3.1.0.7 in order to simplify, as these claims imply that
b1c´ c1b “ 0 since pb1, c1q, pb, cq P SH

Now, let us try to simplify by setting c1 :“ c´c1, b1 :“ b´b1; since SH is a linear vector space this is allowed.
Then,

1

pn

ÿ

pb,cq,pb1,c1qPSH ,u1,wPZnp

ω
l
2 p2pŷpc1`c

1
q´pb1`b

1
qẑq´2αpŷc1´ẑb1q`u1pb1`2b1q`wppc1`c

1
q`c1q|u1`c1, w´b1yxu

1, w| (2.13)
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Finally, this becomes:

1

pn

ÿ

pb1,c1q,pb1,c1qPSH ,u1,wPZnp

ωlpb
1
pu1`ẑpα´1qq`c1pŷp1´αq`wqq` l

2 pb1pu
1
´2ẑq`c1pw`2ŷqq|u1 ` c1, w ´ b1yxu

1, w|

Measuring yields pairs |u1 ` c1y, |w ´ b1y with the result

ÿ

pb1,c1qPSH

ωlpb
1
pu1`ẑpα´1qq`c1pŷp1´αq`wqq` l

2 pb1pu
1
´2ẑq`c1pw`2ŷqq|u1 ` c1, w ´ b1yxu

1, w|

This is only nonzero when b1pu1 ` ẑpα´ 1qq ` c1pŷp1´ αq ` wq “ 0 since the values of pb1, c1q go through all
of SH . Recall the symplectic inner product we defined previously. Then, this is nonzero when

pb1, c1q ¨ pŷp1´ αq ` w, u1 ` ẑp1´ αqq “ 0 ñ pŷp1´ αq ` w, u1 ` ẑp1´ αqq P SKH

Thus, measurement yields the vector pŷp1´ αq ` w, u1 ` ẑp1´ αqq P SKH .

If the above procedure is repeated n times we obtain a series of elements pui, viq P SH and thus

pui ` p1´ αiqŷ, vi ` p1´ αiqẑq P S
K
H , 1 ď i ď n` 1

After a division by p1´ αiq and taking differences one can obtain vectors

pu1i, v
1
iq “ p

ui
p1´ αiq

´
un`1

p1´ αn`1q
,

vi
p1´ αiq

´
vn`1

p1´ αn`1q
q P SKH

which form a basis for SKH with high probability. From this one can obtain SH , H0, and H, by setting
pŷ, ẑq “ 1

1´α1
pu1 ´ u

1
1, v1 ´ v

1
1q.

2.4 General Conclusions

A natural question to ask is what made the CG transform useful in the regular and generalized Heisenberg
groups. While investigating other groups may be useful to determine when this transform is helpful, the
observations listed below may help shed some light.

Firstly, the hidden subgroup in the above groups were normal in a normal subgroup of the overall group.
Furthermore, due to the nature of the conjugacy classes, solving the HSP could be reduced to solving the
HSCP, followed by some post-processing and the algorithm for solving the HSP in normal groups. Thus,
groups in which conjugacy classes have a useful characterization may benefit from the CG transform, or have
some reduction from the HSP to the potentially simpler HSCP.

Next, these groups are extraspecial p-groups. Thus, they have some useful properties, which makes them
almost abelian. Firstly, they are two-step nilpotent and solvable. Further, the group mod the center is an
elementary abelian p-group, and this is exploited in the solution.
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The fact that the hidden subgroup is abelian was exploited in the procedure for the Weyl-Heisenberg group,
and the fact that all subgroups are either normal or abelian may be of assistance, as well.

In the paper by [21] a proof is given in Theorem 1 for why the hidden conjugates of a subgroup Ha “

xpa, 0qy, |Ha| “ q, a P Z˚p are fully reconstructive in Ap “ Z˚p ˙ Zp, partially because of the high probability
of observing a p ´ 1 dimensional representation, and because of a reduction, for Zq ˙ Zp as well. This is
similar to the fact that for the regular- and generalized Weyl-Heisenberg groups, one observes a p dimensional
irrep with high probablity; otherwise the irrep has dimension one. Not only does this allow the consideration
of only two kinds of irreps, it indicates which one will most likely be measured. Further, the fact that the
tensor product of such irreps decomposes in a useful manner is also of interest.
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Chapter 3

Wreath Product Groups

3.1 Wreath Product Overview

This chapter will discuss the HSP in wreath product groups. It will begin with an overview of these groups:
a definition, some general results, and so on, followed by some important background on the representation
theory of such groups. Finally, a specific group, Znp o Zdp will be examined in its relation to the HSP.

There are a number of reasons why this class of groups was chosen to be analyzed. First, wreath product
groups, in general, have a fascinating subgroup structure and interesting representation theory, with limited
discussion in existing papers. Next, under certain conditions, as will be discussed later, these are nilpotent
groups, which may have been one of the beneficial characteristics of the Weyl-Heisenberg group which allowed
for the HSP to be solved. Additionally, for Znp oZdp, as will be shown, the representations are all of dimension
a power of the prime p, which may indicate that the tensor product of two representations may decompose
nicely.

Definition 15 (Wreath Product). Let G,H be groups, where H acts on a set X with |X| “ n, and let
B “

ś

sPX Gs, where “product” is the direct product. Then the wreath product of G,H is

G oH “ B ¸ψ H “ tpb, hq : b P B, h P Hu

where B is called the base group, and ψ is a homomorphism ψ : H Ñ Sn.

The group operation can be defined by

pb;hqpc; gq “ pψgpbqc;hgq, and pb;hq´1 “ pψh´1pb´1q;h´1q

An alternate way of viewing this group is according to the definition in [5]. Let G,F be two groups where
G acts on a finite set X. Let FX “ tf : X Ñ F u be the set of maps, and define the operation on FX as

pf ¨ hqpxq “ fpxqhpxq @h, f P FX , x P X
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Figure 3.1: Z3 o Z2 Tree

In this case, G can be considered to act on FX as

pgfqpxq “ fpg´1xq and gpf ¨ f 1q “ gf ¨ gf 1 and pgfq´1 “ gf´1

Finally, the group operation can be defined as

pf, gqpf 1, g1q “ pg1f ¨ f 1, gg1q, where pgf 1 ¨ fqpxq “ f 1pg´1xqfpxq

The similarities of this definition with the above one is clear. For the most part, this definition will not be
employed.

Finally, one can view H as a subgroup of Sn when |H| “ n, so that X “ t1, 2, ..., nu, and so H acts by permu-
tation on X, so that the end result is permuting the elements in B. That is, let pg1, .., gn; τq, ph1, ..., hn;σq P
G oH where gi, hi P G, τ, σ P H. Then the group operation is

pg1, ..., gn; τqph1, ..., hn;σq “ pgσp1qh1, ..., gσpnqhn; τσq

Clearly, if |G| “ m, |H| “ n, then |G oH| “ mnn. Unfortunately, in [4] it is shown that G oH is nilpotent if,
and only if, G,H are p groups. However, if G,H are solvable then G oH will also be solvable.

Visually, one could picture this as a tree with height 2, where the first layer of nodes represent the base
group, and the roots are the elements in G. As an example, consider G “ Z3, H “ Z2. Clearly, we have two
“layers” of actions then: H permutes elements in the base group B by its action on X, and each element of
this base group is the group G which acts on a set Y . That is, the automorphism group of the above tree is,
in fact, isomorphic to the wreath product G oH.

Figure 3.1 helps visualize iterated wreath products, which can be thought of as increasing the height of the
tree by appending additional nodes to the current root. This helps justify that the wreath product is an
associative operation. That is, given three groups G,H,K,

pG oHq oK – G o pH oKq

Lemma 3.1.0.0.1. Let G,H,K be three groups, where H acts on a set X and K on a set Y , where
|X| “ x, |Y | “ y. Then, there is an isomorphism Ψ : G o pH oKq Ñ pG oHq oK.

Proof. First, let
G oH “ tpg, hq : g P GX , h P Hu

pG oHq oK “ tppg, hq, kq : pg, hq P pG oHqY , k P Ku
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Since pG oHqY “ ppG oHq, ..., pG oHqq “ pGX ¸H, ..., GX ¸Hq we obtain |XY | copies of G and |Y | copies
of H.

For brevity, denote the action of a group on the base group as a dot product; that is, for pg, hq, pg1, h1q P

pGoHqY , let pg, hq “ ppg11 , ..., g
1
x;h1q, ..., pg

y
1 , ..., g

y
x;hyqq, pg

1, h1q “ ppg
11
1 , ..., g

11
x ;h11q, ..., pg

1y
1 , ..., g

1y
x ;h1yqq, so that

g, h are y´dimensional vectors with entries pgi1, ..., g
i
xq, hi, 1 ď i ď y respectively. Then, for ppg, hq; kq, ppg1, h1q; k1q P

pG oHq oK we get

ppg, hq, kqppg1, h1q, k1q “ ppk1 ¨ pg, hqqpg1, h1q, kk1q

“ ppg11 , ..., g
1
x;h1q, ..., pg

y
1 , ..., g

y
x;hyq; kqppg

11
1 , ..., g

11
x ;h11q, ..., pg

1y
1 , ..., g

1y
x ;h1yq; k

1q

“ ppk1 ¨ pg11 , ..., g
1
x;h1qqpg

11
1 , ..., g

11
x ;h11q, ..., pk

1 ¨ pgy1 , ..., g
y
x;hyqqpg

1y
1 , ..., g

1y
x ;h1yq; kk

1q

“ ppg
k1p1q
1 , ..., gk

1
p1q

x ;hk1p1qqpg
11
1 , ..., g

11
x ;h11q, ..., pg

k1pyq
1 , ..., gk

1
pyq

x ;hk1pyqqpg
1y
1 , ..., g

1y
x ;h1yq; kk

1q

“ ppg
h11pk

1
p1qq

1 g
11
1 , ..., g

h11pk
1
p1qq

x g
11
x ;hk1p1qh

1
1q, ...,

pg
h1ypk

1
pyqq

1 g
1y
1 , ..., g

h1ypk
1
pyqq

x g
1y
x ;hk1pyqh

1
yq; kk

1q

“ ppph1 ¨ pk1 ¨ gqqg1, pk1 ¨ hqh1q, kk1q

On the other hand, let
H oK “ tph, kq : h P HY , k P Ku

G o pH oKq “ tpg, ph, kqq : g P GXY , ph, kq P H oKu

where, ph, kq “ ph1, ..., hy; kq and thus pg, ph, kqq “ pg1, ..., gxy; ph1, ..., hy; kqq with the group operation, for
pg, ph, kqq, pg1, ph1, k1qq P G o pH oKq, defined by

pg, ph, kqqpg1, ph1, k1qq “ ppph1, k1q ¨ gqg1, ph, kqph1, k1qq

“ ppph1, k1q ¨ gqg1, ppk1 ¨ hqh1, kk1qq

Consider an element g “ pg1, ..., gxyq P G
XY and partition it to obtain ĝ1 “ pg1, ..., gxq, ĝy “ pgxy´x, ..., gxyq,

so that g “ pĝ1, ..., ĝyq.

Next, consider the action of ph, kq “ ph1, ..., hy; kq on GXY . We wish to map this action; that is, the action
of H oK on GXY in G o pH oKq to an action by k P K on the base group pG oHqY in pG oHq oK.

Then, one can define Ψ : pG o pH oKqq Ñ pG oHq oK by

Ψppph1, k1q ¨ gqg1, pk1 ¨ hqh1, kk1q “ Ψpph11, ..., h
1
y; k1q ¨ pĝ1, ..., ĝyqppĝ11, ..., ĝ

1
yqq, pk

1 ¨ ph1, ..., hyqqph
1
1, ..., h

1
yq; kk

1q

“ ppph11 ¨ pk
1 ¨ ĝ1qqĝ11;hk1p1qh

1
1q, ..., pph

1
y ¨ pk

1 ¨ ĝyqqĝ1y;hk1pyqh
1
yqq

“ pppĥ1 ¨ pk̂1 ¨ ĝqqĝ1, pk̂1 ¨ ĥqĥ1q, k̂k1q

where ĝ is a y-dimensional vector with entries ĝi, 1 ď i ď y, ĥ is simply a y-dimensional vector with values
hi, 1 ď i ď y, and k̂ “ k.
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If the input to Ψ is simply pg, ph, kqq “ pg1, ..., gxy, ph1, ..., hy; kqqq, then

Ψppg, ph, kqq “ pppg1, ..., gx;h1q, ..., pgxy´x, ..., gxy;hyqq; kq

This idea allows for the definition of an iterated wreath product, given in [23]:

Definition 16 (Iterated wreath product). Let r be a positive nonzero integers. Then the iterated wreath
product of a group G can be defined recursively as

W1 “ G

Wr “Wr´1 oG
So that Wr – G o ... oG where G appears r times.

When G “ Zn for a nonzero integer n this group will be denoted Wn,r.

3.1.1 Group structure

In this subsection we will consider the general subgroup structure of a wreath group, and also discuss
conjugacy classes in such a group.

Let G oH be a group with base group GX as defined above. Recall that if pb;hq P G oH, b “ pg1, ..., gxq where
gi P G, x “ |H| and where ψ denotes the action of H on base group GX , then

pb;hq´1 “ pψh´1pb´1q;h´1q “ pg´1
h´1p1q

, ..., g´1
h´1pxq

;h´1q

Then, let x “ pb;hq, y “ pa; kq P G oH. Then,

x´1yx “ pψh´1pb´1q;h´1qpa; kqpb;hq “ pψh´1pb´1q;h´1qpψhpaqb; khq

“ pψkhpψh´1pb´1qqψhpaqb;h
´1khq

“ pψkpb
´1qψhpaqb;h

´1khq

which gives us a formula for determining conjugates of an element. In general, if K is a subgroup of G oH,
and g P G oH, then let

Kg “ tg´1kg : k P Ku

denote the conjugate of K by g. Two subgroups K,K 1 of G oH are then considered conjugate if K 1 “ Kg

for some element g P G.

Notice that the subgroup Bw “ tpb; ehq : b P Bu is normal in G oH.

Now, let us determine the commutator and center subgroups of G oH. Let x, y be as defined above. Recall
that x P ZpG oHq ô x´1yx “ y@y P G oH. Thus, we wish to determine the form that x P ZpG oHq takes
by solving this equality. Then,

x´1yx “ pψkpb
´1qψhpaqb;h

´1khq “ pa; kq if ψkpb
´1qψhpaqb “ a, h´1kh “ k
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Of course, h´1kh “ k holds for h P ZpHq. In addition, b must be of the form b “ pg, ..., gq, g P G so that
ψkpbq “ b@k P H. In general, the subgroup

∆pGq “ tb : b P GX , hpbq “ b@h P Hu “ tpg, ..., gq : g P Gu – G

is called the diagonal subgroup of GX . Thus we require that b P ∆pGq so that any action on it by h leaves
it unchanged. Using such a b then the expression above becomes b´1ψhpaqb “ a; that is,

pg´1, ..., g´1qpahp1q, ..., ahpnqqpg, ..., gq “ pg
´1ahp1qg, ..., g

´1ahpnqgq

Thus, we require that g P ZpGq and that ψhpaq “ a. Since this must hold for all a P GX , if |X| ą 1 we
additionally require that h “ eH . If |X| “ 1 then h acts trivially on a and so h can be any element in H.
Finally, we obtain the following set for the center, provided that |X| ą 1:

ZpG oHq “ tpb; ehq : b “ pg, ..., gq P ∆pGq, g P ZpGqu

If |X| “ 1 then ZpG oHq “ tpb;hq : b P ZpGq, h P ZpHqu

Next, the commutator subgroup is generated by

y´1x´1yx “ pψk´1pa´1q, k´1qpψkpb
´1qψhpaqb;h

´1khq

“ pψh´1khpψk´1pa´1qqψkpb
´1qψhpaqb; k

´1h´1khq

“ pψrh,k´1spa
´1qψkpb

´1qψhpaqb; k
´1h´1khq

When H is abelian this expression becomes

y´1x´1yx “ pa´1ψkpb
´1qψhpaqb; eHq

3.1.2 Zn
p o Zq

As a specific subset of wreath product groups, consider G “ Znp , H “ Zq, B “ G0 ˆ ... ˆ Gq´1, where p, q
are prime powers. Then,

Znp o Zq “ tpg0, ..., gq´1;hq : gi P Z
n
p , h P Zqu “ tpb;hq : b P B, h P Hu

We can then consider the action of Zq on B as addition mod q: let pg0, .., gq´1; aq,, ph0, ..., hq´1; bq P G oH
where gi, hi P G, a, b P H. Then,

pg0, .., gq´1; aqph0, ..., hq´1; bq “ pgb mod q ` h0, ..., g´1`b mod q ` hq´1; a` b mod qq

Claim 3.1.2.0.1. Let P “ Znp oZdq , and Write any h P Zdq as a unique string k “ pkd´1...k0q “ pkiq0ďiăd P Zdq
where each ki P Zq. Let g “ ppgvqvPZdq ;hq P P , where h “ phiq0ďiăd, v “ pviq0ďiăd P Zdq . Then, for x ě 1,

gx “ p
x´1
ÿ

j“0

pgv`jhqvPZdq ;xhq

where v ` jh “ pvi ` jhiq0ďiăd, xh “ pxhiq0ďiăd.
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Proof. Suppose g “ ppgvqvPZdq ;hq P P , where h “ phiq0ďiăd, v “ pviq0ďiăd P Zdq . Let us prove the result using
induction on x. When x “ 1 this is trivial. If x “ 2 then

g2 “ ppgvqvPZdq ;hqppgvqvPZdq ;hq “ pφhppgvqvPZdq qpgvqvPZdq ; 2hq

“ ppgv`hqvPZdq pgvqvPZdq ; 2hq “ p
1
ÿ

j“0

pgv`jhqvPZdq ; 2hq

Suppose this holds for all x ă k and consider x “ k. Then, since gk “ gk´1g,

gk “ p
k´2
ÿ

j“0

pgv`jhqvPZdq ; pk ´ 1qhqppgvqvPZdq ;hq

“ p

k´2
ÿ

j“0

pgv`jh`hqvPZdq pgvqvPZdq ; khq

“ p

k´1
ÿ

j“0

pgv`jhqvPZdq ; khq

which proves the claim.

Lemma 3.1.2.0.1. Let P “ Znp o Zq, where p, q are powers of distinct primes. Then there is an element
g P P of order pq.

Proof. Let k “ pe1, 0, ..., 0; 1q P P where e1 “ p1, 0, ..., 0q P Znp ,. Also, suppose g “ pppgvqvPZq ;hq. Then,
using the previous lemma,

kq “ pe1, ..., e1; 0q, kpq “ pkqqp “ ppe1, ..., pe1; 0q “ p0, ..., 0; 0q

Suppose 0 ă x ă pq and kx “ p0, ..., 0; 0q. Then, gx “ p
řx
i“0 gi, ...,

řx
i“0 gi´1;xhq ñ xh “ 0 ñ x “ aq for

some nonzero integer a.

Then,
gx “ pgqqa “ pe1, ..., e1; 0qa “ pae1, ..., ae1; 0q ñ a “ p

But this would indicate that x “ pq which contradicts our assumption. That is, pq is the order of k.

3.1.2.1 Nilpotency

This subsection will aim to determine the nilpotency class of P “ G o Zq where G is an abelian group.

Recall that a group P is nil-k-potent if its upper central series terminates with P after k iterations; that is,

t1u “ Z0 Ÿ Z1...Ÿ Zk “ P

where Zi`1 “ tx P P : rx, gs P Zi @g P P u, and since Z1 “ ZpP q so one can define Zi`1 instead according to
the relation Zi`1{Zi “ ZpP {Ziq.
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First, let us determine what ZpP q is. Suppose z “ pz0, ..., zq´1; zqq P ZpP q so that z´1 “ p´z´zq , ...,´z´1´zq ;´zqq
and let g “ pg0, ..., gq´1;hq P P . Then,

z´1gz “ p´zh ` gzq ` z0, ...,´zh´1 ` gzq´1 ` zq´1;hq “ pg0, ..., gq´1;hq

This occurs if for each i we have zi “ zh`i and zq “ 0. Since this must hold @h P Zq we must that each zi
is equal; that is, z “ pz0, ..., z0; 0q.

Concretely, consider the case when h “ 1 and gi “ 0@i P Zq. Then,

z´1gz “ p´z1 ` z0, ..., zq´1 ´ z0; 1q “ p0, ..., 0; 1q

The last equality holds if zi “ zi`1@i P Zq which forces all the zi to be equal.

Similarly, consider when g “ p1, 0, ..., 0; 0q and then

z´1gz “ pgzq , ..., gzq´1; 0q “ p1, 0, ..., 0; 0q

The final equality requires that gzq “ g0 “ 1 ñ zq “ 0.

Then, ZpP q “ tpz, z, ..., z; 0q : z P Gu – G.

This gives us Z1 in the upper central series of P . Next, let us find ZpP {Z1q. First,

P {Z1 “ tgZ1 : g P P u

and our goal is to find

ZpP {Z1q “ tgZ1 P P {Z1 : rgZ1, hZ1s “ rg, hsZ1 “ Z1@h P P u

Now, if zZ1 P ZpP {Z1q then

rg, zsZ1 “ Z1 ñ z´1gzZ1 “ gZ1 ñ z´1gz P gZ1

for all g P P .

Let z “ pz0, ..., zq´1; zqq P ZpP {Z1q, g “ pg0, ..., gq´1;hq P P . Then, to find ZpP {Z1q we must solve for z in
the equation

z´1gz “ p´zh ` gzq ` z0, ...,´zh´1 ` gzq´1 ` zq´1;hq “ pg0, ..., gq´1;hqZ1

Recall that Z1 “ tpa, ..., a; 0q : a P Gu and thus

gZ1 “ tpg0 ` a, ..., gq´1 ` a;hq : a P Gu

Thus, the above equation becomes, for some a P G,

p´zh ` gzq ` z0, ...,´zh´1 ` gzq´1 ` zq´1;hq “ pg0 ` a, ..., gq´1 ` a;hq
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Using the same process as before, first consider the case when g “ p0, ..., 0; 1q. Then,

z´1gz “ pz0 ´ z1, ..., zq´1 ´ z0; 1q “ pa, ..., a; 1q

Since zi “ zi`1 ` a for all i P Zq, we can make a series of substitutions; that is, we have that

z0 “ z1 ` a, z1 “ z2 ` añ z0 “ z2 ` 2a, z2 “ z3 ` añ z0 “ z3 ` 3a

That is, in general, for x P Zq,
z0 “ zx ` xañ zx “ z0 ´ xa

and thus we can write the center element as

z “ pz0, z0 ´ a, ..., z0 ` a´ qa; zqq

On the other hand, consider g “ p1, 0, ..., 0; 0q. Then,

z´1gz “ p´z0 ` gzq ` z0, ...,´zq´1 ` gzq´1 ´ zq´1; 0q “ pgzq , ..., gzq´1; 0q “ p1` b, b, .., b; 0q

for some b P G. As before, this forces zq to be equal to 0. Thus,

ZpP {Z1q “ tp0,´a, ..., a´ qa; 0qZ1 : a P Gu

and so
Z2 “ tpz, z ´ a, ..., z ` a´ qa; 0q : z, a P Gu

This method described above for determining Z2 holds in general for subsequent Zk. It will by referred to
as the “upper central series algorithm” moving forward.

However, note that the final element can be written in two ways: zq´1 “ z0 ´ pq ´ 1qa and zq´1 “ z0 ` a.
Equating the two we get

z0 ´ pq ´ 1qa “ z0 ` añ p1´ qqa “ añ a “ 0 or q “ 0 P G

Clearly, if a “ 0 then Z1 “ Z2, otherwise Z1 ď Z2. This motivates the following proposition:

Proposition 3.1.2.1.1. Suppose P “ Zmn o Zdq ,m, d ě 1, where q, n are not powers of a prime p. Then, P
is not nilpotent.

Proof. Recall that the center of P is

Z1 “ tpg, ..., g; 0q : g P Zmn u

Let q “ bnj ` k,´n ă k ă n, k ‰ 0, 0 ă b ă n, 0 ă j. As discussed in “upper central series algorithm”
above, when trying to calculate Z2 we obtain, for z “ pz0, ..., zqd´1; 0q P Z2 and g “ p0, ..., 0; 1q P P , where
1 “ p0, ..., 0, 1q.

z´1gz “ pz0 ´ z1, ..., zqd´1 ´ z0; 1q “ gZ “ pa, ..., a; 1q
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for a P Zmn . After a series of substitutions one obtains two equations relating zqd´1 and z0:

zqd´1 “ z0 ` a and zqd´1 “ z0 ´ pq
d ´ 1qa “ z0 ´ pk ´ 1qa

Equating the two equations we get

a “ ´pk ´ 1qañ a “ 0 mod n or k “ 0 mod n

By our choice of k we know that k ‰ 0 mod n and so that leaves a “ 0 mod n. Thus, since an element in Z2

is of the form pz, z ´ a, ..., z ´ pqd ´ 1qa; 0q we get that

Z2 “ tpz, ..., z; 0q : z P Zmn u “ Z1

Thus, since Z2 “ Z1 we can conclude that P is not nilpotent.

Now it remains to consider the case when p, q are both p-groups. The following lemma describes the form
of an element in the upper central series.

Lemma 3.1.2.1.1. Suppose P “ Znpd o Zq, q “ pm,m ě n, p prime, with the upper central series given by

tp0, ..., 0; 0qu “ Z0 Ÿ Z1 Ÿ .... Then, for 0 ď j ă q, and any z P Zpd , a “ paxq P B “
ś

xPZq
pZnpdq, let

zj “ z `
i
ÿ

x“1

p´1qx
ˆ

j

x

˙

ax

then, the pi` 1qth group in the series is given by

Zi`1 “ tpz0, z1, ..., zq´1; 0q : z, ax P Z
n
pdu

while i` 1 is less than the nilpotency class of P . For example, if i “ 2 then we have

Z3 “ tpz, z ´ a, z ´ 2a` b, z ´ 3a` 3b, ..., z ´ pq ´ 1qa`

ˆ

q ´ 1

2

˙

bqu

Proof. Use induction on i1 “ i` 1 to prove. In the “upper central series algorithm” above we have already
shown that this holds when 0 ď i ď 1. Suppose, then, that it holds for all i1 ď k and consider when i1 “ k`1.
Then,

Zk`1{Zk “ ZpP {Zkq “ tgZk P P {Zk : rg, hsZk “ Zk@h P P u

Let z “ pz0, ..., zq´1; zqq P ZpP {Zkq, g “ pg0, .., gq´1;hq P P .

Since the claim holds for all i1 ď k we know that

Zk “ tpz, z ` a1, z ` 2a1 ` a2, ..., z `
k´1
ÿ

x“1

p´1qx
ˆ

q ´ 1

x

˙

ax; 0q : z, aj P Gu
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Thus, we need to solve for z when

z´1gz “ p´zh`gzq`z0, ...,´zh´1`gzq´1`zq´1;hqZk “ pg0`ζ, g1`ζ´a1, ..., gq´1`ζ´
k´1
ÿ

x“1

p´1qx
ˆ

q ´ 1

x

˙

ax;hq

That is, when z´1gz P gZk and thus z´1gz “ gy for some y P Zk, which in the equation above is given by
y “ pζ, ζ ´ a1, ..., ζ ´

řk´1
x“0p´1qx

`

q´1
x

˘

ax; 0q.

Consider the case when g “ p0, ..., 0; 1q. Then,

pz0 ´ z1, ..., zq´1 ´ z0; 1q “ pζ, ζ ´ a1, ..., ζ `
k´1
ÿ

x“1

p´1qx
ˆ

q ´ 1

x

˙

ax; 1q

Using the “upper central series algorithm”, we can see that, in general, we have that

zj´1 “ ζ `
k´1
ÿ

x“1

p´1qx
ˆ

j

x

˙

ax ` zj

z0 “ jζ `
k´1
ÿ

x“1

p´1qxp
j
ÿ

i“x

ˆ

i

x

˙

axq ` zj

“ jζ `
k´1
ÿ

x“1

p´1qx
ˆ

j ` 1

x` 1

˙

ax ` zj

Using this relation, and the fact that if one considers g “ p1, 0, ..., 0; 0q then this forces the center to have
zq “ 0, we obtain that an element in the center of P {Zk must have the form

zZk “ pz0, z0 ´ ζ, ..., z0 ´ pq ´ 1qζ ´
k´1
ÿ

x“1

p´1qx
ˆ

j ` 1

x` 1

˙

ax; 0qZk

Notice that for 0 ď j ď q ´ 1, if z “ pz0, ..., zq´1; 0q then

zj “ z0 ´ jζ ´
k´1
ÿ

x“1

p´1qx
ˆ

j ` 1

x` 1

˙

ax

“ z0 ` p´1q

ˆ

j

1

˙

ζ ´
k´1
ÿ

x“2

p´1qx´1

ˆ

j ` 1

x

˙

ax´1

“ z0 `
k
ÿ

x“1

p´1qx
ˆ

j

x

˙

ax

where we reindex and let a1 “ ζ.

Then, the group Zk`1 is

Zk`1 “ tpz0, z1, ..., zq´1; 0q : zj “ z0 `
k
ÿ

x“1

p´1qx
ˆ

j

x

˙

ax, z0 P Z
n
pdu
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Of course, pq ´ 1q “ ´1 mod p and
`

q´1
2

˘

“ 1 mod p.

This proves the lemma.

Proposition 3.1.2.1.2. Suppose P “ Zp o Zpd where p is prime. Then, P is nilpotent of class pd.

Consider the pd ´ 1th group in the upper central series of P . By Lemma 3.1.2.1.1, this will be

Zpd´1 “ tpz0, z1, ..., zpd´1; 0q : zj “ z0 `
pd´1
ÿ

x“0

p´1qx
ˆ

j

x

˙

ax, ax, z0 P Zpu

Before proving this proposition consider the following claim:

Claim 3.1.2.1.1. Zpd´1 is the base group of P ; that is, Zpd´1 – Zpdp

Proof. Of course, Zpd´1 ď Zpdp ˆ 0 by the way it is defined. It remains to show that |Zpd´1| “ pp
d

.

Each ax, z0 P Zp, 0 ď x ď pd ´ 1, and there are pd choices from Zp; that is, pp
d

possible choices for elements

and so |Zpd´1| “ pp
d

.

Proof of Prop. 3.1.2.1.2. Denote the base group by B “ Zpdp ˆ0. Then, since Zpd´1 “ B “ tpb; 0q : b P Zpdp u,
we get that

Zpd “ tx P P : rx, gs P B@g P P u

To determine the value of x, let x “ px0, ..., xpd´1; aq, g “ pg0, ..., gpd´1; bq P P . Then,

rx, gs “ p´x0 ´ ga ` xb ` g0, ...,´xpd´1 ´ ga´1 ` gpd´1 ` xb´1; 0q P B

Thus, x can be any element in P ; that is, we get that Zpd “ P and thus P is nilpotent of class pd.

Note that since the order of the kth group in the series, for k ă pd, ispk`1 since there are k variables ax and
one z, all from Zp, if k ă pd ´ 1 then |Zk| ă B. Thus we could use Lemma 3.1.2.1.1 since Zpd´1 could not
have been the whole group.

When P “ Zpn o Zp, n ą 1, while the general form for a group in the upper central series of P is similar to
that given in Lemma 3.1.2.1.1, since p ă pn there must be some modification.

Recall the “upper central series algorithm”; these apply to this group, as well, in that we obtain, for
z “ pz0, ..., zp´1; 0q P Z2,

pz0 ´ z1, ..., zp´1 ´ z0; 0q “ pa, .., a; 0q

for some a P Zpn . Then, since zi ´ zi`1 “ a, after a series of substitutions we obtain two equations for the
value of zp´1 in terms of z0, namely zp´1 “ z0 ` a and zp´1 “ z0 ´ pp´ 1qa.

While in the case when Zp o Zpn , ´ppn ´ 1qa “ a and thus this was the same equation, since p ă pn this is
no longer true. That is,

z0 ` a “ z0 ´ pp´ 1qañ a “ pn´1x, 0 ď x ă p
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and thus an element Z2 is

Z2 “ tpz0, z0 ´ a, ..., z0 ´ pp´ 1qa; 0q : a “ pn´1x, z0 P Zpnu

This will be true in general; each additional value will be of the form pn´1ax for some 0 ď ax ă p.

In addition, we will require that there are more variables than p; thus the binomial sum given in the lemma
must be modified to account for this. That is, consider Zk, k ą p in the upper central series. Suppose
z P Zk, z “ pz0, ..., zp´1; 0q. Then,

zi “ z0 `
i
ÿ

x“0

p´1qx
ˆ

i

x

˙

ax, where ai “ pn´1y, i ă p´ 1

and so a general element z is of the form

z “ pz0, z1, ..., zp´2, z0 `
p´1
ÿ

x“0

p´1qx
ˆ

p´ 1

x

˙

ax `
k
ÿ

x“p

ax; 0q

Then, for Zk we have k variables pn´1ax, ax P Zp, with p choices for each variable, and an additional value
z0 P Zpn . This means that

|Zk| “ pn`k

Now, since the base group of P “ Zpn o Zp has size pn, we require that, if P is nil-k potent, then |Zk´1| “

pn`pk´1q “ pnp. Thus, np1´ pq “ ´pk ´ 1q ñ k “ 1` npp´ 1q.

This discussion supports the following claim:

Claim 3.1.2.1.2. Suppose P “ Zpn o Zp, n ě 1. Then, P has nilpotency class of 1` npp´ 1q.

3.1.2.2 Subgroup structure

Now that we understand the nilpotency class of this subset of wreath products, let us examine its subgroup
structure.

First, let us determine a generating set for P “ G oH “ Zmn o Zdq . Let F “ tfi : fi P Hu be a generating set

for H. For simplicity take it to be the set of d standard basis vectors in Zdq .

Let E “ tei : ei P Gu be a generating set for G. For simplicity suppose each ei is the ith standard basis
vector of G. Then GX has a generating set which can be found in a similar manner; namely the set
A “ tpai,j ; 0q : ai,j P Zmn u where ai,j contains the ith standard basis vector of Zmn in the jth position,
0 ď j ă qd ´ 1.

However, A contains “redundant” elements when considering H, since all elements of the form ai,jk , 0 ď k ď
qd ´ 1 will be in the same H-orbit; thus only the subset B “ tai,0 : ai,0 P Au should be considered.
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Note that if we are looking at a more general group then B is a set of representatives for the orbit of H on
elements in A.

Thus we can draw the following conclusion:

Claim 3.1.2.2.1. Suppose P “ G oH “ Zmn o Zdq with the sets B,F described above. Then,

C “ B Y tp0; fq : 0 P G, f P F u

is a generating set for P .

Now, let us find the commutator subgroups of P . Recall that the commutator subgroup is the group

P 1 “ xtrg, hs : g, h P P uy

and if g “ pg0, ..., gq´1; aq, g´1 “ p´g´a, ...,´g´1´a;´aq, h “ ph0, ..., hq´1; bq, h´1 “ p´h´b, ...,´h´1´b;´bq P
P then

rg, hs “ p´g´a, ...,´g´1´a;´aqp´h´b, ...,´h´1´b;´bqpgb ` h0, ..., gb´1 ` h´1; a` bq

“ p´g0 ´ ha ` gb ` h0, ...,´g´1 ´ ha´1 ` gb´1 ` h´1; 0q

“ p´g´a, ...,´g´1´a;´aqp´ha ` gb ` h0, ...,´ha´1 ` h´1 ` gb´1; aq

“ p´g0 ´ ha ` gb ` h0, ...,´gq´1 ´ ha´1 ` hq´1 ` gb´1; 0q

Notice specifically when p “ 2 then

z “ rg, hs “ pg0 ` ha ` gb ` h0, g1 ` ha`1 ` h1 ` gb`1; 0q

. Let k “ pk0, k1; cq P P . Then,

z´1kz “ pg0 ` ha ` gb ` h0, g1 ` ha`1 ` h1 ` gb`1; 0qpk0 ` g0 ` ha ` gb ` h0, k1 ` g1 ` ha`1 ` h1 ` gb`1; cq

“

#

pk0 ` 2g0 ` 2ha2` gb ` 2h0, k1 ` 2g1 ` 2ha`1 ` 2h1 ` 2gb`1; 0q “ k if c “ 0

pk0 ` g0 ` ha ` gb ` h0 ` g1 ` ha`1 ` gb`1 ` h1, k1 ` g1 ` ha`1 ` h1 ` gb`1 ` g0 ` ha ` h0 ` gb; 1q

“ k

That is, P 1 “ ZpP q when p “ 2.

Now, let us look at some of the subgroups of P “ Zmpn o Zq.

Claim 3.1.2.2.2. Let P “ Zmpn o Zq and let K be a subgroup of B “ Zmqpn . Then, A “ tpk; 0q : k P Ku is a
subgroup of P .

Proof. Clearly, A Ă P . Suppose pk1; 0q, pk2; 0q P A. Then,

pk1; 0qpk2; 0q “ pk1k2; 0q P A, and p´k1; 0q P A

Since K is a group. Thus, A is also a group, and |A| “ |K|.
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Claim 3.1.2.2.3. Let P “ Znpd o Zq and suppose g “ pg0, ..., gp´1; aq P P . Then, if the order of a is b in Zq

and the order of
řq´1
i“0 gia is c in Zpd then the order of g is bc.

Proof. First, recall that

gx “ p
x´1
ÿ

i“0

gia, ...,
x´1
ÿ

i“0

gia`pq´1q;xaq

If a “ 0 then the order of g P P is the order of pg0, ..., gp´1q P Z
nq
pd

, which is c, a divisor of pd. Thus the
order is bc “ 1c.

Otherwise, the order must be at least q, since opaq “ q. Then,

gq “ p
q´1
ÿ

i“0

gi, ...,
q´1
ÿ

i“0

gi; 0q

and so the order of gq must be the order of p
řq´1
i“0 gi, ...,

řq´1
i“0 giq P Znq

pd
, which is simply the order of

řq´1
i“0 gi P Z

n
pd ; once again this is a divisor of pd. Thus, the order of g is qapb where a “ 0 or 1 and 0 ď b ď d.

Specifically, it is bc as required.

Claim 3.1.2.2.4. Suppose P “ Zmpn oZq, p, q prime, and let B “ Zmqpn be the base group of B. Let b P B1 ď B,
where and B1 “ xby. Then, Hi “ xpb; iqy, i P Zq is a proper subgroup of P .

Proof. Of course, if i “ 0 then this is simply the case above.

Suppose i ‰ 0 and let b “ pb0, .., bq´1q P B
1. Then, the order of i is q since q is prime. Let d be the order of

řq´1
i“0 bi P Z

m
pn .

Then by Claim. 3.1.2.2.3 the order of pb; iq is dq ď pnq ‰ |P | “ pnmqq and so Hi is a proper subset. It is a
subgroup since b is also a subgroup.

Now, let us consider subgroups of P “ Zmn o Zdq with multiple generators.

3.1.2.2.1 Subgroups generated by gi,j,k

Recall the set A “ tpai,j ; 0q : ai,j P Zmn u where ai,j contains the ith standard basis vector of Zmn in the jth

position, 0 ď j ă qd ´ 1 and the set of standard basis vectors in Zdq : F “ tfk : fk P Zdqu. Finally, let
gi,j,k “ pai,j ; fkq P P .

Claim 3.1.2.2.5. Any element of the form gi,j,k will generate a subgroup of order nq.
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Proof. The order of fk in H is q, and ai,j in G is n. Then, gqi,j,k “ p
řj`l
l“j ai,j`lfk ; 0q. Since the order of any

element in Zmn is n we have that

pgqi,j,kq
n “ pn

j`l
ÿ

l“j

ai,j`lfk ; 0q “ p0; 0q

and thus opgi,j,kq “ |xgi,j,ky| “ nq as required.

Claim 3.1.2.2.6. Suppose H is a cyclic group, so that H “ Zq. Then, the groups generated by elements of
the form gi,j,k, so that fk “ f P Zq is a generator, intersect trivially if the i values are not the same and as
a subgroup of the center otherwise.

Proof. Recall that the center of P is
Z “ tpa, ..., a; 0q : a P Gu

and we know that gqi,j,k “ p
řq´1
l“0 ai,l; 0q is in the center.

Then, since |Z| “ |G| “ nm and opgqi,j,kq “ n we get that xgqi,j,ky “ tpai, ..., ai; 0q : ai P Gu ď Z with equality
if m “ 1.

Thus clearly, a group with one generator is contained in the center. Notice that these rely on the value of
i; that is, since gi,j,k ‰ φhpgi1,j1,k1 for any h P Zq, i1 ‰ i, they do not contain the same subgroup of ZpP q.
Then, xgi,j,ky X xgi1,j1,k1y “ p0; 0q

The claim follows quite easily.

For simplicity let us consider the case when d “ 1, so F “ t1u. For brevity let gi,j :“ gi,j,k.

Let g “ pb;hq P P and consider conjugating gi,j by it. Then,

pφ´hpb
´1q;´hqpai,j ; 1qpb;hq “ pb´1φhpai,jqb; 1q

“ pb´1ai,j`hb; 1q

“ pai,j`h; 1q

“ gi,j`h

Of course, this shows that subgroups generated by gi,j are not normal in P ; in fact, they are only normal in
the base group GX .

As well, this gives a characterization for conjugation classes; that is:

Claim 3.1.2.2.7. A group generated by gi,j is conjugate to a group generated by gi,k, k P Zq under conjuga-
tion by pb;hq P P where h “ k ´ j mod q.

Thus the conjugacy classes depend only on the value of i. In fact, this is true in general:
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Claim 3.1.2.2.8. Let h “ pg; fq “ p
řq
j“0 αj ; fq. Then, xhy is conjugate to any group which is generated by

a cyclic permutation and shift of the elements αj; that is,

txp

q
ÿ

j“0

pβj ` αj`kq; fqy : k P H,βj P Gu

is the conjugacy class of xhy.

Proof. Consider h above and conjugate by pb; kq. Then,

pφ´kpb
´1q;´kqpg; fqpb; kq “ pφf pb

´1qφkp
q
ÿ

j“0

αjqb; fq

“ p

q
ÿ

j“0

pβj ` αj`kq; fq where βj “ bj ´ bj`f

The result follows closely.

Because of this, when considering a subgroup generated by two generators with the same i-value, that is,
xgi,j , gi,ly, one could simply set j “ 0. Then, gi,0gi,l is in the same conjugacy class as gi,jgi,l`j , j P Zq.

Consider a group generated by gi,0, gi,j , j ‰ 0. Consider the group generated by combining the two generators,
gi,0gi,j “ pai,1 ` ai,j ; 2q, gi,jgi,0 “ pai,j`1 ` ai,0; 2q.

Instead, let us look at what happens if we conjugate one element by the other. That is, consider

gi,0g
y
i,jgi,0 “ p´ai,´1q;´1qp

y
ÿ

k“0

ai,j`k; yqpai,0; 1q

“ p´ai,´1q;´1qp
y
ÿ

k“0

ai,j`k`1 ` ai,0; y ` 1q

“ p´ai,y `
y
ÿ

k“0

ai,j`k`1 ` ai,0; yq

“ p´ai,y `
y`1
ÿ

k“1

ai,j`k ` ai,0; yq

The first generates elements of the form

pgi,0gi,jq
x “ p

x´1
ÿ

k“0

pai,1`k ` ai,j`kq; 2xq

and the second generates elements

pgi,jgi,0q
y´1 “ p

y
ÿ

k“0

pai,j`1`k ` ai,kq; 2yq
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Claim 3.1.2.2.9. Suppose j “ 1. Then, xpgi,0gi,1qy “ xgi,2y if and only if P “ Zn3 o Z3.

Proof. Suppose P “ Zn3 o Z3. Then

pgi,0gi,1q “ p2ai,1; 2q “ pai,2; 1q´1

and since oppgi,0gi,1qq “ oppai,2; 1q´1q we get that xpgi,0gi,1qy “ xgi,2y.

Next, let x “ 0 and suppose there is a y where pgi,0gi,1q “ pgi,1gi,0q
y. Then,

p2ai,1; 2q “ p
y´1
ÿ

k“0

pai,2`k ` ai,kq; 2yq

“ p

bq
ÿ

k“0

pai,2`k ` ai,kq; 2q, b ě 0, since y “ 1 mod q

“ pai,2 ` ai,0 ` 2bqa; 2q

where a “ pei, ..., eiq P G
X . Finally, we then require that 2ai,1 “ ai,2 ` ai,0 ` 2bqa. This is true when

2 “ 0 mod n so n “ 2. Otherwise, it occurs when ai,2 ` 2bai,2 “ ai,0 ` 2bai,0 “ 0 and a “ pei, ei, eiq so that
only 2bai,1 remains. Thus q “ 3 and 2b` 1 “ 0 mod n, say 2b` 1 “ xn.

Finally, 2bai,1 “ 2ai,1 implies that b “ 1 mod n, say b “ 1`mn. Equating the two equations with b we get
2p1`mnq ` 1 “ xn; that is, 3 “ npx´ 2mq “ 0 mod n. This forces n “ 3 and so only groups Zn3 oZ3 satisfy
this.

Otherwise, the two groups are not equal. Consider all the groups generated by

gxi,0gi,j “ p
x´1
ÿ

k“0

ai,k;xqgi,j “ p
x`1
ÿ

k“1

ai,k ` ai,j , x` 1q, 0 ď x ă q

For simplicity let αj P G be the value in the jth entry.

Suppose x ` 1 is a generator of Zq. Then, let β “
řq´1
j“0 αj . If β is not a generator of G then gxi,0gi,j

will generate a subgroup of order opβqq which contains a subgroup of the center given by xpβ, ..., β; 0qy “
tppβx, ..., βx; 0q : 0 ď x ă opβqu.

On the other hand, if β does generate G then each gxi,0gi,j will generate a subgroup of order nq which contains
a subgroup of the center of order n, namely tpαei, ..., αei; 0q : α P Znu.

Suppose x` 1 is not a generator of Zq with order 0 ă b ă q. Then,

pgxi,0gi,jq
b “ p

b´1
ÿ

l“0

p

x`1
ÿ

k“1

ai,k`lpx`1q ` ai,j`lpx`1qq; 0q

Since b ă q this will not be a sum over all entries and so the group generated by such an element does
not contain the center. Let v “ op

řb´1
l“0 p

řx`1
k“1 ai,k`lpx`1q ` ai,j`lpx`1qqq in GX . Then the order of such a

subgroup is bv.
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Claim 3.1.2.2.10. Let P “ Zmpn oZqd , gi,j “ pbj ; 1q P Zmpn oZqd , where bj , ai are the element described above.
Let K be a vector of nonequivalent tuples, K “ ppi0, j0q, ..., pil´1, jl´1qq, i P Zmpn , j P Zqd , l “ |K|. Then, the
set

AK “ xtgi,j : pi, jq P Kuy

is a subgroup of P containing a subgroups of the center generated by tgqi,j : gi,j P AKu.

Let us examine groups of the form AK “ xtgi,j : pi, jq P Kuy as described above. First, notice that

č

pi,jaqPK

xgi,jay ď ZpP q

where all i1s are equal and j1as distinct.

Now, consider what happens if we quotient out by an appropriate subgroup of the center. Let I “
pi0, ..., id´1q P Zdn be a vector where 0 ă d ď m so that ZIpP q “ tz P ZpP q : z “ pzi, ..., zi; 0q, i P Iu;
that is, it is a subspace of ZpP q generated by the gi,j . Of course, when m “ 1 then ZIpP q “ ZpP q.

Then, if K “ ppi0, j0q, ..., pil´1, jl´1qq, I “ pi0, ..., irq where each i P I is unique and is contained in a tuple in
K, so r ď l ´ 1, then ZIpP q ď AK .

Consider the simplest case, when m “ 1 so that ZIpP q “ ZpP q ď AK ,K “ pjq. Then, since Ak “ xgjy “
tp
řx
i“0 aj`i;xq : 0 ď x ă nqu, every qth power is in the center. Thus, when one quotients out by the center,

only the elements when 0 ď x ă q are important. That is,

AK{ZpP q “ tp
x
ÿ

i“0

aj`i;xqZpP q : 0 ď x ă qu

This group has order nq
n “ q and, in fact, is isomorphic to Zq.

Now, consider when K “ p0, lq, l ‰ 0. Since g0, gl P AK we know automatically that Ap0q{ZpP q, Aplq{ZpP q ď

AK{ZpP q. In addition, any pgx0glq
a, pgyl g0q

b is in the center when a “ opx` 1q, b “ opy` 1q in Zq. Thus only
consider the values of a,b such that 0 ď a ď opx` 1q, 0 ď b ď opy ` 1q. This gives elements of the form

pgx0glq
a “ p

a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1q ` al`ipx`1qq; apx` 1qq

pgyl g0q
b “ p

b´1
ÿ

i“0

p

y`1
ÿ

k“1

al`k`ipy`1q ` aipy`1qq; bpy ` 1qq

That is, these give coset representatives. Of course, if x, y “ 0 then these are the coset representatives of
Apjq{ZpP q, Aplq{ZpP q. Now, when x, y ‰ 0, it is important to ask if there is any overlap between these
representatives.

Suppose pgx0glq
aZpP q “ pgyl g0q

bZpP q; then we must have that ppgyl g0q
bq´1pgx0glq

a P ZpP q for some value of
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a, b, x, y. Since

ppgyl g0q
bq´1 “ pgyl g0q

´b “ p

q´b´1
ÿ

i“0

p

y`1
ÿ

k“1

al`k`ipy`1q ` aipy`1qq;´bpy ` 1qq

“ ppgyl g0q
´1qb “ p´

y`1
ÿ

k“0

al`k`´y ´ a´py`1q;´py ` 1qqb

“ p´

b
ÿ

i“1

p

y`1
ÿ

k“1

al`k´ipy`1q ` a´ipy`1qq;´bpy ` 1qq

we require that

pgyl g0q
´bpgx0glq

a “ p´

b
ÿ

i“1

p

y`1
ÿ

k“1

al`k´ipy`1q`apx`1q ` a´ipy`1q`apx`1qq`

a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1q ` al`ipx`1qq;´bpy ` 1q ` apx` 1qq P ZpP q

so apx` 1q ´ bpy ` 1q “ 0 mod q.

Suppose b “ 1 so apx` 1q “ y ` 1 mod q and

pgyl g0q
´1pgx0glq

a “ p´

y`1
ÿ

k“1

al`k´y´1`apx`1q ´ a´py`1q`apx`1q `

a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1q ` al`ipx`1qq; 0q

“ p´

y`1
ÿ

k“1

al`k ´ a0 `
a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1q ` al`ipx`1qq; 0q

“ p´

apx`1q
ÿ

k“0

al`k`1 `

a´1
ÿ

i“0

al`ipx`1q ´ a0 `
a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1qq; 0q

“ p´

apx`1q`1
ÿ

k“1,px`1q|k

al`k ´

apx`1q`1
ÿ

k“1,px`1q-k
al`k `

a´1
ÿ

i“0

al`ipx`1q ´ a0 `
a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1qq; 0q

“ p´

a
ÿ

i“1

al`ipx`1q ´

apx`1q`1
ÿ

k“1,px`1q-k
al`k `

a´1
ÿ

i“0

al`ipx`1q ´ a0 `
a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1qq; 0q

“ p´al`apx`1q ` al ´

apx`1q
ÿ

k“0,px`1q-k
al`k`1 ´ a0 `

a´1
ÿ

i“0

p

x`1
ÿ

k“1

ak`ipx`1qq; 0q P ZpP q

Clearly, analyzing such groups becomes increasingly difficult as the number of generators increases. The
following section will look at groups generated by a slightly different “type” of element. For simplicity, in
subsequent sections and when examining the HSP the focus will be on cyclic subgroups.
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3.1.2.2.2 Subgroups from “non-generators”

Suppose P “ Zmn o Zdq . Consider a class of smaller subgroups, generated by “non-generators.”

That is, suppose either b P Zn or c P Zq is a non-generator, so that b “ 0 mod n or c “ 0 mod q and
let bI “ b

ř

iPI ei P Zmn and cK “ c
ř

kPK ek P Zdq where I,K are nonempty sets of elements in Zm,Zd,
respectively so that the resulting bI , cK is a vector of dimension m, d with either b, c or 0 in its entries. Then,
hj “ p0, .., bI , 0, ..., 0; cKq, where bI is in the jth entry, will generate a smaller group.

If b is a non-generator with order x, 1 ď x ă n and c is a generator, then,

hq “ pbI , ..., bI ; 0q, phqqx “ p0, ..., 0; 0q

and so xhy has order xq and contains a subset of ZpP q generated by pbI , ..., bI ; 0q and of order x.

If c is a non-generator with order y, 1 ď y ă q and the order of b is x, 1 ď x ď n, then the group generated
by h has order xy. However, since y ă q,

hyj “ p
y´1
ÿ

l“0

bI,j`lcK ; cKq

where bI,j denotes bI in the jth spot. That is, the value of b only appears in the slots which are multiples of
c (shifted by j). For this reason, this will not contain a non-trivial subgroup of the center.

Finally, consider more generally f “ pb; cq where b “ pb0, .., bqd´1q. Let
řqd´1
x“0 bx “ βv, where v P Zmn has

entries which are either 0 or 1. If β is a non-generator in Zn then this will, yet again, generate a small
subgroup which contains a subgroup of the center of order opβq generated by pβv, ..., βv; 0q.

Suppose P “ Zmpn oZ
f
qd

where p, q are prime. Then any non-generator of Zpn is of the form xp, 0 ď x ă pn´1,

and for Zqd it is of the form yq, 0 ď y ă qd´1, and so px, 1 ď x ď n, qy, 1 ď y ď d are the representative
non-generators.

There are a “
řm
i“1

`

m
i

˘

vectors in b “ Zmpn with at least one, and at most m, 1’s, with all other entries being

zero, and
řf
k“1

`

f
k

˘

in Zf
qd

of the same nature. Also, there are qd spots in the base group. As such, there

are pnaqqdpbdq “non-generators” of P which generate unique cyclic subgroups, do not contain a nontrivial
subgroup of the center, and where only one of the elements in the base group is non-zero is xd.

Claim 3.1.2.2.11. Let f “ pb; cq P P “ Zmn o Zdq , b “ pb0, ..., bqd´1q where either c or b is a “non-generator”
as described above. Then, the conjugates of f are also non-generators.

Proof. Let pg;hq be an element in P, where g “ pg0, ..., gqd´1q. Then,

pφ´hp´gq;´hqpb; cqpg;hq “ pφ´hp´gq;´hqpφhpbqg; c` hq

“ pφcp´gqφhpbqg; cq

If c is a non-generator then clearly pφcp´gqφhpbqg; cq is a non-generator.
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Otherwise, suppose c generates Zq but
řqd´1
x“0 bx “ βv and β is a non-generator of Zn. Then,

qd´1
ÿ

x“0

p´gc`x ` bx`h ` gxq “ βv `
qd´1
ÿ

x“0

gx ´
qd´1
ÿ

x“0

gx “ βv

and so pφcp´gqφhpbqg; cq is a non-generator containing the same subgroup of ZpP q as f .

Consider the simplest case: when P “ Zpn o Zqm , qm ě pn for p, q prime. Then, if bj “ p0, ..., b, 0, ..., 0q; that
is, b P Zpn is in the jth spot, 0 ď j ă qm, then let B “ tpbj ; cq : b “ pi, 1 ď i ď n, c ‰ 0 mod qu.

Recall that elements from B generate subgroups of order opbqqd which contain a subgroup of the center
generated by ZbpP q “ pb, ..., b; 0q of order opbq.

Consider modding out xpbj ; cqy, pbj ; cq P B by this subgroup of the center. Since pbj ; cq
x “ p

řx´1
i“0 bj`ic; cxq

one then obtains

xpbj ; cqy{ZbpP q “ tp0; 0qZbpP q, p
x´1
ÿ

i“0

bj`ic; cxqZbpP q : 1 ď x ď qd ´ 1u

Notice that

p

x´1
ÿ

i“0

bj`ic; cxqZbpP qp
y´1
ÿ

k“0

bj`kc; cyqZbpP qq “ p
y`x´1
ÿ

i“y

bj`ic `
y´1
ÿ

k“0

bj`kc; cpx` yqqZbpP q

“ p

y`x´1
ÿ

i“0

bj`ic; cpx` yqqZbpP q

so xpbj ; cqy{ZbpP q – Zqd .

In the more general case, consider S “ xpbj0 ; c0q, ..., pbjk ; ckqy where each generator is from B so that bjl “

pil , 1 ď il ď n. Assume it is ordered, so that if l ă h then pil ă pih , and let pβl; δlq “ p
řl
i“0 bji ;

řl
i“0 clq, 0 ď

l ď k.

We know that whenever opclq “ qd; that is, it is a generator, then xpbjlq; clqy generates a subgroup
which contains a subgroup of ZpP q of order opbjlq “ pn´il . Thus there are k ` 1 subgroups of the form
xppil , ..., pil ; 0qy ď ZpP q, 0 ď l ď k in S.

Suppose pβl; δlq is such that δl is a generator (if it is not a generator then it won’t generate a subgroup of
ZpP q). If each βl is a non-generator then S only contains subgroups of the center of the form xppx, ..., px; 0qy ď
ZpP q, 1 ď x ď n. Of course, xppx, ..., px; 0qy ă xppy, ..., py; 0qy whenever x ą y. Otherwise, if any βl is a
generator then the whole group ZpP q is contained in S.

Let ZxpP q “ xpp
x, ..., px; 0qy “

Ş

xppy, ..., py; 0qy ď ZpP q, 0 ď x ď n; that is, it is the intersection of all the
subgroups of the center contained in S. Consider S{ZxpP q.
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For the smallest subgroup, generated by pbjk ; ckq we know that

xpbjk ; ckqy{ZxpP q “ tp0; 0qZxpP q, p
y´1
ÿ

i“0

bjk`ic; cyqZxpP q : 1 ď y ď qd ´ 1u – Zqd

Then, the group generated by pbjk´1
; ck´1q, where bjk´1

contains pik´1 ă pik in the jth position, contains the
group generated by pbjk ; ckq, so

xpbjk´1
; ck´1qy{ZxpP q “ xpbjk ; ckqy{ZxpP qY

tpppik´1 , .., pik´1 ; cyq ` p
y´1
ÿ

i“0

bjk`ic; 0qqZxpP q : 0 ď y ď qd ´ 1u

– Zqd ˆ Z2

where
řy´1
i“0 a “ 0 when y “ 0. This continues inductively, so that

xpbj0 ; c0qy{ZxpP q “ xpbj1 ; c1qy{ZxpP qY

tpppi0 , .., pi0 ; cyq ` p
y´1
ÿ

i“0

bjk`ic; 0qqZxpP q : 0 ď y ď qd ´ 1u

– Zqd ˆ Zk`1

Then, consider the set of all elements {pβl; δlq} where δl is a generator and βl is not. Let b̃l “
řqd´1
x“0 βl “

řqd´1
x“0

řl
i“0 bjl`x “ pp

wl , ..., pwlq, 1 ď wl ď n. Suppose the set has length r and is ordered so that opb̃0q ą

opb̃1q. Finally, let iy be the exponent where pwr ď piy . Then, as before,

xpβr; δrqy{ZxpP q “ xpbjy ; cyqy{ZxpP qY

tpppwr , .., pwr ; δrq ` p
x´1
ÿ

i“0

βric ; 0qqZxpP q : 0 ď x ď qd ´ 1u

– Zqd ˆ Zpk´yq`1

and, inductively,

xpβ0; δ0qy{ZxpP q “ xpβr; δrqy{ZxpP qY

tpppw0 , .., pw0 ; δrq ` p
x´1
ÿ

i“0

β0ic ; 0qqZxpP q : 0 ď x ď qd ´ 1u

– Zqd ˆ Zpk´yq`r`2

On the other hand, elements from C generate subgroups of order opbqopcq which do not contain a non-trivial
subgroup of the center.

Let us now consider conjugacy classes. For any g P P “ Zmpn o Zq, H ď P denote

Hg “ tg´1hg : h P Hu
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Let g “ pg0, ..., gq´1; aq, g´1 “ p´g´a, ...,´g´1´a;´aq, h “ ph0, ..., hq´1; bq. Then,

g´1hg “ p´g´a, ...,´g´1´a;´aqpha ` g0, ..., ha´1 ` g´1; a` bq

“ p´gb ` ha ` g0, ...,´gb´1 ` ha´1 ` g´1; bq

Thus the value of b determines the conjugacy class.

3.2 Representation Theory

This section will examine the representation theory of a wreath prodcuct G o H where H acts on a set
X, |X| “ n, B denotes the base group Gˆ ...ˆG, with G appearing n times. The notation Gx will be used
to refer to the xth occurrence of G in the direct product.

Suppose R “ tρpiqu is the set of irreps of G. Then, the irreps of the group GX “ tpg, ..., g; eHq : g P GuŸG oH
are of the form

ρI “ bxPXρ
pixq
x

where I “ pi1, ..., inq, and where

ρpIqpg1, ..., gn; ehq “ bxPXρ
pixq
x pgxq

Recall that GX is normal in G oH. Then, as discussed in [11], G oH acts on the set of equivalence classes
of irreducible representations of GX , as discussed below. In order to determine the irreps of all of G oH one
can use induction of irreps; that is, the “little group method”. First, a few definitions must be presented.

3.2.1 Some Definitions

Definition 17 (g-conjugate). Let G be a group with normal subgroup N and let σ be a representation of
N . Let g P G. Then, the g conjugate of σ, denoted σg, is defined by

σgphq “ σpg´1hgq

for any h P N .

Note that σg is again a representation of N .

An equivalence relation between two irreps σ, ρ is given according to whether they are conjugates. That is,
σ „ ρ, if there is a g P G where σg “ ρ. This construction will be used below.

Definition 18 (Inertia group). Let G be a group, N a normal subgroup of G, and let σ be an irrep of N .
Then, the inertia group of σ in G is

IGpσq “ tg P G : σg „ σu
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This will be an important group when determining the irreps of G oH using the irreps of GX .

Definition 19 (Extension). Let G be a group, N ŸG, and let σ be an irrep of N, σ̃ an irrep of G. Then, σ̃
is an extension of σ if

ResGN σ̃ “ σ.

Definition 20 (Stabilizer group). Let H be a group acting on a set X. Then, the stabilizer group of x P X
is the subgroup of H which acts trivially on x; that is,

Hx “ th P H : h ¨ x “ xu

Definition 21 (Isotropy subgroup of σ). Let H be a group acting on a set X and let G be a group with

the set of irreps pG. Consider the group GX with the set of irreps yGX so that every σ P yGX is given by

σ “ bxPXσx, σx P yGX .

Then, for such a σ, define the isotropy subgroup to be the subgroup of h P H which stabilizes σ, given by

THpσq “ th P H : σhx „ σx@x P Xu

Definition 22 (Inflation). Let G be a group, N ŸG. Let η be an irrep of G{N . Then, define the inflation
of η to sη, an irrep of G, by

sηpgq “ ηpgNq

for every g P G.

Note that this defines a representation of G that is trivial on N , and all representations of G that are trivial
on N occur in this way.

3.2.2 The “Little Group” method

For the remainder of this section, consider the group G o H where H acts on a set X, |X| “ n and let

GX “ tpb; eHq : b P Bu. Use pN to denote the set of irreps of a group N .

Let pb;hq P G oH, σx P pG for each x P X, and σ “ bxPXσx P yGX .

To begin, let us determine the (b;h)-conjugates of σ. Fix pa; eHq P G
X . Then, since

pψh´1pb´1q;h´1qpa; eHqpb;hq “ pb
´1ψhpaqb; eHq

if one lets b “ pg1, ..., gnq, a “ pk1, ..., knq, and define the ψhpaq “ pkhp1q, ..., khpnqq then the above relation
becomes

pb´1ψhpaqb; eHq “ pg
´1
1 khp1qg1, ..., g

´1
n khpnqgn; eHq

One can then calculate the following:

σpb;hqpa; ehq “ σppb´1ψhpaqb; eHqq

“ bxPXσxpg
´1
x khpxqgxq

“ byPXσh´1pyqpg
´1
h´1pyq

kygh´1pyqq

“ byPXσ
gh´1pyq

h´1pyq
pkyq
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using the substitution y “ hpxq. Then, since gx P G so that σgxx peGq “ σxpeGq, we get that

σgxx „ σx

and so one can obtain the following result:

Lemma 3.2.2.0.1. Let σ, σx, pb;hq be as defined above. Then,

σpb;hq „ bxPXσh´1x

Using this relation one can prove the following:

Lemma 3.2.2.0.2. Let σ “ bxPXσx P yGX . Then, the inertia group of σ in G oH, denoted IGoHpσq, is given
by

IGoHpσq “ G o THpσq
where THpσq is the isotropy group of σ in H.

Proof. Recall that IGoHpσq “ tpb;hq P G oH : σpb;hq „ σu and THpσq “ th P H : σhpxq „ σx@x P Xu. Then,

G o THpσq “ tpb;hq : b P B, h P THpσqu “ tpb;hq : b P B, h P H,σhpxq „ σx@x P Xu

It follows from Lemma 3.2.2.0.1 that

IGpσq “ tpb;hq P G oH : σhpxq „ σx@x P Xu

and thus G o THpσq “ IGpσq.

Thus far we have been dealing with irreps σ of GX ď G o H which are the tensor product of irreps of G.
Before inducing these to the whole group, they must be extended to IGpσq, as this will allow one to use the
“little group method” to find irreps of G oH, as described in [5].

First, these extensions must be found. Of course, GX ď IGpσq (take h “ eH), on which σ is defined (see
above). Then, it remains to determine how σ acts on peB ;hq for h P H which satisfy σhpxq „ σx. That is, if
this relation is satisfied, choose the two representations to be equal by being of the same basis.

Lemma 3.2.2.0.3 (Lemma 2.4.3,[5]). The extension of each σ P yGX to σ̃ P {IGpσq is defined by

σ̃pb;hqpbxPXvxq “ bxPXσh´1xpgxqvh´1x

for every pb;hq “ pg1, ..., gn;hq P G o THpσq and vx P Vx, where σx acts on the vector space Vx.

Now that the extension to the inertia group has been determined, the “little group” method may be employed,
summarized in the theorem below. Note that the term “G oH-conjugacy class” refers to the conjugacy classes

of the representations of yGX in G oH, where σ, ρ P yGX are equivalent if σpg;hq “ ρ for some pg;hq P G oH.
Note that since σpg;eHq “ σ the conjugacy classes depend on the value of h P H. This is important to
avoid ”double counting” when one induces the extended representation. The set of representatives for these
conjugacy classes will be denoted Γ.

Recall, as well, that GX Ÿ IGoH and so THpσq – IGoHpσq{G
X and so one can inflate its irreducible represen-

tations to irreps of IGoHpσq by making it act trivially on GX .
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Theorem 3.2.2.0.1 (Little Group Method, Thm. 1.3.11 [5]). Use the notation from above. In addition,

for irreps η P {THpσq, denote the inflation to zIGoHpσq by sη, defined so that sηpb;hq “ ηphq. Then, the irreps
of the wreath product group are given by the following set:

{G oH “ tIndGoH
IGoHpσq

pσ̃ b sηq : σ P Γ, η P xTHpσqu

3.2.3 Small example: Z2 o Zn

Before looking at more general wreath products of cyclic groups, in order to better understand the repre-
sentation theory of wreath products, this section will explore the representations of Z2 o Zn.

In order to synthesize this group with the notation and theory above, note that G “ Z2, H “ Zn, X “

t0, ..., n´ 1u, GX “ tpg0, ..., gn´1; 0q : gi P Z2u. As well, the action of H on the base group B “ Gˆ ...ˆG
is defined as

φhpbq “ φhpg0, ..., gn´1q “ pgh, ..., gh`n´1q

for b “ pg0, ..., gn´1q P B, h P Zn.

Since Z2, Zn are abelian groups, their irreps are all one dimensional. Specifically, we have

xZ2 “ t1,´1u “ tpeπiqk : k P Z2u

xZn “ tpe
2πi
n qk : k P Znu

for simplicity let ωm “ e
2πi
m for any nonzero m.

Since the tensor of one-dimensional irreps is also one dimensional, the following set of irreps of yGX :

yGX “ tbxPZnω
kx
2 : kx P Z2u

will result in a value of 1 or ´1 when applied to a vector in Zn2 . More precisely, let v, k P Zn2 , and let

χk P yGX , χk “ biPZnω
ki
2 . Then, χkpvq “ p´1qk¨v.

Next, consider h P Zn which acts by permuting the base group. Then, hχk “ χh`k, where addition occurs
component-wise, and so Zn simply permutes the representations of Zn2 .

Let χk P yGX , ωkx2;x P Gx, where k P Zn2 . Then, χk has the stabilizer group

TZnpχkq “ ty P Zn : ωkx2;y`x “ ωkx2;x@x P Znu

Note that the k1is denote the label of the irrep, whereas the x subscript denotes which entry in the direct
product it belongs to.

Example 3.2.3.0.1. If n “ 3, k “ p1, 0, 1q, then the irrep χk “ ω2;0 b 11 b ω2;2. While ω2;0 “ ω2;2 the
stabilizer is still only the trivial group, TZnpχkq “ t0u, since Z3 acts by addition. If instead we had H “ S3

then the elements pq, p13q would stabilize the above expression.
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In general, since the stabilizer group must be a subgroup of Zn, its order must divide n. Consider the stabilizer

of a χk P yGX , where h P H acts by hχk “ χh`k where h is added to each ki so that h`k “ pk0`h, ..., kn´1`hq,
since

hχk “ bxPXχ
kx
h`x “ bxPXχ

h`kx
x “ χh`k

In this case, the stabilizer is analogous to the period of k viewed as a function; that is, if kphq “ pk0 `
h, ..., kn´1 ` hq then the smallest integer t such that kph ` tq “ kptq for all integers h is the “period” of k
and will be in the stabilizer; in fact, it will generate the stabilizer.

Since addition is being done modulo n, 1 ď t ď n and kph ` nq “ kphq as well. Thus, n “ tm for some
1 ď m ď n, and so t must divide the order of Zn, and actually generates the stabilizer. Thus, we obtain the
following claim describing the stabilizer subgroup:

Claim 3.2.3.0.1. Suppose P “ Z2 o Zn, and let H “ Zn. If χk “ bxPXχ
kx
x is an irrep of Zn2 and t is the

smallest integer such that kph` tq “ pk0`h` t, ..., kn´1`h` tq “ kphq then the stabilizer subgroup of χk is

THpχkq “ th P H : hχk “ χh`k “ χku “ xty – Zm

where m “ n
t .

Example 3.2.3.0.2. If n “ 4, k “ p1, 0, 1, 0q, k1 “ p1, 1, 1, 0q then THpχkq “ t0, 2u “ x2y – Z2 and
THpχk1q “ t0u.

Let m “ |THpχkq| “ |Zm|. Note that while m ď n, the elements in this stabilizer group are still acting on
the full set X, and thus the action of Zm is not transitive on X. For this reason, the wreath product is still
a semidirect product with GX “ Zn2 . Then, the inertia group is

IZ2oZnpχkq “ tpb;hq : b P Zn2 , h P xtyu

Next, an extension of χk to the inertia group, denoted χ̃k, must be found. This definition is quite straight-
forward: for h P THpχkq, b P Z

n
2 ,

χ̃kpb;hq “ χkpbq “ ωk¨b2

This is because every h P xty is of the form h “ ty and so h´1 P xty. Then, h´1pxq “ x since it is a multiple
of the period of k. Thus, using Lemma 3.2.2.0.3,

χ̃kpb;hqpbxPXvxq “ bxPXχh´1xpgxqvh´1x “ bxPXχxpgxqvx

Since xZn “ tω
k
n : k P Znu, the irreps of the stabilizer group, which is isomorphic to Zm for m ď n, will be a

subset of this.

The irreps of a group Zm are the m-roots of unity; that is, the set xZm “ tω
k
m : k P Zmu. Consider ωjn P

xZn.
Then, when restricted to the stabilizer group it only acts on elements of the form tb where b is an integer.
Then, since n “ tm,

ωjnptbq “ pe
2πi
n qjptbq “ e

2πij
tm tb “ ωjmpbq
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To avoid confusion with the larger group define the irreps of the stabilizer group in terms of the mth-roots
of unity; that is, as

{THpχkq “ tω
j
m : j P Zmu

where ωjmpbtq “ ωjbm , and, of course, the particular choice of m, t depends on the value of k (it can be thought
of as a function of k since it is dependent on its value. For brevity, though, this dependence will be omitted
from notation).

Let ηj P {THpχkq and define its inflation to the inertia group as

sηjpb;hq “ ηjphq “ ωjlm

where h “ tl P xty.

Since sηj , χ̃k are both one dimensional representations, their tensor product is also one-dimensional, given by

χ̃k b sηjpb; tlq “ χkpbqηjptlq “ ωk¨b2 ωjlm

This tensor is now defined on the inertia group and thus can be induced to the whole group. First, however,
the set Γ of the irreps of representatives of the Z2 o Zn-conjugacy classes of Zn2 must be determined. That

is, not all χk P xZn2 will give distinct representations. Since conjugate representations under Zn will induce
to the same representation, one only needs to consider representatives for these representations.

To determine the orbit of Zn on Zn2 one can use Pólya-Redfield theory, as discussed in [8]. Let |Fixphq|
denote the number of elements in Zn2 which are fixed by h. For example, if h “ 0 then all elements in Zn2
are fixed by h, so that |Fixpbq| “ 2n.

Then, the number of elements in Γ is given by a variation of Burnside’s lemma, so that

|Γ| “
1

|Zn|

ÿ

hPZn

|Fixphq|

Example 3.2.3.0.3. Suppose n “ 2, and so Z2
2 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu. Then, the sum is

|Γ| “
1

2
p|Fixp0q| ` |Fixp1q|q “

1

2
p|Z2

2 | ` |tp0, 0q, p1, 1qu|q “ 3

Next, since
Z2 ¨ p0, 0q “ tp0, 0qu, Z2 ¨ p1, 1q “ tp1, 1qu

Z2 ¨ p1, 0q “ Z2 ¨ p0, 1q “ tp1, 0q, p0, 1qu

there are three distinct orbits, and so the set tp0, 0q, p0, 1q, p1, 1qu holds representatives of the orbits. Note
that we could have chosen p1, 0q instead of p0, 1q. Then,

Γ “ tχp0,0q, χp0,1q, χp1,1qu

Returning to the general case, since THpχkq “ xty – Zm stabilizes χk, the orbit of χk is

Zn ¨ χk “ tχk`c : c P Znu
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Since χtb`k „ χk the above definition restricts c so that it is not a multiple of t. That is, it gives represen-
tatives for the orbits of χk. Thus, Γ, which is a set of representations of the representatives of the orbits
should given by

Γ “ tχk`c : c P Zn, c R xtyu.

Finally, it remains to employ the “Little Group” method, given as Theorem 3.2.2.0.1. Use the notation
above. Then, the irreps of Z2 o Zn are given by

{Z2 o Zn “ tIndZ2oZn
IZ2oZn pχkq

pχ̃k b sηq : χk P Γ, η P xTHpσqu.

Since the inertia group is
IZ2oZnpχkq “ tpb;hq : b P Zn2 , h P xtyu

and is normal in Z2 o Zn its quotient with this group is given by

Z2 o Zn{IZ2oZnpσq “ tp0; cqIZ2oZn : c P Zn, c R xtyu – Zt

In fact, more generally, we have the relation

pG oHq{IGoHpσq – H{THpσq.

Because of the isomorphism above, instead of considering pG oHq{IGoHpσq we can consider H{THpσq; that
is, use the set of coset representatives for this quotient. This is simply t0, h : h R xtyu.

We can thus specify the irreps of {Z2 o Zn. Suppose we are inducing the irrep χ̃kb sηj which acts on the vector
space V “ C since it is one-dimensional.

Then, let pb;hq P Z2 o Zn. To determine its action on v P V , note the following:

pb;hq
ÿ

cPZt

p0; cq b v “
ÿ

cPZt

pψcpbq;h` cq b v

“
ÿ

cPZt

p0; cqpψcpbq;hq b v

“
ÿ

cPZt

p0; cq b pχ̃k b sηjqppψcpbq;hqqv

“
ÿ

cPZt

p0; cq b pχkpψcpbqq b ηjphqqv

“
ÿ

cPZt

p0; cq b ω
k¨ψcpbq
2 ωjhn v

Thus, the final, induced representation, denoted σk,j is given by

σk,jpb;hq “
ÿ

cPZt

ω
k¨ψcpbq
2 ωjhn |cyxc|.
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3.2.4 Another example: Zm
n o Zq

Let us now consider the representation theory of a group P “ Zmn o Zq. For brevity let G “ Zmn , H “ Zq,
with base group GX (of course, X “ t0, 1, ..., q ´ 1u).

First, consider the irreps of G; these are simply the nm one-dimensional representations

χkpaq “ ωk¨an , ωn “ e
2πi
n , a, k P G

This gives rise to nmq one-dimensional irreps of GX :

yGX “ tbxPZqχkx : kx P Z
m
pnu

where, for κk “ bxPZqχkx P
yGX , v, k P Zmqn , k “ pk0, ..., kq´1q, v “ pv0, ..., vq´1q,

κpvq “ bxPZqχkxpvxq

“ bxPZqω
kx¨vx
n

“ ω

ř

xPZq
kx¨vx

n

“ ωk¨vn

Next, we need to find the isotropy group,

THpκkq “ ty P Zq : χkx`y “ χkx@x P Zqu

As before, this will be a function of k; that is, if kphq “ pk0 ` h, ..., kq´1 ` hq then the smallest integer t
where kph` tq “ kphq for all integers h generates the isotropy group.

Since the order of t must divide q, if q is prime then

THpκkq “

#

Zq if χkx “ χky@x, y P Zq

t0u else

Since G is cyclic abelian, the irreps of GX can be extended trivially to the inertia group.

Next, suppose d “ q
t . Then, since the irreps of Zq are of the form ωjq , j P Zq, the irreps of the isotropy group,

with elements of the form tb P xty, are given by

ωjqptbq “ ωjdpbq

where, of course, if q is prime then d is either 1 or q. That is, we get the set

{THpκkq “ tω
j
d : j P Zdu, where ωjdpbtq “ ωjbd

The inflation of any irrep ηj P {THpκkq can be defined simply as

η̄jpb;hq “ ηjphq “ ωjlm, h “ tl P xty
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Finally, the tensor product of an irrep κ̄k P ĚGX , η̄j P ĞTHpκkq is given by

κ̄k b η̄jpb; tlq “ κkpbqηjptlq “ ωk¨bn ωjld

Now, consider inducing κ̄k b η̄j which acts on the vector space V “ C, since it is one-dimensional, to an

irrep of {G oH “ {Zmn o Zq.

To determine the coset representatives, consider pG oHq{IGoHpσq – H{THpσq “ t0, h : h R xtyu. Let T denote
the set of coset representatives. Then, let pb;h1q P G oH where pb;h1q “ pb;h`dq for some h P xty, d R THpκkq
and consider its action on v P V . One can calculate the following:

pb;h1q
ÿ

cPT

p0; cq b v “
ÿ

cPT

pψcpbq;h
1 ` cq b v

“
ÿ

cPT

p0; c` dqpψcpbq;hq b v

“
ÿ

cPT

p0; c` dq b pĎκk b sηjqppψcpbq;hqqv

“
ÿ

cPT

p0; c` dq b pκkpψcpbqq b ηjphqqv

“
ÿ

cPT

p0; c` dq b ωk¨ψcpbqn ωjhq v

Thus, the final, induced representation, denoted σk,j is given by

σk,jpb;h
1q “

ÿ

cPT

ωk¨ψcpbqn ωjhq |c` dyxc|

with dimension d “ q
t .

If q is prime then all irreps are either dimension 1 or q. In fact, for G “ Zmn , H “ Zq, q prime, there are
nm irreps κk of GX which have THpκkq “ Zq, occurring when k “ pi, i, ..., iq, i P Znp . These will induce to
1-dimensional irreps. The remaining irreps will induce to irreps of dimension q.

Since each element in Zq when q is prime fixes elements in GX which are in the diagonal subgroup, and
0 P Zq fixes every element in GX ,

|Γ| “
1

q

ÿ

hPZq

|Fixphq| “
1

q
p|GX | ` pq ´ 1q|G|q “

nmq ` pq ´ 1qnm

q

gives the total number of κk one needs to induce.

That is, each element g P Zmn has an orbit of size
`

q
q´l

˘

where l is the number of zeroes in g when acted on
by Zq. Then, the nm elements in the diagonal subgroup have orbit of size 1 and thus are fixed by every

h P THpκq giving nm 1-dimensional irreps and nmq`pq´1qnm

q ´ nm “ nmq´nm

q q-dimensional irreps.
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3.3 Znp o Zdp

This section will specifically consider the group P “ Znp o Zdp “ G o H,n, d ě 1. Of course, this must be a

nilpotent group, and has order ppnqp
d

pd “ pp
dn`d.

The set X being acted on by H has size pd; it can be considered H itself where the action is addition as
defined in H. Specifically, consider elements in H,G as uniquely encoded strings. Let h P H be the string
h “ hd´1...h0 “ phkq0ďkăd where each hk P Zp. Similarly, let a P G be the string a “ an´1...a0 “ paiq0ďkăn
where each ak P Zp. Addition occurs component-wise, so that if h, t P H then h ` t “ phk ` tkq0ďkăd, and
similarly for addition in G.

In order to define an ordering, identify each h “ phkq0ďăd P H with a unique string so that each hk is an
integer, 0 ď hk ă p, and consider a map φH : H Ñ Zpd and φG : GÑ Zpn given by

φHphkq0ďkăd “
d´1
ÿ

k“0

hkp
k

φGpgkq0ďkăn “
n´1
ÿ

k“0

gkp
k

Then, we define the ordering as follows: for h, t P H,h ă t ô φHphq ă φHptq. An analogous relation holds
in G.

Finally, since GX “
ś

xPX G, let g P GX be defined as g “ pgxqxPφHpXq “ pg0, ..., gpd´1q where each
gj “ paiq0ďiăn, ai P Zp as described above, and φHpXq “ tφHpxq : x P Xu is a set ordered in Zpd . Of course,
one could equivalently write g1 “ pg1xqxPX “ pgp0kq0ďkăd , gp0k1q1ďkăd ..., gp12kq0ďkăd´1

, gp2kq0ďkădq.

Now, let us specify the action of H on GX . This will simply be a permutation of GX according to component-
wise addition in the elements of X. That is, for pg;hq “ ppgxqxPX ; phkq0ďkădq, pg

1;h1q “ ppg1xqxPX ; ph1kq0ďkădq,
and where addition occurs component-wise as described previously,

pg;hqpg1;h1q “ ppgx`h1qxPX ` pg
1
xqxPX ; phk ` h

1
kq0ďkădq

and inverses are given by
pg;hq´1 “ pp´gx´hqxPX ;´hq

where ´h “ p´hkq0ďkăd,´gx´h “ p´aiq0ďiănq.

Consider conjugation in this group: let pg;hq, pg1;h1q P P . Then,

pp´g1x´h1qxPX ;´h1qpg;hqpg1;h1q “ pp´g1x´hqxPX ;´h1qppgx`h1qxPX ` pg
1
xqxPX ; phk ` h

1
kq0ďkădq

“ pp´g1x`hqxPX ` pgx`h1qxPX ` pg
1
xqxPX ;hq

“ pp´g1x`h ` gx`h1 ` g
1
xqxPX ;hq

80



Clearly, two elements pg;hq, pr;h1q are conjugate only if h “ h1. Let pr;hq “ pp´g1x`h ` gx`h1 ` g1xqxPX ;hq
and notice that

pr;hqp “ pp
p´1
ÿ

i“0

rx`ihqxPX ; 0q

“ pp

p´1
ÿ

i“0

gx`ih`h1qxPX ; 0q

“ pp´g1x´h1qxPX ;´h1qpg;hqppg1;h1q

and thus if pg;hq, pr;hq then
řp´1
i“0 rx`ih “

řp´1
i“0 gx`ih`h1 for all x P X and some h1 P H.

Now, suppose pg;hq, pr;hq are conjugate, so that pg;hqpg1;h1q “ pg1;h1qpr;hq fore some pg1;h1q P P . Then we
get the equation

ppgx`h1qxPX ` pg
1
xqxPX ; phk ` h

1
kq0ďkădq “ ppg

1
x`hqxPX ` prxqxPX ; ph1k ` hkq0ďkădq

That is, for each x P X we get the equation

gx`h1 ` g
1
x “ g1x`h ` rx

Claim 3.3.0.0.1. Suppose pg;hq, pr;h1q are two elements in P . Then, they are conjugate if and only if
h “ h1 and gx`k ` g1x “ g1x`h ` rx for all x P X and some k P H, g1 “ pg1xqxPX P GX . Note that this will

imply that p
řp´1
i“0 gx`ih`kqxPX “ p

řp´1
i“0 rx`ihqxPX .

The center, as shown in a previous section, is given by

ZpP q “ tppgqxPX ; 0q : g P Znpu, |ZpP q| “ pn

3.3.1 Subgroups with one generator

3.3.1.1 General theory

This section will examine the nature of single-generator subgroups. In order to better understand these,
consider the orbit of a fixed element in H on each X. Of course, the action of H on X is transitive, however
given a pg;hq P P , repeated products will not permute all elements in g; that is, ψhpgq is not transitive,
where pg;hqpg;hq “ pψhpgqg;hq. Instead, the size of its orbit is p.

Specifically, fix h “ phkq0ďkăd P H,x “ pxkq0ďkăd P X and consider h ¨ x, where ¨ denotes the action by
component-wise addition. Then,

h ¨ x “ phk ` xkq0ďkăd, h ¨ ph ¨ xq “ p2hk ` xkq0ďkăd, h ¨ ph ¨ ph ¨ xqq “ x

Consider a subgroup generated by any pg;hq P P .

pg;hqy “ p
y´1
ÿ

i“0

pgx`ihqxPX ; yhq
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Of course, if h ‰ 0 then ophq “ p and so pg;hqp “ p
ř2
i“0pgx`ihqxPX ; 0q. Then, if

ř2
i“0pgx`ihqxPX ‰ 0 then

op
ř2
i“0pgx`ihqxPXq “ p and so pg;hqp

2

“ p0; 0q. As well, note that if y “ pk` t, k ě 0, p ą t ě 0, y ą 0, then

pg;hqy “ pk
p´1
ÿ

i“0

pgx`ihqxPX `
t´1
ÿ

i“0

pgx`ihqxPX ; thq

For this reason, we obtain the following lemma:

Lemma 3.3.1.1.1. Suppose a subgroup of P is generated by a single element pg;hq “ ppgxqxPX ; phkq0ďkădq, h ‰
0, where each gj “ paiq0ďiăn, ai P Zp. Then, xpg;hqy will contain a nontrivial subgroup of the center if and

only if
řp´1
i“0 gx`ih “

řp´1
i“0 gx1`ih ‰ 0 for all x, x1 P X.

Specifically, this subgroup will be generated by pp
řp´1
i“0 gihqxPX ; 0q.

This gives us the following brief corollary:

Corollary 3.3.1.1.1. Suppose a subgroup of P is generated by a single element pg;hq as defined in the
lemma above. Then, the order of xpg;hqy is:

1. 1, if pg;hq “ p0; 0q

2. p, if
řp´1
i“0 gx`ih “ 0 for all x P X

3. p2 in all other cases.

Let us try to determine the conjugate subgroups of xpg;hqy. Before doing so, however, let us determine when
two distinct elements pg1;h1q, pg;hq P P commute. This occurs if

pg1;h1qpg;hq “ ppg1x`h ` gxqxPX ;h1 ` hq “ ppgx`h1 ` g
1
xqxPX ;h` h1q

Since component-wise addition commutes, we require that g1x`h` gx “ gx`h1 ` g
1
x for all x P X. This occurs

if components in the same h, h1 orbit are equal; that is, if gx`h1 “ gx`ih1 and g1x “ g1x`ih for all 0 ď i ă p
and for all x P X. To summarize, this indicates the following lemma:

Lemma 3.3.1.1.2. Let pg;hq “ ppgxqxPX ;hq P P . Let g1 “ pg1xqxPX P G
X be such that that g1x “ g1x`ih for

all 0 ď i ă p and x P X. Call this property the “h- orbit property ”. Finally, suppose g has the h’-orbit
property. Then, pg;hq commutes with pg1;h1q.

Note that any element must always have the 0-orbit property.

Recall that for an element pg1;h1q P P , and where ´h1 “ p´h1iq0ďiăd,

pψ´h1p´g
1q;´h1qpg;hqpg1;h1q “ pp´g1x`h ` g

1
x ` gx`h1qxPX ;hq

Of course, if pg1;h1q, pg;hq commute, as per Lemma 3.3.1.1.2, then the final value is simply pg;hq.

Otherwise, we know by Claim 3.3.0.0.1 that two elements pr;hq, pg;hq are conjugate if gx`k`g
1
x “ g1x`h` rx

for all x P X and some k P H.
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Additionally,

pp´g1x`h ` g
1
x ` gx`h1qxPX ;hqp “ p

p´1
ÿ

i“0

pgx`ih`h1qxPX ; 0q

which is just a permutation of GX in pg;hqp by h1 and so if pg;hq is conjugate to pr;hq then
řp´1
i“0 rx`ih “

řp´1
i“0 gx1`ih for some x, x1 P X. Of course, this implies that xpr;hqy will generate the same subgroup of the

base group as pg;hq.

Suppose pg1;h1q stabilizes xpg;hqy. Then, one obtains a series of p equations which must be satisfied for each

0 ď t ă p, where
ř´1
i“0 g “ 0, and for any 0 ď k ď p:

pφ´h1p´g
1q;´h1qpg;hqpk`tpg1;h1q “ pφ´h1p´g

1q;´h1qppk
p´1
ÿ

i“0

gx`ih `
t´1
ÿ

i“0

gx`ihqxPX ; thqpg1;h1q

“ pφhp´g
1q ` φh1pk

p´1
ÿ

i“0

gx`ih `
t´1
ÿ

i“0

gx`ihqxPX ` g
1; thq

“ pp´g1x`th ` k
p´1
ÿ

i“0

gx`ih`h1 `
t´1
ÿ

i“0

gx`ih`h1 ` g
1
xqxPX ; thq

“ ppk1
p´1
ÿ

i“0

gx`ih `
t´1
ÿ

i“0

gx`ihqxPX ; thq

and thus the equality ´g1x`th` k
řp´1
i“0 gx`ih`h1 `

řt´1
i“0 gx`ih`h1 ` g

1
x “ k1

řp´1
i“0 gx`ih`

řt´1
i“0 gx`ih must be

satisfied for all x P X. Consider when t “ p´ 1 and subtract from it the case when t “ p´ 2 to obtain

´g1x´h ` g
1
x´2h ` gx´h`h1 ´ gx´2h “ κ

p´1
ÿ

i“0

gx`ih

Thus we can conclude with the following claim:

Claim 3.3.1.1.1. Consider an element pg;hq P P . Then, pg;hq is conjugate to any pr;hq if there exists
some k P H where, for all x P X, the relation gx`k ` g

1
x “ g1x`h ` rx is satisfied.

If the above conditions hold then
řp´1
i“0 rx`ih “

řp´1
i“0 gx`k`ih and thus xpr;hqy and xpg;hqy will contain the

same subgroup xpp
řp´1
i“0 rx`ihqxPX ; 0qy of the base group.

As well, the subgroup generated by xpg;hqy is stabilized by pg1;h1q if there exists some 0 ď d ă p so that the

relation g1x ´ g
1
x`h ` gx`h1 ´ gx “ d

řp´1
i“0 gx`ih`h1 is satisfied for all x P X.

Example 3.3.1.1.1. Consider the case when h1 “ 0, p “ 3, and pg1; 0q stabilizes xpg;hqy. Then, this implies

that g1x ´ g
1
x`h ` gx ´ gx “ d

ř2
i“0 gx`ih and thus for a fixed x we get the equations

g1x ´ g
1
x`h “ k, g1x`h ´ g

1
x`2h “ k, g1x`2h ´ g

1
x “ k

where k “ d
ř2
i“0 gx`ih P Zn3 . Then,

2g1x ´ g
1
x`h “ g1x`2h, 2g

1
x`h ´ 2g1x “ k

which gives 3n possible solutions for each value of k.
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3.3.1.2 Specific generators

Let us now limit ourselves to subgroups generated by a specific subset of elements in G,H in order to obtain
unique single-generator subgroups. Note that every non-zero element in Zp is a generator, and G,H cannot
be generated by a single element.

Let cK P H,K P Zd2 be an elements such that cK “ pkiq0ďiăd; that is, an element in H with only ones and
zeroes as entries. Note that H “ xtcK : K contains exactly one 1 uy.

Similarly, let bI “ pixq0ďxăn P G where I P Zn2 . Then, let gI,K,j “ pp0qxPX,xăjpbIqxPX,x“jp0qxPX,xąj ; cKq.
For brevity write this as gI,K,j “ pbI,j ; cKq.

Consider a subgroup generated by a single gI,K,j . Since

gpI,K,j “ p
p´1
ÿ

i“0

pbI,j`icK q; 0q

by Lemma 3.3.1.1.1 for this to contain a non-trivial subgroup of the center we must have that tj ` icK : i P
Zpu “ X, which implies that d “ 1.

To summarize this as a claim, we get that

Claim 3.3.1.2.1. Let gI,K,j be as discussed above. Then, xgI,K,jy contains a non-trivial subgroup of the
center only if d “ 1.

As well, if either bK “ p0qxPX or cK “ p0q0ďvăd then
řp´1
i“0 pbI,j`icK q “ 0 and so the generated subgroup has

order p. (Of course, if both are zero then this is simply the trivial subgroup).

Suppose cK “ 0. Then, by Claim 3.3.1.1.1, gI,0,j “ pbI,j ; 0q is conjugate to any pr; 0q where gx`k`g
1
x “ g1x`rx

and thus rx “ gx`k for some k P H and for all x P X. Note that such an element pr; 0q will then satisfy
řp´1
i“0 rx “ 0 for all x P X.

Specifically, this equality must hold when x “ j ´ k so that gj “ bI , and thus in this case we get that
rj´k “ gj “ bI . For all other values of x we get that rx “ 0.

Alternatively, one can suppose that gI,0,j and pk; 0q are conjugate by pg1;h1q P P . Then, the equality is the
following:

pbI,j`h1 ` g
1;h1q “ pg1 ` k;h1q ñ bI,j`h1 “ k

where h1 is arbitrary. Thus gI,0,j , gI,0,j1 are conjugate for any j, j1 P X.

This holds in general; that is, pa; 0q, pb; 0q P P are conjugate if and only if pφhpaqq “ b for some h P H since
for some pg;hq P P ,

pa; 0qpg;hq “ pφhpaq ` g;hq

“ pg;hqpb; 0q “ pg ` b;hq
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As well, it is normal in a subgroup generated by pg1;h1q if g1x´ g
1
x` gx`h1 ´ gx “ gx`h1 ´ gx “ d

ř2
i“0 gx “ 0.

Thus, since gj “ bI and gx “ 0 when x ‰ j we get that pg1;h1q stabilizes xgI,0,jy iff h1 “ 0. Thus this group
is normal in the base group.

Similarly, suppose bI “ 0. Then g0,j,K is conjugate to all elements in P and the subgroup it generates is
normal in P .

In general, assume I,K are not all zeroes. Thus, we have a subgroup of order p2 which does not contain a
non-trivial subgroup of the center, since

2
ÿ

i“0

pbI,j`icK qx “

#

bI if x “ j ` icK , 0 ď i ă p

0 otherwise

In other words, gpI,K,j will contain the value of bI in the j, j`cK , j`2cK spots and zeroes elsewhere. We can
thus apply Claim 3.3.1.1.1 to see that gI,K,j is conjugate to some pw; cKq where gx`h1 ` g1x “ g1x`cK ` wx.
Specifically, since gj “ bI and gx “ 0 for all other x P X, consider when x “ j ´ h1:

gj ` g
1
j “ g1j´h1`cK ` wj ñ bI ´ wj “ g1j´h1`cK ´ g

1
j

for all other values of x we get that
g1x ´ g

1
x`cK “ wx

In addition, pw; cKq must satisfy the relation that
ř2
i“0 wx`icK`h1 “ bI for the h1 P H given above.

Finally, the subgroup generated by gI,K,j is stabilized by pg1;h1q if

g1x ´ g
1
x`cK ` gx`h1 ´ gx “ d

p´1
ÿ

i“0

gx`h1`icK

consider four cases: when x “ j, when x “ j ´ h1, when x “ j ´ h1 ´ acK , for 1 ď a ď p´ 1, and all other
choices for x P X, which give the following equations, respectively:

1. g1j ´ g
1
j`cK ` gj`h1 ´ bI “ d

p´1
ÿ

i“0

gj`h1`icK ñ

#

g1j ´ g
1
j`cK

“ dbI if h1 “ 0

g1j ´ g
1
j`cK

“ bI else

2. g1j´h1 ´ g
1
j´h1`cK ` bI ´ gj´h1 “ d

p´1
ÿ

i“0

gj`icK ñ

#

g1j ´ g
1
j`cK

“ dbI if h1 “ 0

g1j´h1 ´ g
1
j´h1`cK

“ pd´ 1qbI else

p. g1j´h1´acK ´ gj´h1`p1´aqcK “ d
p´1
ÿ

i“0

gj`icK “ dbI

4. g1x ´ g
1
x`cK “ 0

Thus, g1 must have the cK-orbit property.

The above discussion can be summarized in the following lemma:
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Lemma 3.3.1.2.1. Suppose gI,K,j P P is as defined above. Then:

1. gI,0,j and gI,0,j1 are conjugate for all j, j1 P X and the subgroup gI,0,j generates is normal in the base
group.

2. g0,K,j is conjugate to all elements in P and is normal in P .

3. gI,K,j , I,K ‰ 0 is conjugate to any element pw; cKq where gx`h1 ` g
1
x “ g1x`cK `wx and which implies

that
ř2
i“0 wx`h1`icK “ bI and the subgroup it generates is stabilized by pg1;h1q if g1x´g

1
x`cK`gx`h1´gx “

d
řp´1
i“0 gx`h1`icK for all x P X.

3.3.2 Representation theory

This section will focus on the representation theory of P . It is essentially just a specification of the discussion
in Section 3.2.4.

First, consider the irreps of G; these are simply the pn one-dimensional representations

χkpaq “ ωk¨ap , ωp “ e
2πi
p , a, k P G

This gives rise to pnp
d

one-dimensional irreps of GX :

yGX “ tbxPXχkx : kx P Gu

where, for κk “ bxPXχkx P
yGX , v, k P GX , k “ pkxqxPX , v “ pvxqxPX ,

κpvq “ ω
ř

xPX kx¨vx
p “ ωk¨vp .

Next, we need to find the isotropy group, which will be a function of k and will have order dividing pd. It
is given by

THpκkq “ ty P Zdp : χkx`y “ χkx@x P Zdpu
“ th P H : k has the h-orbit propertyu

– Zfp , for some 0 ď f ď d.

Next, the inertia group is given by

IGoHpκkq “ tpb;hq : b P GX , h P THpκkqu

and we must extend the irreps κk of yGX to irreps κ̃k of this group. In order to do this, recall Lemma 3.2.2.0.3.
Then, for ppgxqxPX ;hq P IGoHpκkq,

κ̃kppgxqxPX ;hqpbxPXvxq “ bxPXχh´1xpgxqvh´1x
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Then, if k has the h-orbit property then it immediately has the h´1-h-orbit property, as well, and so
h´1pxq “ x. Thus we can choose the trivial extension so that

κ̃kppgxqxPX ;hq “ κkppgxqxPXq for all h P THpκkq.

Next, the irreps of H “ Zdp are of the form ρ`paq “ ω`¨ap , a, ` P Zdp, and there are pd such irreps.

To determine {THpκkq consider the set of generators T “ thi : 0 ď i ă f, h P THpκkqu, |T | “ f ď d where

f “ d implies that THpκkq “ H. Then, any b P THpκkq can be written as b “
řf
i“0 aih

i where 0 ď ai ă p.

Thus, for ρ` P pH,

ρ`pbq “ ρ`p
f
ÿ

i“0

aih
iq “ ω

`¨
řf
i“0 aih

i

p

“

f
ź

i“0

pω`¨h
i

p qai

“

f
ź

i“0

ρ`ph
iqai

Notice the redundancy of ` when THpκkq ‰ H, which occurs due to the dot product relying on multiplication.

Thus, one can limit the choice of ` to the pf elements in THpκkq. That is, {THpκkq “ tρ` : ` P Zfpu . As an

aside, note that the indices when hix “ 0 do not contribute to the sum and could be “removed”; this is what
allows for the isomorphism to be stated (that is, that THpκkq – Zfp , f ď d).

Then, we get the set
{THpκkq “ tω

j
p : j P THpκkqu

The inflation of any irrep ηj P {THpκkq can be defined simply as

η̄jpb;hq “ ηjphq

Finally, the tensor product of an irrep κ̄k P yGX , η̄j P {THpκkq is given by

κ̄k b η̄jpb;
f
ÿ

i“0

aih
iq “ κkpbqηjp

f
ÿ

i“0

aih
iq “ ω

k¨b`
řf
i“0 aij¨h

i
q

p

Now, consider inducing κ̄k b η̄j which acts on the vector space V “ C, since it is one-dimensional, to an

irrep of {G oH.

To determine the coset representatives, consider pG o Hq{IGoHpσq – H{THpσq with coset representatives
D “ t0, h : h R xT yu. That is, suppose t P THpκkq is of the form t “ p0iqfďiădphiq0ďiăf so that one can
write any h P H as h “ t` c for some c “ pciqfďiădp0q0ďiăf P D and so the cosets of the quotient group are
cxT y for c R xT y.
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Then, let pg;h1q “ pg;h` bq P G oH,h “
řf
i“0paih

iq, b R THpκkq and consider its action on v P V . One can
calculate the following:

pg;h1q
ÿ

cPD

p0; cq b v “
ÿ

cPD

pψcpgq;h
1 ` cq b v

“
ÿ

cPD

p0; c` bqpψcpgq;hq b v

“
ÿ

cPD

p0; c` bq b pĎκk b sηjqppψcpgq;hqqv

“
ÿ

cPD

p0; c` bq b pκkpψcpgqq b ηjphqqv

“
ÿ

cPD

p0; c` bq b ω
k¨ψcpgq`

řf
i“0 aij¨h

i
q

p v

Thus, the final, induced representation, denoted σk,j is given by

σk,jpg;h1q “
ÿ

cPD

ω
k¨ψcpgq`

řf
i“0 aij¨h

i
q

p |c` byxc|

with dimension pd´f . We thus get the following corollary:

Corollary 3.3.2.0.1. Suppose k “ pi, i, ..., iq, i P G is a label of an irrep of GX so that κk P yGX . There are
|G| “ pn choices of such irreps, and each give THpκkq “ Zdp. Thus these irreps induce to the 1-dimensional

irreps of P . Since the orbit of each such k is k there are pn such labels. For each there are |H| “ pd choices
for the label of ηj and thus a total of pn`d one dimensional irreps.

Notice that for a given k “ pkxqxPX , kx P G, if we associate it to k̃ “ pk; 0q P P , then there is a direct
correspondence between the values of h P H for which k̃ has the h-orbit property and the values of h P THpκkq
since if k̃ has the h-orbit property then kx “ kx`h for all x P X and so h is in the isotropy group of κk.

Consider the elements of GX which are fixed by a specific h P H and labels k “ pkxqxPX , kx P G associ-
ated with k̃ “ pk; 0q P P . To determine each THpκkq one must understand the values of h P H for which
pψhpkq; 0q “ pk; 0q; that is, values of h P H which fix an element in GX . Similarly, Γ is the set of representa-

tives of the orbits of elements in yGX with unique orbits; that is, for each label k, k1 such that k1 “ pkx`hqxPX
for some h P H one only requires a single representative k for the orbit.

Note the following observation:

1. If h “ p0q then it fixes all pd elements in X and pnp
d

elements in GX .

2. If h1 P xhy then it fixes the same elements as h and thus elements being acted on by h, h1 have the
same orbit.

3. If an element is in the diagonal subgroup of GX then it is fixed by every h P H and thus has an orbit
of one.
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4. Any h P H fixes at least pnp
d´1

elements.

Then, by Burnside’s lemma we have that |Γ| “ 1
|H|

ř

hPH |Fixphq| and so

1

pd
ppnp

d

` ppd ´ 1qpnp
d´1

q ď |Γ| ď pnp
d

In order to understand Γ and understand the number of irreps of a certain dimension, one must understand
the what elements k associated with k̃ P GX a given element h P H fixes.

Example 3.3.2.0.1. Suppose p “ 3 and h “ p0q1ďjăd1 so that it generates the subgroup xhy “ p0q1ďjădb –
Z3, b P Zp. Then, xhy fixes all elements of the form k “ pkakakaq0ďaă3d´1 , ka P G.

For example, if d “ 2 this corresponds to k “ paaa, bbb, cccq for a, b, c P G.

There are |G|3
d´1

“ 3n3
d´1

such elements. 3n of these elements are in the center and thus their isotropy
group is all of H instead. There are additional elements of this form which are fixed by other elements h P H
as well. This will be addressed more later.

Example 3.3.2.0.2. Consider when p “ 3 and h “ p0q2ďjăd10 so that xhy – Z3. Then, this subgroup
fixes all elements of the form k “ pkAkAkAq0ďAă3d´2 , kA P G

3. For example, if d “ 2 this includes k “
pabc, abc, abcq.

There are |G|3
d´2

“ 3n3
d´2

such elements, of which 3n are in the center and will thus have a different isotropy
group. As before, there are additional elements of this form which are fixed by other elements h P H as well.

As demonstrated in the examples above, if an element k is stabilized by a subgroup of H of order pj , then
there exists some smaller subgroup of order pj´1 by which it is is also stabilized, for 1 ď j ď d. Thus,
one must be careful to avoid double-counting, and thus it is beneficial to begin by considering the elements
stabilized by the largest subgroups of H and decreasing. That is, begin with subgroups of size pd of H which
have d generators and examine what happens as the number of generators decreases. From before we already
know that there are pn elements k stabilized by all elements h P H; thus these have an isotropy subgroup of
order pd.

Note that the number of subgroups of H of order pj is given by the number of j-dimensional subspaces of a
d´dimensional vector space over Zp. The group H can be associated with the vector space Zdp. Then, the
Gaussian binomial coefficient can be used to enumerate the j-dimensional subspaces of this vector space:

ˆ

d

j

˙

p

“

j´1
ź

f“0

pd´f ´ 1

pj´f ´ 1

Thus, if j “ d ´ 1 then this gives
`

d
j´1

˘

p
subspaces in total. For each subgroup associated to a subspace

of this dimension there are pd´j “ p cosets in H on which a representation is constant, giving |G|p “ pnp

elements k fixed by such a subgroup. However, there are pn elements which are fixed by a larger isotropy
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group, namely the whole group. Thus there is a total of
`

d
j´1

˘

p
ppn ´ pn labels fixed by a subgroup of H

associated with a d ´ 1-dimensional subspace. Each label has an orbit of pd´j “ p and isotropy group of
order pd´1. Thus there are a total of

`

d
j´1

˘

p
ppn´1´pn´1 elements which will induce to a p-dimensional irrep

in Γ.

For each irrep κk P Γ with a stabilizer of order pd´1 there are pd´1 choices for η` P |THpκkq|, resulting in a
total of

`

d
j´1

˘

p
ppn`d´2 ´ pn`d´2 induced representations of dimension p.

This continues in general, as summarized in the following proposition:

Proposition 3.3.2.0.1. Suppose P “ Znp o Zdp “ G oH. Then, for 0 ď j ď d there are
`

d
j

˘

p
j-dimensional

subspaces of Zdp corresponding to subgroups of H with order pj, with each element having an orbit of size

pd´j.

Then, for 0 ď j ď d there is a total of

pj´dp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

labels k which correspond to elements κk in Γ, where
`

d
j

˘

p
“ 0 if j ě d. Associated to each is an isotropy

group of size pj and thus there is a total of

p2j´dp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

representations of P of dimension pd´j.

Proof. Before proving the above inductively, consider two “sanity checks”. First, we require that the total

number of labels k sum to |GX | “ pp
dn. That is,

d
ÿ

j“0

p

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q “

ˆ

d

0

˙

p

pnp
d

´

d
ÿ

j“1

p

ˆ

d

j ` 1

˙

p

pnp
d´j´1

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

“ pnp
d

Similarly, the irreps must satisfy the equation
ř

ρP pP d
2
ρ “ |P | where dρ is the dimension of each irrep ρ.

Then,

d
ÿ

j“0

pppd´jq2pp2j´dp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

qq “ pd
d
ÿ

j“0

p

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

qq

“ pdppnp
d

q “ pnp
d
`d

Now, use induction on j and thus the dimension of the irrep to formally proof the relation. In the discussion
above the proposition, the relation has been shown to hold for the case when j “ d and j “ d´ 1. Suppose
it holds when j “ d´ k and consider i “ j ´ 1 “ d´ k ´ 1.
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Then, we are considering a subgroup of H of order pi with i generators. Consider h P H, one of the n
generators of this subgroup. Then, the label k is stabilized by h if k has the h-orbit property. There are
thus |G| choices for each triple above, and d´ 1 such triples. This means that any single generator stabilizes

|G|p
d´1

elements, and i generators result in pi´1 such triples to consider. More precisely, the pd´i “ pk`1

cosets of H must be considered, which then results in |G|p
d´i

“ pnp
d´i

elements k stabilized by such a
subspace.

Since there are
`

d
i

˘

p
such subspaces there is a total of

`

d
i

˘

p
pnp

d´i

elements fixed by such a subgroup.

Now, by the inductive hypothesis, we know that there are
`

d
j

˘

p
pnp

d´j

´
`

d
j`1

˘

p
pnp

d´j´1

labels k which are

stabilized by a subspace of size j, d ě j ą i, and thus
`

d
j

˘

p
pnp

d´j

stabilized by a subspace of size greater than

or equal to j. Thus, if we let j “ i ` 1, this gives the number of elements stabilized by a subspace greater

than i, and thus
`

d
i

˘

p
pnp

d´i

´
`

d
i`1

˘

p
pnp

d´i´1

gives the number of elements stabilized by a subgroup with i

generators.

However, prior to inducing any such representation, one must consider the size of the orbit of each label k.
Since the order of its stabilizer is pi it follows that its orbit is pd´i. Thus, the number of labels of irreps in

Γ is pi´dp
`

d
i

˘

p
pnp

d´i

´
`

d
i`1

˘

p
pnp

d´i´1

q.

Finally, there are pi choices of irreps of the isotropy group for each choice of irrep of the base group. This

results in a total of p2i´dp
`

d
i

˘

p
pnp

d´i

´
`

d
i`1

˘

p
pnp

d´i´1

q irreps of dimension pd´i, as expected.

As a proof of concept consider the following example:

Example 3.3.2.0.3. Suppose d “ 3 so that |P | “ pnp
p
`p. Then, there are pn labels k which induce to a

total of pn`p one-dimensional representations of P . Clearly,
`

p
p

˘

p
“ 1 and pp´pppnq “ pn corresponds to the

number of elements κk in Γ. As well, pdpn “ pn`d and thus the equations in Prop. 3.3.2.0.1 are satisfied.

Then, for j “ d´ 1 “ 2, according to the proposition there are

p´1p
pp3 ´ 1qpp2 ´ 1q

pp2 ´ 1qpp´ 1q
pnp ´ pnq “ p´1p

pp3 ´ 1q

pp´ 1q
ppn ´ pnq

“ p´1ppp2 ` p` 1qppn ´ pnq

“ ppn`1 ` ppn ` ppn´1 ´ pn´1

labels fixed by a two-dimensional subspace resulting in a total of

ppn`3 ` ppn`2 ` ppn`1 ´ pn`1

irreps of dimension p.
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For j “ d´ 2 “ 1 there are

p´2p
pp3 ´ 1q

pp´ 1q
pnp

2

´
pp3 ´ 1q

pp´ 1q
pnpq “

pp3 ´ 1q

pp´ 1q
p´2ppp

2n ´ pnpq

“ p´2pp2 ` p` 1qppp
2n ´ pnpq

“ pp
2n ` pp

2n´1 ` pp
2n´2 ´ pnp ´ pnp´1 ´ pnp´2

“ p1` p´1 ` p´2qppp
2n ´ pnpq ě pp

2n ´ pnp

labels resulting in a total of

pp` 1` p´1qppp
2n ´ pnpq

irreps of dimension p2.

Finally, for j “ 0 there are

p´3ppnp
3

´
pp3 ´ 1q

pp´ 1q
pnp

2

q “ p´3ppnp
3

´ pp2 ` p` 1qpnp
2

q

“ pnp
3
´3 ´ pnp

2
´1 ´ pnp

2
´2 ´ pnp

2
´3

labels and thus a total of
pnp

3
´3 ´ pnp

2
´1 ´ pnp

2
´2 ´ pnp

2
´3

irreps of dimension p3.

Notice that when p is very large the subtracted terms are almost negligible. That is, with high probability
one will obtain a p3-dimensional irrep.

Now, a Gaussian coefficient
`

d
j

˘

p
yields, in fact, a polynomial of degree jpd ´ jq of the form

řjpd´jq
i“0 aip

i

where ai “ ajpd´jq´i [?].

Then, there will be

p2j´dpOppjpd´jqqpnp
d´j

´Opppj`1qpd´j´1qqpnp
d´j´1

q “ Oppjpd´jq`np
d´j

`2j´d ´ ppj`1qpd´j´1q`npd´j´1
`2j´dq

“ Oppjpd´j`2q`npd´j´dq

representations of dimension pd´j . This proves the following corollary:

Corollary 3.3.2.0.2. The number of irreps of dimension pd´j is in Oppjpd´j`2q`npd´j´dq.

Thus, as p tends to infinity the probability of observing a pd is significantly greater than the probability of
observing any other representation of dimension pd´i where i ą 0.

3.3.3 Introduction to the HSP in Zn
p o Zd

p

Recall the methodology of [2], as discussed in Section 2.2.3, as well as [17], discussed in Section 2.3. The
goal of this section is to apply similar methodology to solving the HSP in P “ Znp o Zdp.
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Begin by only considering the cyclic subgroups

Ag,h “ xpg;hqy “ tppk
p´1
ÿ

i“0

gx`ih `
c´1
ÿ

i“0

gx`ihqxPX ; thq : t “ pk ` c P Zp2u

where g “ pgxqxPX , gx P G, h “ phkq0ďkăd and which has conjugate subgroups of the form

Ag1,h “ xpg
1;hqy where gx`k ´ g

1
x “ γx`h ´ γx

for some pγ; kq P P and for all x P X. Of course, this condition implies that
řp´1
i“0 gx`k`ih “

řp´1
i“0 g

1
x`ih for

all x P X.

Claim 3.3.3.0.1. Suppose k “ pi, ..., iq, i P G so that κk induces to a one-dimensional irrep χk,j for every
j P H. There are pn choices for k and thus pn`d for χk,j. Then, for an element pg;hq P P ,

χk,jpg;hq “ ω
i¨
ř

xPX gx`j¨h
p “ 1

if

1. i “ 0 and j “ 0, giving pd choices for h and pnp
d

for g

2.
ř

xPX gx “ 0 and j “ 0, giving pd choices for h and pn for k

3.
ř

xPX gx “ 0 and h “ 0, giving pd choices for j and for a fixed k

4.
ř

xPX gx “ 0 and h ‰ 0 and so is orthogonal to a d´ 1-dimensional subspace, giving pd´1 ` 1 choices
for j for a fixed k

5.
ř

xPX gx is one of the pn´1`1 elements in G which are in the the n´1-dimensional orthogonal subspace
of i and either h “ 0, j “ 0, or h is orthogonal to j, giving pd´1` 1 choices for j for a fixed h (or vice
versa)

6. j “ ah for some a “ 1, 2 and i ¨
ř

xPX gx ‰ 0 and thus pi, jq ¨ p
ř

xPX gx, hq “ 0.

Proof. Notice that
ř

xPX gx P Znp . If this equals zero there are |G| “ pn choices for i and j ¨ h “ 0. If

h “ 0 then there are |H| “ pd choices for j. Otherwise h generates a one-dimensional subspace and is thus
orthogonal to a d´ 1-dimensional one. Thus, there are pd´1 ` 1 choices for j.

Otherwise, suppose
ř

xPX gx ‰ 0. If i “ 0 then there are yet again pd choices for j if h “ 0, otherwise there
are pd´1`1 choices for j. Otherwise, if i ¨

ř

xPX gx “ γ ‰ 0 then j ¨h “ ´γ implies that j “ ah`h1, h1 R xhy.
This gives pd choices for j.

Theorem 3.3.3.0.1. Suppose Ag,h “ xpg;hqy is the hidden subgroup. Then, the probability that one observes

any pd´j-dimensional irrep σpp
d´j

q is

P pσpp
d´j

qpAg,hqq ě
|Ag,h|

pnpd`3d´2j
ppj´p`2 ` pd ´ pjqp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

where as p tends to infinity this tends to equality.
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Proof. Note that when considering a cyclic subgroup it is sufficient to consider the behavior of the character
on the generator. The following calculates the probability of measuring a one-dimensional irrep χk,j :

ppχk,jq “
|Ag,h|

|P |

ÿ

pa;bqPAg,h

χk,jppa; bqq

“
|Ag,h|

pnpd`d

ÿ

0ďpf`tă|Ag,h|

ω
it
ř

xPX gx`tj¨h
p

“

$

&

%

p2

pnpd`d

řp´1
l“0 ω

li
ř

xPX gx`lj¨h
p if |Ag,h| “ p2

p

pnpd`d

řp´1
l“0 ω

li
ř

xPX gx`lj¨h
p if |Ag,h| “ p

“

$

’

’

&

’

’

%

1

pnpd´3`d
if |Ag,h| “ p2 and i ¨

ř

xPX gx ` j ¨ h “ 0

1

pnpd´2`d
if |Ag,h| “ p and i ¨

ř

xPX gx ` j ¨ h “ 0

0 otherwise

Thus, using the claim and calculations above, for a fixed g, h where h,
ř

xPX gx ‰ 0 there are pd´1 ` pn`d

choices of k, j that result in 0. If
ř

xPX gx “ 0 then there are pdppd´1 ` 1q choices.

Note that if |Ag,h| “ p then we require that
ř

xPX gx “ 0. If h “ 0 then there are pn`d choices for the labels
k, j, otherwise there are pnppd´1 ` 1q choices. Note that h “ 0 if and only if |Ag,0| “ p and

ř

xPX gx “ 0.

This gives that the probability of observing any one-dimensional irrep is

P pχq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1`pn`1

pnpd´2
if |Ag,h| “ p2,

ř

xPX gx ‰ 0

1`pd´1

pnpd´p
if |Ag,h| “ p2,

ř

xPX gx “ 0

1

pnppd´1q´2
if |Ag,h| “ p, h ‰ 0

1`pd´1

pnppd´1q´2`d
if |Ag,h| “ p, h “ 0

Let σ
ppiq
k,j denote a pi-dimensional irrep and consider σ

ppq
k,j . There are pd´2p

`

d
d´1

˘

p
pnp´

`

d
d

˘

p
pnq “ pd´2p

`

d
j

˘

p
pnp´

pnq such irreps. Consider the probability of observing such an irrep. Suppose D is the set of coset represen-

tatives of H{THpκkq with |D| “ p and let h “
řd´1
i“0 ait

i ` r where r P D, ti P THpκkq. Then:

P pσ
ppq
k,jq “

|Ag,h|

|P |
Trp

ÿ

pa;bqPAg,h

σ
ppq
k,jppa; bqqq

“
|Ag,h|

pnpd`d
Trp

ÿ

cPD

ÿ

0ăfď|Ag,h|

ω
k¨ψcp

řf´1
u“0 ψuhpgqq`f

řd´1
i“0 aij¨t

i
q

p |c` fryxc|q

The trace of the above matrix is given when c` fr “ c and so fr “ 0 mod p. Thus, either r “ 0 and thus
h “

řd´1
i“0 ait

i P THpκkq or f “ 0 mod p.
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Case 1: r “ 0

P pσ
ppq
k,jpAg,hqq “

|Ag,h|

pnpd`d
Trp

ÿ

cPD

ÿ

0ăfď|Ag,h|

ω
k¨ψcp

řf´1
u“0 ψuhpgqq`f

řd´1
i“0 aij¨t

i
q

p |cyxc|q

“
|Ag,h|

pnpd`d

ÿ

cPD

ÿ

0ăfď|Ag,h|

ω
k¨ψcp

řf´1
u“0 ψuhpgqq`f

řd´1
i“0 aij¨t

i
q

p

“
|Ag,h|

pnpd`d

ÿ

cPD

p

p´1
ÿ

l“0

ω
lk¨

řp´1
i“0 ψc`ihpgq

p qp

p´1
ÿ

l“0

ω
k¨ψcp

řl
`“0 ψ`hpgqq`

řd´1
i“0 aij¨t

i

p q

“

#

|Ag,h|

pnpd`d´2
if

řp´1
i“0 ψc`ihpgq “ 0, k ¨ ψcp

řl
`“0 ψ`hpgqq `

řd´1
i“0 aij ¨ t

i “ 0 for each 0 ď l ă p

0 else

where at * the fact that f is of the form pl ` i

We require that k ¨
řp´1
i“0 ψc`ihpgq “ 0. If h P THpκkq then this is always true, since

řp´1
i“0 ψc`ihpgq “

pψcpgq “ 0. Otherwise,
řp´1
i“0 ψc`ihpgq must be orthogonal to k. Since dimpspanpkqq “ 1 there are pn´1 ` 1

such vectors. Thus, for a fixed k, j we have that

P pσ
ppq
k,jpAg,hqq “ p

|Ag,h|

pnpd`d´2
qp
|THpκkq|

|H|
`
pn´1 ` 1

pn
q

“ |Ag,h|
pd´1ppn´1 ` 1q

pnppd`1q`2d´2

Finally, consider σ
ppd´jq
k,j ; that is, a pd´j-dimensional irrep corresponding to an isotropy group of order pj

which is associated to a j-dimensional vector space. There are p2j´dp
`

d
j

˘

p
pnp

d´j

´
`

d
j`1

˘

p
pnp

d´j´1

q such irreps.

Let ppg;hq “ pg;h1 ` bq P P, h1 “
řj´1
i“0 paih

iq, b R THpκkq.

Then, any pa; bq P Ag,h can be written as pa; bq “ pg;hqpf`t “ ppf
řp´1
i“0 gx`ih `

řt´1
i“0 gx`ihqxPX ; thq “

ppf
řp´1
i“0 gx`ih1`ib `

řt´1
i“0 gx`ih1`ibqxPX ; th1 ` tbq for 0 ď t ď p´ 1.

Then, the probability of measuring such an irrep over Ag,h and assuming k ‰ 0 (if k = 0 this will be a
one-dimensional irrep, discussed above) is given by

P pσ
ppd´jq
k,` pAg,hqq “

|Ag,h|

|P |

ÿ

pa;bqPAg,h

σk,`ppa; bqq

“
|Ag,h|

pnpd`d

ÿ

cPD

p

p´1
ÿ

l“0

ω
lk¨

řp´1
i“0 ψc`ihpgq

p qp

p´1
ÿ

l“0

ω
k¨
řl´1
i“0 ψc`lhpgq`l

řj´1
i“0 ai`¨h

i

p q|c` tbyxc|

“

$

’

’

&

’

’

%

p2|Ag,h|

pnpd`d
if r “ 0, k ¨

řp´1
i“0 ψc`ihpgq “ 0, k ¨

řl´1
i“0 ψc`ihpgq ` l` ¨ h “ 0 @l P Zp

p|Ag,h|

pnpd`d
if r ‰ 0 and k ¨

řp´1
i“0 ψc`ihpgq

0 else
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r “ 0 occurs if h P THpκkq. For a fixed k, since |THpκkq| “ pj this occurs with probability pj

pd
“ pj´d. Since

h P THpκkq we get that ` ¨ h “ 0 only if ` “ 0 or h “ 0. For a fixed k ` “ 0 with probability 1
pj . As well, the

probability that h “ 0 given that r “ 0 is also 1
pj ; in general though it is 1

pd
.

Then, k ¨
řp´1
i“0 ψc`ihpgq “ 0 if k,

řp´1
i“0 ψc`ihpgq are orthogonal. Since k P Zpdnp it is orthogonal to pp

dn´1

elements. Thus, k ¨
řp´1
i“0 ψc`ihpgq “ 0 with probability pp

dn´1

ppdn
“ p´1.

Finally, suppose pl gives the probabilities that k ¨
řl´1
i“0 ψcpgq ` l` ¨ h “ 0 for 1 ď l ă p. This corresponds

to the probability that pk, l`q ¨ p
řl´1
i“0 ψcpgq, hq “ 0. Since pk, l`q yields a one-dimensional vector space in a

pdnpdn “ p2dn2-dimensional vector space it will be orthogonal to pp
2dn2

´1 elements. Thus for each l it will

be zero with probability pp
2dn2´1

pp2dn2 “ p´1.

Then the overall probability in this case is given by ppr “ 0q^ppk¨
řp´1
i“0 ψc`ihpgq “ 0q^ppppk¨

řl´1
i“0 ψc`ihpgq “

0^ ` ¨ h “ 0q _ pk ¨
řp´1
i“0 ψc`ihpgq ` l`h “ 0qqq. That is,

pj´dp´1
p´1
ź

l“1

pp´1 2

pj
` p´1q “ pj´dp´1p

2` pj

pj`1
qp´1

“
p2` pjqp´1

pppj`1q`d´2j

ě pj´d´p

Case 2: r ‰ 0 If f “ 0 mod p then we obtain the following equation:

P pσ
ppq
k,jq “

|Ag,h|

pnpd`d
p
ÿ

cPD

ω
k¨ψcp

řf´1
u“0 ψuhpgqq

p q

“
|Ag,h|

pnpd`d

ÿ

cPD

p1` ω
k¨p

řp´1
i“0 ψc`ihpgq

p ` ω
2k¨p

řp´1
i“0 ψc`ihpgq

p

“

#

|Ag,h|

pnpd`d´1
if k ¨

řp´1
i“0 ψc`ihpgq “ 0

0 else

Now, r ‰ 0 if h R THpκkq. For a fixed k this occurs with probability pd´pj

pd
. As before, k ¨

řp´1
i“0 ψc`ihpgq “ 0

occurs with probability p´1. This gives an overall probability of pd´pj

pd`1 for a fixed k.

Thus, for a fixed k, upon which all other terms depend, we get that

P pσ
ppd´jq
k,` pAg,hqq “

p2|Ag,h|

pnpd`d
p2` pjqp´1

pppj`1q`d´2j
`
p|Ag,h|

pnpd`d
pd ´ pj

pd`1

ě
|Ag,h|

pnpd`2d
ppj´p`2 ` pd ´ pjq
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Since there are p2j´dp
`

d
j

˘

p
pnp

d´j

´
`

d
j`1

˘

p
pnp

d´j´1

q irreps of dimension pd´j we get an overall probability of

P pσpp
d´j

qpAg,hqq ě
|Ag,h|

pnpd`2d
ppj´p`2 ` pd ´ pjqp2j´dp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

“
|Ag,h|

pnpd`3d´2j
ppj´p`2 ` pd ´ pjqp

ˆ

d

j

˙

p

pnp
d´j

´

ˆ

d

j ` 1

˙

p

pnp
d´j´1

q

as required.

Note that the character of a representation over the trivial group always yields zero and thus over the trivial
group:

P pχq “
1

pnpd´1
, P pσpp

d´j
qq “

`

d
j

˘

p
pnp

d´j

´
`

d
j`1

˘

p
pnp

d´j´1

pnpd`d´j

Now, consider the general algorithm in [17]: first, we need to set up two coset states, and perform the QFT
over each. After relabelling, perform a CG-transform so that the irreps decompose into one-dimensional
representations. After measuring and classical post-processing one can obtain the hidden subgroup.

In order to implement such an algorithm we must understand how the tensor product of two (or potentially
more) irreps decompose.

Let pg;h1q “ pg;h`bq P P, h “
řf1
i“0paih

iq, b R THpκkq and pw; r1q “ pf ; r`tq P P, r “
řf2
i“0pαir

iq, t R THpκ`q,
with induced representations σk,j with dimension pd´f1 and σ`,y with dimension pd´f2 , respectively, for
j P THpκkq, y P THpκ`q, and with coset representatives given by the set D1, D2, respectively, given by

σk,jpg;h1q “
ÿ

cPD1

ω
k¨ψcpgq`

řf1
i“0 aij¨h

i
q

p |c` byxc|

σ`,ypw; r1q “
ÿ

c1PD2

ω
`¨ψc1 pwq`

řf2
i“0 aiy¨r

i
q

p |c1 ` tyxc1|

An entangled coset state after the QFT and measurement is given by

|Ag,h|

|P |
σk,jpAg,hq b σ`,ypAg,hq “

|Ag,h|

pnpd`d

ÿ

pg;h1qPAg,h

σk,jpg;hq b
ÿ

pw;r1qPAg,h

σ`,ypw; r1q

“
|Ag,h|

pnpd`d

ÿ

pg;h1q,pw;r1qPAg,h

ÿ

cPD1

ω
k¨ψcpgq`

řf1
i“0 aij¨h

i
q

p |c` byxc|

b
ÿ

c1PD2

ω
`¨ψc1 pwq`

řf2
i“0 aiy¨r

i
q

p |c1 ` tyxc1|

With high probability, the measured irreps will both be pd-dimensional, and thus D1 “ D2 “ H. As well,
this implies that the isotropy groups has order 1 so that the only element stabilizing any label k is 0 P H.
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Thus, denote this representation as ρk :“ σk,0 instead. Then,

|Ag,h|

|P |
ρkpAg,hq b ρ`pAg,hq “

|Ag,h|

pnpd`d

ÿ

pg;h1q,pw;r1qPAg,h

ÿ

c,c1PH

ωk¨ψcpgqp |c` h1yxc| b ω`¨ψc1 pwqp |c1 ` r1yxc1| (3.1)

“
|Ag,h|

pnpd`d

ÿ

pg;h1q,pw;r1qPAg,h

ÿ

c,c1PH

ωk¨ψcpgq``¨ψc1 pwqp |c` h1, c1 ` r1yxc, c1| (3.2)

and the resulting matrix will be p2d-dimensional. Recall that with the Heisenberg groups, for a p2-dimensional
matrix, resulting from the tensor product of two p-dimensional representations with labels k1, k2, one could
apply a CG transform to obtain the p2 distinct one-dimensional irreps (that is, each with multiplicity one)
when k1 “ ´k2 and p copies of the same p-dimensional irrep otherwise. This was motivated by the fact that
if k1 “ ´k2 then k1 ` k2 “ 0 which was not a valid p-dimensional label, whereas for all other values the
resulting sum is a valid label and thus the tensor reduces to the irrep corresponding to that label. Following
this line of thought one obtains the following:

Theorem 3.3.3.0.2. Consider ρk b ρ`; that is, the tensor product of two pd-dimensional representations.

Let γ “ k` ` and suppose γ is a label of κγ P yGX which induces to a total of pj representations of dimension
pd´j for 0 ď j ď d.

Then, each of the pj irreps occur in the tensor product of the representation with multiplicity pd.

Proof. Let B “ tpg; 0q : g P GXu ď P and begin by considering the restriction ResBρk b ρ`. Then, for any
pg; 0q P B we can see that

R “ ResBρk b ρ`pg; 0q “
ÿ

c,c1PH

ωk¨ψcpgq``¨ψc1 pgqp |c, c1yxc, c1|

With character

|H|
ÿ

iPH

ωk¨ψipgq``ψipgqp “ pd
ÿ

iPH

ωpk``q¨ψipgqp “

#

p2d if γ ¨ ψipgq “ 0 @i P H

0 else

Consider the inner product of the character of this restriction with κγ , and suppose pd ě |THpκγq| “ pf ě 1.
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Then,

xκγ , χpRqy “
1

|GX |

ÿ

gPGX

ω´γ¨gp pd
ÿ

iPH

ωγ¨ψipgqp

“ pd´np
d ÿ

gPGX

ÿ

iPH

ω´γ¨g`γ¨ψipgqp

“ pd´np
d ÿ

zPZpGXq

ÿ

gPGX{ZpGXq

ÿ

iPTHpκγq

ÿ

cPH{THpκγq

ω´γ¨pz`gq`γ¨ψi`cpz`gqp

“ pd´np
d

pn
ÿ

gPGX{ZpGXq

ÿ

iPTHpκγq

ÿ

cPH{THpκγq

ω´γ¨pgq`γ¨ψi`cpgqp

“ pd`n´np
d ÿ

gPGX{ZpGXq

pf
ÿ

cPH{THpκγq

ω´γ¨pgq`γ¨ψcpgqp

“ pd`n´np
d

pf`np
d
´n

ÿ

gPGX{ZpGXq

ÿ

cPH{THpκγq

ω´γ¨pgq`γ¨ψcpgqp

“ pd`f
ÿ

gPGX{ZpGXq

ÿ

cPH{THpκγq

ω´γ¨pgq`γ¨ψcpgqp ˚

“ pd`fpd´f

“ p2d

Where the line * is simplified by noting that
ř

cPH{THpκγq
ω
´γ¨pgq`γ¨ψcpgq
p “ pd´f if g “ 0 and 0 otherwise.

This gives the multiplicity of κγ in R.

Now, we wish to determine the behavior of ρkb ρ` when restricted to I “ GX ¸THpκγq. Suppose pg;hq P I.
Then,

R1 “ ResIρk b ρ`pg;hq “
ÿ

c,c1PH

ωk¨ψcpgq``¨ψc1 pgqp |c` h, c1 ` hyxc, c1|

with character

χR1pg;hq “

#

χRpg; 0q if h “ 0

0 else

Thus, consider any one-dimensional representation αγ,j “ κγ b ηj where ηj P {THpκγq. There are pf such
representations, and if κγ occurs in R with multiplicity m then each αγ,j must occur in R1 with multiplicity
m
pf

. However, the size of the induced representation must be accounted for. Thus, by the calculations

above, and since the irrep will have dimension pd´f , we see that each αi,j occurs in R1 with multiplicity
p2d´f {pd´f “ pd.

Since
xαγ,j , χpR

1qy “ xIndPI αγ,j , χpρk b ρ`qy

we have that the multiplicity of each IndPI αγ,j in ρk b ρ` is pd.

As a check, notice that since there are pf irreps of dimension pd´f and each having multiplicity pd, this has
a total count of p2d which is the dimension of ρk b ρ`.
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Conjecture 3.3.3.0.1. Using the notation from Theorem 3.3.3.0.2, there is some unitary Clebsh-Gordan
transform UCG which transforms ρkbρ` into a tensor of the pd´j-dimensional irreps of P which are obtained
by inducing κγ . Each of the pj irreps will occur with multiplicity pd. More precisely,

U :CGpρk b ρ`qUCG “ Ipd b‘lP {THpκγq
σ
ppd´jq
γ,l

Remark 3.3.3.0.1. With high probability the tensor product of two pd-dimensional irreps will be a tensor
product of one pd-dimensional irrep with multiplicity pd; that is, γ would correspond to the label of a pd-
dimensional representation. In this case, we begin with a state

ρkppg;hqq b ρ`ppg;hqq “
ÿ

c,c1PH

ωk¨ψcpgq``¨ψc1 pgqp |c` h, c1 ` hyxc, c1|

and wish to obtain something of the form

ÿ

uPH

|uyxu| b
ÿ

dPH

ωγ¨ψdpgqp |d` hyxd| “ Ipd b ργpg;hq

3.3.4 HSP for Zn
p o Zd

p: Next Steps

Now that we know that the tensor product of two pd-dimensional representations decomposes quite nicely
into irreps of certain kinds, there are two, similar proposed “next steps” for solving the HSP in this group.

In either case, the first step would be to obtain a correct unitary CG transform which can be efficiently
implemented on quantum circuits.

Next, one could apply the CG transform to ρkpAg,hqb ρ`pAg,hq to decompose it into a direct sum of a single
pd-dimensional irrep, analogous to the methodology in [2]. One potential issue with this is that in [2] the
group was lower dimensional; the additional orbits and non-transitive action of H on GX may pose an issue.

Alternatively, one could attempt to utilize the methodology in [17], since perhaps this group is more similar to
the one examined there. In this case, there may exist a transform which would allow for a clever “relabelling”
of one of the irreps in the tensor product in order to force γ to be the label of an irrep which induces to an
irrep of a smaller dimension. Ideally, it would induce to a one-dimensional irrep, so that γ “ pi, ..., iq, i P G,
however, any additional symmetry which can be “forced” onto γ would be beneficial. That is, the goal would
be to maximize the size of THpκγq.

Of course, after such a transform is applied, one must measure and post-process the results. In the case that
the post-processing is inefficient, perhaps more entangled states would be beneficial.

Finally, it would be useful to better understand the conjugacy classes and subgroup structure of this group
in order to better exploit such aspects when solving the HSP. This may help when selecting which subgroups
are relevant, what information would be useful to obtain, and what simplifications one may apply. In [17],
for example, the fact that there was a nice vector space associated to the group which helped characterize
conjugacy classes was exploited heavily in the simplification and post-processing of the quantum state.
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3.4 Conclusions and Further Research

Evidently, wreath product groups are quite fascination, and for the specific class of groups studied above,
the representation theory seems to imply that the methodology used to solve the HSP in certain extraspecial
groups may be exploited for this group as well.

It would be of interest to not only solve the HSP in the groups of the form P “ Znp oZdp, but more generally,
as well. While P is nilpotent, it is relevant to ask if this is a necessary condition: perhaps the HSP would
be efficiently solvable even groups of the form Znn o Zdm, which, in general, are not nilpotent.

More general groups would be useful to study as well: what happens in G oH when G,H are non-abelian?
What about infinite wreath product groups?

Since any Sylow p subgroup of Spn is isomorphic to an n-time iterated wreath product Zp o .... o Zp under-
standing this group may provide insight into solving the elusive HSP for the symmetric group, and thus
valuable information regarding the graph isomorphism problem.

Finally, wreath product groups become increasingly complex and further away from abelian as the chosen
base groups become more intricate. There is a hope that if the CG transform successfully solves, or at least
simplifies, the HSP in wreath product groups, then similar methodology would be useful for tackling the
HSP in other non-abelian group.
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Chapter 4

Conclusion

4.1 Summary and Concluding Remarks

Evidently, the HSP is a fascinating problem with many avenues still left to explore. It is a relevant area of
research both for its theoretical properties – namely, the relationship between a group, its structure, and its
representations – and due to its applications in post-quantum cryptography.

This report aimed to introduce readers to some of the relevant research conducted in this area, and attempt
to understand how and in which groups one can utilize the Clebsch-Gordon transform to solve the HSP. This
was done by exploring the methodology in [2] and [17] to understand why the techniques were successful
in the Heisenberg and Weyl-Heisenberg groups, respectively. Ultimately, one of the main factors was the
symmetry of the hidden coset states in these groups across conjugacy classes; that is, the HCSP lent itself
to using a Clebsch-Gordon transform, and in these groups the HSP reduces to the HCSP. Furthermore, the
nature of the representations of these groups also made this technique successful.

Wreath products of the form Znp o Zdp were then chosen to be analyzed due to their useful group structure:

they are nilpotent, have many pj-dimensional representations, where 0 ď j ď d, and have a fascinating
subgroup structure. In order to simplify the problem at hand, it was assumed that the hidden subgroup is
a cyclic subgroup. Unfortunately, the conjugacy classes of such subgroups were not as easy to classify as for
the Heisenberg groups, and the enumeration of the representations was also more complex. This means that
utilizing the Clebsch-Gordon transform to solve the HSP proved to be more difficult.

Further research in the area includes attempting to solve the HSP using the CG transform in other wreath
product groups, including iterated wreath products. Furthermore, better understanding when this transform
is useful could aid in determining which groups to employ it in. A recommendation would be to examine
other p-groups; nilpotent groups; and groups in which the HSP and HCSP are equivalent.
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