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Abstract. Quantum computers promise efficient algorithms for solving the Hidden
Subgroup Problem (HSP) in certain groups. The following report will outline
the HSP and the relevant research being conducted in this field, including some
open problems. Its main focus, however, will be the usage of the Clebsch-Gordon
transform to efficiently solve the HSP in a specific class of extraspecial p-groups.
Finally, the success of this methodology for other groups, specifically nilpotent
wreath product groups, will be explored.
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Chapter 1

Introduction

1.1 Overview

The Hidden Subgroup Problem (HSP) is a relevant problem in quantum computing, due to the increased
efficiency of algorithms implemented on such computers, using techniques such as the quantum Fourier trans-
form (QFT), over their classical counterparts [19]. Furthermore, the hardness of this problem is related to
the security of a variety of cryptographic schemes; most notably, Shor’s algorithm for factoring integers solves
the HSP in the abelian case [26], which is relevant for RSA schemes. Furthermore, the graph isomorphism
problem and shortest vector problem are equivalent to a certain subset of the HSP in the symmetric and
dihedral groups, respectively, and thus finding an efficient algorithm for these open problems would indicate
that currently relevant cryptographic schemes may not be secure in a post-quantum world [19].

The following report will begin by introducing the HSP and some relevant results, and will provide a summary
of relevant representation theory. Then, in Chapter 2, it will discuss extraspecial p-groups and two closely
related algorithms for solving the HSP in such groups which both rely on a Clebsch-Gordon transform and
exploit the conjugacy classes and representation theory of the groups at hand. Finally, in Chapter 3 a certain
class of wreath product groups will be explored in order to adapt the methodology in Chapter 2 to this other
class of groups.

While definitions will be given when considered necessary, a basic background in group theory, linear algebra,
and quantum information theory is assumed.

1.2 Hidden Subgroup Problem

First, we must define the Hidden Subgroup Problem (HSP). Consider a group G and a set X and suppose
there is a hiding function f : G — X with the property that, for some hidden subgroup H of G, f is constant



and distinct on the left cosets of H. That is, for all g, h € G, it has the property that
flgH) = f(hH) < g~ 'he H

The goal of the HSP is to find a generating set for H given repeated evaluations of f. Note that the function
f is unknown.

Of course, one could simply query the function on each element g € G, and thus after |G| queries H can be
completely determined. While this suffices for small groups, it is not nearly efficient enough for groups of
larger order. As such, algorithms for solving the HSP aim to reduce the query complexity to O(polylog(|G|)),
which includes the quantum part of the algorithm and any classical post-processing [19].

A related problem is the “Hidden Subgroup Conjugacy Problem” (HSCP), where instead of a generating set
for the hidden subgroup H all that needs to be determined is which conjugacy class the subgroup belongs
to. For some groups, solving the HSCP followed by some post-processing allows one to solve the HSP.

The standard algorithm for solving the HSP in a group G with hiding function f and hidden subgroup H,
as described in [6] and [19], is as follows:

1. Prepare a uniform superposition over the group G with an additional “output” register,

[G)10) =

W >, l9l0)

geG

2. Apply the function f on each g € G,

G
[GHIF(G) Wé\gﬂf

3. Measure the second register to obtain some value f(go), which collapses to state so that only states
which contain that value in the second register. These are precisely the elements in the coset goH.
One can then discard the second register, obtaining the coset state

lgoH \/— 1;1 lgoh)

Note that go is a uniformly random element. As such, the above state, called a pure state, may
equivalently be represented by a density matriz, which corresponds to a completely mixed state,

1
P = g D lgHYgH]|

geG
4. Compute the QFT on the coset state, resulting in the state
Z Z |G||H Z U(goh))i7j|0,i,j>
ocel 4,3=0 heH

where G is a complete set of irreducible representations of GG, and d, denotes the dimension of .



5. One can then measure the above state. Weak Fourier sampling results in only measuring an irrep label
o: this is sufficient for abelian and many nearly-abelian groups. On the other hand, strong Fourier
sampling measures the label ¢ and indices i, j.

6. Finally, based on repeated measurements, conduct classical post-processing to extract the hidden
subgroup.

Of course, when the group is non-abelian the existence of an efficient QFT, post-processing, and useful choice
of basis for the irreps is not guaranteed. As such, the general non-abelian case remains an open problem.

Aside from an efficient algorithm for the abelian case [26], other noteworthy algorithms have been found,
namely for “nearly abelian” groups. Namely, [10] gives an algorithm for finding the normal core of a hidden
subgroup in a nonabelian group, thus providing an efficient algorithm to solve the HSP when the hidden
subgroup is normal. Numerous positive results have been given for the Weyl-Heisenberg groups [2], [I7],
[13], as well as other groups with nilpotency class of two [I4]. Furthermore, there have been a variety of
algorithms given for different classes of semidirect product groups. This includes [20], which provided an
algorithm for affine groups and g-hedral groups Z, x Z, under certain conditions for p, ¢; [25], which examines
wreath product groups of the form Z% ? Zs; and [12], which looked specifically at Loyr x Ly as a black-box

group.

There are numerous open problems which remain. While it has been shown that using a polynomial number
of entangled registers one can information-theoretically solve the HSP in an arbitrary group [9], this is
by no means efficient. However, exploiting entangled registers does provide some positive results, as will be

shown in subsequent sections. Furthermore, while Kuperberg gives a 20(\/@0&‘(1\/ ) _time and -quantum space
algorithm for determining an order two hidden subgroup of the dihedral group, implemented as a sort of
“quantum sieve” and relying on the abelian Fourier transform, [I§], with an optimal measurement given in
[3], no significant improvements have been made on the efficiency of this algorithm. Since the dihedral HSP
is equivalent to the f(n)-uniform shortest vector problem (uSVP); that is, the SVP in which it is guaranteed
that there is a unique nonzero vector which is shorter than all other, non-parallel, non-zero vectors by a
factor of f(n) [16], finding an efficient solution, or proving its hardness, would have important implications
for post-quantum cryptography.

Similarly, the HSP for symmetric groups S, is equivalent to solving the graph isomorphism and automorphism
problems, which has applications in zero-knowledge proofs [22]. Unfortunately, mainly negative results have
been shown for this group: strong Fourier sampling in some arbitrary basis cannot efficiently solve the HSP
in this group [22].

There are, of course, a variety of other algorithms, groups, and results, which not have been mentioned
here, including some for infinite groups. For further information any of the papers cited above provide
useful background, and specifically [19] is recommended as an in-depth introduction to the HSP and recent
research.



1.3 Representation Theory

The following section will provide some useful definitions. Unless otherwise stated, these definitions and
theorems are modified from [27]. For additional information, Steinberg’s book [27] or the self-contained
summary of the HSP by Lomont [19], which includes relevant information on representation theory, are
useful reads.

Definition 1 (Representation). Suppose G is a group and V' a vector space over C. Then, a homomorphism
¢: G — GL(V) is called a representation of G. The degree of a representation dy is the dimension of V.

Note that one could consider a vector space over any field F instead, but for the remainder of this report we
will assume that the vector space is finite dimensional over the complex numbers, and that the group G is
finite.

Definition 2 (Equivalence). Let G be a group and let 0 : G - GL(V),p: G — GL(W) be two representa-
tions of G, where V, W are vector spaces. Then, o, p are said to be equivalent if there is a linear isomorphism
T :V — W satisfying the relation

To, T~ = p,

for all g € G. In this case, write o ~ p.

Definition 3 (G-invariant subspace). Let G be a group and ¢ : G — GL(V) a representation. Then, a
subspace W of V is called G-invariant if ¢(g)w € W for all w e W.

Definition 4 (Irreducible). A representation ¢ : G — GL(V) of a group G is called irreducible if the only
G—invariant subspaces of V' are V' and {0}.
For brevity, the remainder of this report will refer to these irreducible representations as irreps.

Definition 5 (Character). The character of a representation is defined as the trace of the matrix rep-
resentation. Specifically, given a representation p : G — GL(V) for a group G, its character is a group
homomorphism x : GtoC is given by x = tr(p).

Note that the character of a representation is constant on conjugacy classes, due to the fact that the
Tr(A='BA) = Tr(B) for matrices A, B. This gives a one-to-one correspondence between conjugacy classes
of a group and its unique characters.

Definition 6 (Restriction). Consider a group G with representation ¢ : G — GL(V) and with a subgroup
H < G. Then, a restriction of ¢ to H is given as ¢|g : H — GL(V) where ¢|g(h) = ¢(h) for all h € H.

Definition 7. Consider a group H which is a subgroup of G with a representation ¢ : H — GL(W) with
dimension dg. Then, the induced representation of ¢ to a representation of G is a dy[G : H]-dimensional
representation denoted Ind$%¢ : G — GL(W) where W is a dg[G : H]-dimensional space given by

W = (‘BteTVt

where T is a complete set of coset representatives of [G : H]. Then, if one writes g € G as g = t4h, for some
ty €T, hg € H, then the action of g on this larger vector space W is given by

gW = tghg(@rer Vi) = Brerhy Vi, ¢



As an important result, recall that a matrix U is unitary if UTU = UU' = I.

Proposition 1.3.0.0.1 (3.2.4 [27]). Let G be a finite group and ¢ : G — GL(V) a representation. Then,
any such representation is equivalent to a unitary representation.

This is relevant due to the importance of unitary matrices in quantum mechanics.



Chapter 2

Extraspecial p-Groups

2.1 Overview

Let us begin with a few definitions before exploring the nature of extraspecial p-groups.

Definition 8 (p-group). Let p be a prime. Then, a p-group is a group in which every element has order p”
for some k > 0.

If such a group is finite then we must have that |G| = p™ for some n € N. There are a number of interesting
properties of such groups. This section will explore some relevant groups and their properties in the hopes
of generalizing the HSP to some class of p—groups.

Definition 9 (Frattini subgroup). The Frattini subgroup of a group G, denoted ¢(G), is the intersection of
all maximal proper subgroups of G.

Some noteworthy properties of Frattini subgroups, given in [I] include:

1. It is a characteristic subgroup of G — that is, a subgroup where for all ¥ € Aut(G), ¥(¢(G)) = ¢(G).
2. If G/¢(Q) is cyclic then so is G

3. If G is a p-group then ¢(G) is the smallest normal subgroup such that G/¢(G) is elementary abelian
— that is, a subgroup where every element has order p.

Definition 10 (Commutator subgroup). Given a group G, its commutator subgroup (or derived subgroup)
is the group
G'={{lg,h] : g, h e G})

where [g,h] = g~ 'h~1gh.



Finally, recall that the center of a group is the subgroup of elements which commutes with every element in
the group. Specifically, it is given as

Z(G)={h e G :gh =hgV¥ge G}
and if G is abelian then Z(G) = G.

Definition 11 (Extraspecial p-group). Let p be a prime and let G be a p-group. G is said to be an
extraspecial p-group if Z(G) = ¢(G) = G’ and |Z(G)| = p. Notice that this implies that G/Z(G) is an
elementary abelian p—group.

Definition 12 (Upper central series). Let G be a group. The upper central series of G is the tower
{1} = Zo < Zl < 22

where Z;11 = {z € G : [z,9] € Z; Yg € G}. In addition, Z; = Z(G) and so one can define Z;;1 instead
according to the relation Z;1/Z; = Z(G/Z;).

Definition 13 (Lower central series). Let G be a group. Then, the lower central series of G is the tower
G=Ay>A; = A,...

where A;11 = [A;,G] ={[a,g] : a € A;,g € G). Clearly, 4, = G'.

Definition 14 (Nilpotent group). A nilpotent group of class n, or, more briefly, a nil-n group, is a group G

where A,, = {1}, or, equivalently, Z,, = G.

Nilpotent groups are related to p groups in a number of ways. First, all p groups are nilpotent. Specifically,
extraspecial p groups are nil-2 groups.

2n+1

Claim 2.1.0.0.1. Let G be an extraspecial p group of order p . Then, G is a nil-2-potent group.

Proof. We know that Z(G) = G’ = Z, for an extraspecial p group G. Then,
Zy={xeG:[x,g]€ Z(G),Vge G} =G
since Z(G) = [G,G] and so [z, g] € Z(G)Vz,g € G. We thus get the upper central series

1< Z(G)<G

lle

Z

Equivalently, we could instead consider the lower central series. Since A; = G’ = [G,G] = Z(G) s

Ay ={[z,9]:2€ Z2(G), g€ G) = {1}

since Z(G) commutes with everything and so [z,g] = 1Vg € G,z € Z(G), where 1 is the identity. Thus, we
have the lower central series
G>G'>1



By definition, we can see that Z;1/7; is an abelian group and so it is solvable. In addition, if G is finite and
nilpotent then it is isomorphic to a direct product of its Sylow p-groups, all of which are normal in G ([1]).

This means that for a finite nilpotent group G, if we can find an algorithm to solve the HSP in Sylow
p-groups, then, since computing the direct product is efficient, and since all the Sylow subgroups are unique,
we can efficiently determine the HSP in the nilpotent group. Finally, elements of coprime order commute.
This makes finite nilpotent groups “almost abelian”.

Suppose G is an extraspecial p-group as defined above. Let us examine [, | : G x G — G in this case, using
the methodology in [I5], in order to justify that only two classes of such groups exist, distinguished by their
exponent.

Let g,h,k € G. Then, since G’ = Z(G) we know that all elements in G’ commute with G. Then,

[gh, k] = (gh) "'k~ (gh)k = h™'g~ "k~ ghk
=nh Y g 'k gk)k T hk = [g, k] kT Rk
= [g, k][h, k]

and
n(n—1)

(gh)" = g"h"[h,g] = .

Let G be an extraspecial p-group of order p?"*! (by [15] there are no extraspecial groups of order p?*). Then,
Z(G) = Zy, and one can identify the vector space V = Z>" with G/Z(G) = {(0,b,¢)Z(G) : b,c € Zy} =~ Z2"
where (b,c) = (0,b,¢)Z(G). Then,

Claim 2.1.0.0.2. The map b : G/Z(G) x G/Z(G) — Z(G) given by (g, h) = [g,h] is bilinear and skew

symmetric.

Proof. Let x = (21,22),y = (y1,¥2),2 = (21,22) € V and a,c scalars. Then, we have already shown that
[gh, k] = [g,k][h, k], g, h, k € G. Then, since G is a group and thus closed, if we set g := ax, h := cy, k := z
we can see that

blax+cy,z) = [ax + cy, z] = [g + h, k] = [g, k] + [h, k]
= [ax, z] + [cy, 2] = a[z, z] + |y, z] = ab(x,2) + cb(y, z)

The other side follows from a similar proof.

To show that b is skew symmetric, note that it is alternating; that is, b(x,x) = 0. This is because [z, x| = eg
where e is the identity in G. Since Z(G) = F, which is an additive group we have that e = 0 and so
b(x,x) = [x,2] = e¢ = 0 as required.

Now, since b is bilinear we must have that 0 = b(x —y,y — ) = b(x,y — z) — b(y,y — z) = b(x,y) — b(x, x) —
b(y,y) + by, z) = b(x,y) + b(y, ) and thus b(z,y) = —b(y,z). Thus, it is also skew symmetric.

Finally, let us check that the Jacobi identity holds: that is, that

b(x,b(y,2)) + by, b(z,2)) + b(z,b(x,y)) =0

10



Since our vector space V' is spanned by {e, f} for standard basis vector over the field F, we can simply
check the Jacobi identity for these two vectors, since it must hold for the rest of V' by linearity. Note that
e=(1,0)=(0,1,0)0Z(G) e G/Z(G) and f = (0,1) = (0,0,1)Z(G) € G/Z(G). Then,

b(evb(ev f)) + b(evb(f7 6)) + b(fvb(€7e)) = b(e,b(e,f)) - b(evb(e7 f)) + b(f’ O) =0

as required. O

Unfortunately, this is not quite a Lie algebra, but perhaps we can find one later.

Now, in order to distinguish between the two classes of extraspecial p-groups, [15] defines a second map
q:G/Z(G) - Z(G) as well, given by ¢(g) = g*.

Then, the following lemma is given in [15]:

Lemma 2.1.0.0.1. Given a vector space V with basis {vi,...,v,} over Fp,, a bilinear map b: V x V — Fp,
and a map q: V — T,

G = U1, Up, 2|20 = 1,08 = q(v;), [vi, 2] = 1, [, v;] = b(vs,v5)),

where Z(G) = {z), is an extraspecial p-group.

Using this lemma the two classes of extraspecial p-groups of order p® are given in [15] as:

Hp3 = {e,f,z:ep = fp =2 = 1,[6,2] = [f,Z] = 17[ea.f] = Z}
Mp3 = {€,f72 cef = 17fp = Z,Zp = la [B,Z] = [f,Z] = 13 [eaf] = Z}
Where the map ¢ is the zero map for Hys and a non-zero linear map where g(e) = 0, ¢(f) = 0 for symplectic

basis elements e, f of V.

To give a general definition which does not rely on b, g, the following classification is given in [24] for groups
of order p**+1:

Hp2"+1 :{ela"'aenaf17"'7fnaz : [ei76j] = [flaf]] = [6iafj] = 172 7 ja
[eivz] = [f,‘,Z] = 17[€iafi] = Z7e? = fzp = Z;D}

Mp2"+1 :{ela"'venafla"'afn7z : [ei)ej] = [fuf]] = [e’uf]] = 172 # ja
leir 2] = [fi2] = L [ei, fil = z,ef =20 = fj =15 #n, fh = 2}

Where e, ..., e,, f1, ..., fn gives a basis for Zgn and z for Z,; alternatively, they are generating elements for
G/Z(QG) and Z(G), respectively.

It is also mentioned in [I5] that all extraspecial p-groups of order p>**1 p # 2, are the central product of
either n copies of Hys or n — 1 copies of H,s and one copy of M3, where “central product” of two groups
G, H is defined as the factor group €% and where N = {(271,0(2) : z € Z(G)} is a normal group and 6 is
an isomorphism between Z(G), Z(H).

11



2.1.1  Hynn

Suppose p # 2 and consider the group which will be referred to as the “Weyl-Heisenberg group” in subsequent
sections, with the notation Hpeni1 = W), = {(a,b,c) : a € F},b,c € Fj}. This group, which corresponds to
extraspecial p-groups of exponent p, will be discussed in depth later in its relation to the HSP. For this
reason its subgroup structure and representation theory will be omitted in this section and discussed later.
This subsection will aim to better understand the nature of this group by relating it to Lie algebras.

Consider the n + 2 by n + 2 matrix representing group elements,

1 ¢ a
g=|0 I, b
0 0 1

in GL,4+2(F,), where ¢, b are vectors in ;. Then we have a vector space

0 ¢ a
W = 0 [0] b :qbeIE‘Z,ae]Fp
0 0 O

In fact, W is the Lie algebra of Wp; firstly, let b: W x W — W be a map where b(z,y) = vy —yz. Thisis a
skew-symmetric, bilinear map which satisfied the Jacobi identity and thus W is a Lie algebra. The following
are the basis elements:

Lemma 2.1.1.0.1. W is a (restricted) Lie algebra with the associated map b : W x W — W given by
b(z,y) = 2y — yx.

Proof. Clearly, W is a vector space with basis elements

0 ¢l 0 00 0 00 1
X;=|0 0 0], Y;=|00 e |[,Z=]|0 0 0
0 0 0 00 0 00 0

where e; is the it" standard basis element in IE‘Z.

Let a = (a1, ...,an),b = (a1,...,a,) € F,c € F), and let X = ]
map b is bilinear:

b(aA + ¢B,C) = (aA+ ¢B)C — C(aA + ¢B) = a(AC — CA) + ¢(BC — CB) = ab(A,C) + ¢b(B,C)

X;,Y =,Y;,A,B,C € W. Then, the

<n

Skew-symmetric:

b(A,B) = AB— BA=—(BA— AB) = —b(B, A)
And satisfies the Jacobi identity; it suffices, by bilinearity, to simply check for basis elements:
b(X;,b(Y;,Z)) + b(Y;,b(Z, X;)) + b(Z,b(X;,Y;)) = b(X;,0) +b(Y;,0) + b(Z, X;5) =0

where X;; is X, if ¢ = j, otherwise it is all zeroes.

For elements A € W we have the p—operation taking A — A[p] defined by raising A to the power p; that is,
we define Alp] := AP, making W a restricted Lie algebra. O

12



Then it is clear to see that b(X;,Y;) = Z, b(X;,Y;) = b(X;,2) = b(Y;, Z) = b(X;, X;) = b(Y;,Y;) =b(Z,2Z) =
0.

Lemma 2.1.1.0.2. W is the (restricted) Lie algebra of the group W,,.
Proof. Note that while we have defined W), over IF,, it is often generalized for elements in R, in which case one

can form a real Matrix Lie group and proper associated Lie algebra. However, if one restricts the Lie group
to the integers, and then reduces mod p with a p—operator, then we the current construction remains.

Now, we must show that for all t e F,, Ae W, exp(tA) € W, where exp : W — W), is given by

0

1
exp(v) = Z Ev” VoeW
n=0 "

Any element A € W can be written as A = > .(a; X; + bjy;) + ¢Z and thus as
0 >, ael ¢

0 0 Zi biei
0 0 0

Then,
mt
exp(tA) 2 —'

th
= liy2 + Z EAl
n=1

tQ 0 0 ajbj
:nﬁ+m+25 00 0
J 00 O
Loty aze] p La;bit? + ct
= 0 1 th bjej € Wp
0 0 1

O

Note that W is not only a vector space, but a group under addition, as well, with the identity element being
the zero matrix.

Claim 2.1.1.0.1. The set of matrices given by exp(W) = {exp(w) : w € W} forms a group. Specifically,
exp(W) =W,

Proof. We have already seen that exp(W) < W), Then, we have seen that VA € W, exp(A) terminates, since
A3 is the zero matrix. Also, |W| = p?"*! = |W,| and since it is surjective and injective. Thus, this map has

13



an inverse, log : W, — W given by

log(h) = 3 (-1 =0

Since exp(W) = W, and W, is a group, exp(W) is a group. O

Then, since X? = Y;> = Z? = 0, we obtain the following basis elements for W,

1 e o
.Z‘iZEl‘p(XZ’): n+2+Xi: 0 1 0
0 0 1
1 0 0 |
yi=exp(Ys) =Ini2+Yi=| 0 1 ¢
0 0 1 |
1 0 1]
z=exp(Z)=Ip42+Z+=| 0 1 0
0 0 1 |

Now, we can define the map [, |: W, —» W, by

l9, h] = exp(b(log(g), log(h))),

Claim 2.1.1.0.2. The map [,] defined above has the property that Vg, h,k € W,, and scalars a,b, [g*h, k] =
(g, k]%[h, k]® and [g, h*k®] = [g,h]*[g, k]°. It is also skew symmetric, and satisfies a variant of the Jacobi
identity (with the operation being matriz multiplication).

Proof. Let g = exp(G),h = exp(H),k = exp(K)k,g,h € Wp,,G,H,K € W and let a,c € F,. Note that in
W, we are working with matrix multiplication, whereas in W our operation is addition. Then,

[g?h¢, k] = exp(b(aG + cH, K)) = exp(ab(G, K) + ¢b(H, K))
=erp(a(GK — KG) + ¢(HK — KH))

= exp(ab(G, K))exp(cb(H, K))x*

= exp(b(G, K))*exp(b(H, K))* = [g, k]*[h, k]°

since (GK — KG)(HK — KH) = GKHK — GK?H — KGHK + KGKH and (HK — KH)(GK — KG) =
HKGK — HK?G — KHGK + KHKG.

Then, notice that VA, B € W, AB is the upper triangular matrix with a potentially non-zero value in
the upper rightmost corner and zeroes everywhere else. Then, VA, B,C,D € W,ABCD = 0,,2. Thus,
(GK —KG)(HK —KH)=0= (HK — KH)(GK — KG) and thus the equality at * follows. The other side
follows in a similar manner.

14



Next,
[9,h] = exp(b(g, h)) = exp(—b(h,g)) = [h,g] "

and thus [, ] is skew symmetric.

Finally, let us check a modified Jacobi identity on the basis elements.

[0, [y;, 211wslz, w2, [0, v:] = exp(b(Xu b(Yj, 2)))exp(b(Ys, 0(Z, X:)))exp(b(Z, b( X5, Y;)))
= exp(b(Xi,0))exp(b(Yi, 0))exp(b(Z, Xi5))
= exp(0)exp(0)exp(0) = Iz

Since exp(0) = I, 42 . Thus, this identity holds. O
By the way it is defined and the above claim, [,] satisfies the same relations as b. That is, [x;,y;] =
z (@i, y;] = [wi, @5] = [2,2] = i, y5] = 1

Additionally, notice that Vg € W, g? = exp(plog(g)) = exp(0) = 1, since we are working over F,,, so the
order of each element is p (or one).

This gives us the Weyl-Heisenberg group, as expected. Notice that it satisfies the requirements given in the
definition for H2nt1

Using these relations let us confirm that the properties of an extraspecial group hold; that is, that Z(G) =
#(G) = G’ and |Z(G)| = p for G = W,,. First, however, let us relate the map [,] defined above to the
standard commutator map.

Lemma 2.1.1.0.3. Let [,] be as defined above. Then, Yg,h € W, [g,h] = g *h~'gh

Proof. Let g,h € Wp,,G = log(g), H = log(h) € W. Then,
lg, h] = exp(b(G, H)) = exp(GH — HG)

Alternatively, consider
g 'h7tgh = (hg)"'gh = exp(—HG + GH)

Thus, [g,h] = g~ *h~tgh. O

Notice that the image of [,] is, in fact, contained in the center of W, since GH — HG = aZ,a € F,, and
thus W), = {[g,h] : g, h € W,,} € Z(W),). We wish to show that this is, in fact, an equality.

Claim 2.1.1.0.3. Let W), be the commutator subgroup of W,. Then, W = {exp(dZ) : d € )}

Proof. Consider W), = {[g, h] : g,h € W},). In this case this corresponds to

W, ={lg,h]: g,h e Wy} = {exp(b(G, H)) : G = log(g), H = log(h), g, h € W}
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Since

b(G, H) = b(Y (i X + biYi + ¢Z, Y | d;X; + VY] + ¢ Z)
i J

= Y (aib(Xi, Y. af X; + VY] + cZ) + bib(Y;, Y [ ajX; + VY] + cZ) + cb(Z,), a} X; + VY] + ¢ Z))
@ J J J

= (ai(afb(Xi, X;) + V;b(X3,Y5) + ¢b(Xy, Z)) + bi(ab(Vi, X;) + Vib(Yi, Y)
0,J
+b(Y;, 2)) + c(dib(Z, X;) + Vib(Z,Y;) + ¢b(Z, 2)))

= (b, Z + bibjZ + b} Z)

= dZ, for some d € Fp,.

Thus we have that W) = {exp(dZ) : d € F,}. O
Claim 2.1.1.0.4. Let W be as defined above. Then, W), # {I,,;2}. That is, there exists at least one element
d € F% such that exp(dZ) € W,. In fact, |W,| =p and thus [W}| =T,

Proof. Recall that [z;,y;] = z. Thus, simply take d = 1. Then,

[24,yi] = 2 = exp(Z) = exp(Z) € W) = W, # {I12}

In addition, we know that [,] is a bilinear map. As such, forall a € F,,, since exp(Z) € W, we have that
laz;,yi] = exp(aZ) € W,
and thus [W)| = p (it cannot contain more than p elements by how it is defined).

Finally, we have a natural isomorphism ¢ : W, — [, given by ¢(ezp(aZ)) = a. This is clearly a surjective
and injective map. It also has the homomorphism property:

Ylexp(aZ +bZ)) = p(exp((a+b)Z)) = a+b = p(exp(aZ)) + ¢(exp(bZ))

Then, since W = [F, and Z(W,) = F,, we get that W, = Z(W},)

Alternatively, we would show that the center and WZQ are equal by examining the center, Z(W,) = {g € W, :
gh = hgVh € W}, more closely.

Notice that b(X,Y) = XY —YX =0 < X,Y commute. If the two matrices commute then eX+Y = eXeY.
Now, suppose g € Z(W,,). Then, for all h € W,

hg=gh=g 'hgh™' =1=[g,h ] =1¢ W,
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Similarly, let k = [g,h] = dz € W,. Then, for all z € W),

[k, z] = exp(b(log(k),log(x))) = exp(Z(aib(dZ, Xi) +bb(dZ,Y;) + ¢;b(dZ, Z))) = exp(0) =1

K2

and thus k, z commute and so k € Z(W,,). Thus, Z(W,) = W, = F,, which is an elementary abelian p-group
and so W, is extraspecial, as expected.

2.1.1.1  Mpensn

Once again, assume p # 2 and consider the other class of extraspecial p groups, M,,2n+1, of exponent p2. For
brevity let us denote M := M2n+1. We will begin by considering the case when n = 1;that is, |[M| = p3.

First, let z € M be an element such that (z) = Z(M) and let f € M be an element of order p?> where f? = 2.

Since M is a semidirect product; that is, M = Zy,> x4 Z,, we need to determine how Z, acts on Z,>. We
know that it acts non-trivially, since M is nonabelian.

That is, for elements (a,b), (a’,b") € M, where a,a’ € Z,2,b,b" € Z,,, we have the group operation
(a, b)(alv b/) = (a+ ¢b(a/)v b+ b,)
We must now determine the homomorphism ¢ : Z, — Aut(Z,?).

Fix an element y € Z,. Since ¢, : Zy2 — Z,2 is an isomorphism we must have that ¢,(0) = 0 and
(@) = {(py(x)), x € Zy2; that is, it must map generators to generators.

Since the elements that generate Z,> are of the form (g + pk),k > 0,1 < g < p — 1 we have that ¢,(z) =
(9 + py)x. However, since we must have that ¢g(z) = = we are required to take g = 1. It is then easy to see

that ¢o(z) = 2 = (1 + pp)z = ¢p(x) and ¢, (0) = 0.
That is, we have the group operation
(a,b)(a’,b') = (a+ (1 +pb)a’, b+ 1)

Next, we need to find the generators of M. Since fp2 = 1, an obvious choice is f = (1,0) € M,1 € Zy2.
Similarly, e = (0,1) € M, 1 € Z,,.
To find the final generator, consider

le, f]=e ' ftef = (0,—1)(—1,0)(0,1)(1,0) = (p,0)
and call this z. Clearly, 2P = (p,0)? = (0,0).

Remark 2.1.1.1.1. A final way to think about this group is as a matriz group representing the linear
functions Zy2 — Z,2 given by x — ax + b where a = 1 mod p, a,b e Zy. We can then write each element

m M as
a b
0 1
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In this case, we have the following three generators:
_(1-p p _(1+p 1 (1 p
p=(5r )= 1) 2= (o

. [ l1+pz z+(5)p e ([ l1—ap ap . (1 ap
£ = < 0 1 , B = 0 1 )7 =0 1
Thus it is clear that FP = Z, FP* = pp = 7P = I. In addition, the matrices satisfy the relations required
for an extraspecial group. Additionally, Z clearly generates the center.

Then, since

We now have defined the extraspecial p-group

M =A{e f,z: [z fl=le,z] = em e, [l = z,€" = 2" = [V = en}
where z generates Z(M) and ey denotes the identity element.
We wish to associate the quotient M/Z (M) and Z(M) with a vector space. Note that we have already
done most of the work in the discussion above. Call the associated vector spaces V, V', respectively. Since
Z(M) = {(pz,0) : x € F,} we have that V' is simply F,. Also, we know that dimV = 2, and that it must be

a vector space over I, and
M/Z(M) = {(a,b)Z(M) : a,be F,}

with p? elements. Each element has order p: suppose (a,b)Z(M) € M/Z(M). Then, ((a,b)Z(M))* =
(a,b)*Z(M) = (a(z + (5)pb), xb)Z(M) = Z(M) if z = p.

Then, we have that V' must be Z, x Z, since M/Z(M) is abelian with nontrivial elements having order p
and with p? elements.

V has the basis {(1,0), (0,1)}, which corresponds to our choice of f,e (or F,E) from before. That is, we can
identify e with (0,1) and f with (1,0). In addition, identify 1 € F, = V' with z. More precisely, we have
W =V @®V’, and thus define 7 : M — W by

m(e) = (0,1,0),7(f) = (1,0,0),7(2) = (0,0,1)

Then clearly 7(z) = (m1(x), m2(z)) where 1y : M >V, mo : M — V', m1(e) = (0,1),m1(f) = (1,0),m(2) =
(0,0), and m2(z) = 1 and zero for e, f.

Now, focusing on V < W, with elements of the form (a,b), a,be F, and let s : V x V — F, be the map
s((a,b), (a’,b") = ab’ — ba’
This is a symplectic bilinear form, and notice that

S((].,O), (0, 1)) = 1a5((170)7 (170)) = 5((07 1)7 (07 1)) =0
Let ¢ : W — V be the map ¢((a, b, c)) = (a,b). Then, we can extend the map s to W by S: W x W - W
which is given by
S((a,b,¢), (d,e, f)) = (0,0, 5(6(a, b, c), ¢(d e, f)))
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Finally, notice that this map S corresponds to the commutator [,] given for the group M, and, in fact, its
image is the center of M. That is, our defining relations are preserved, and we could define b: M x M — M
by
b(g, h) = =~ S(m(g), w(h)).
Then, clearly,
be, f) = 7~15((0,1,0),(1,0,0)) = 771(0,0,1) = =

b(e,e) = b(f, f) = 771(0,0,0) = enr
ble,z) = b(f,z) =71(0,0,0) = ens

2.1.1.2 Subgroup structure of M

This section will outline some relevant subgroups of M.
Recall the group operation (a,b)(a’,t") = (a + (1 + pb)a’,b + b'); then for elements (a,b), (x,y) € M,

(—=(1 = pb)a, =b)(x, y)(a,b) = (a((1 = bp)x + yp), y) (2.1)
Claim 2.1.1.2.1. N = {(1,0)) = Z,2 is a normal subgroup of M.

Proof. Since
(1,0)% = (k,0)e N

and thus we have a cyclic abelian group. Since |N| = p? and (1, O)P2 = (0,0) we have that N = Z,>. Finally,
let (a,b) € M, so that (a,b)~! = ((pb — 1)a, —b). Then,

(—a(1 — pb), —b)(x,0)(a,b) = ((1 — pb)x,0) e N
and thus N < M. O]

In fact, this is not the only normal subgroup: we have p?> — 1 generators for non-trivial normal subgroups
{(x,0)y< M,z € Zy2, although if ged(z,p?) = 1 then {(x,0)) = {(1,0)). Thus we have two nontrivial unique
normal subgroups of this form, N from above and {(p,0)), the latter being the only subgroup of that form
as {(py,0)) = {(p,0)) since (py,0)* = (pyz,0) = (p(yx),0) = (p,0)¥*. A third normal subgroup is given by
{(p,1)), which can be shown to be normal using Equation with (x,y) = (p,y) since

(a((1 = pb)p +yp),y) = (ap(1 +y),y) € {(p,y))

In particular, this holds when y = 1 as above. However, we do have p — 1 distinct groups {(p,¥)),y € Z}
since

(0, y)" = (pz,yx) ¢ {(p,1))

To summarize, we have the following normal groups:

N ={(1,0)), Ny :={(p,y)),y € ZLp, e, f),{e, %)

Let Aqp = {(a,b)) = {(a(z + (5)pb), xb) : ® € Zy2}, a € Zy2,be Z,
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Claim 2.1.1.2.2. A, is an abelian subgroup of M of order p*

Proof. Clearly, since A, is cyclic it must be abelian. Then, let x be the smallest nonzero power where
(a,b)* = (0,0). We then get the equation

(a,0)” = (a(z + <§>pb),xb) = (0,0) = xzb =0 mod p,x + (;>pb = 0 mod p*

where we know that o(b) = p and so = must be a multiple of p, say © = py. Then, (;)pb = py(#_l)pb =

0 mod p? for any value of y.

Finally, we are left with az = apy = 0 modp? = py = p?> = y = p. Thus, z = p?. Since z is the order of
(a,b) we get that |4, | = p?. O

2.1.1.3 Representation theory

Now, let us briefly discuss the representations of this group. Note that we will be using the notation e, f, z
and (0,1),(1,0), (p,0) interchangeably when denoting elements in M.

First, since Z(M) = Z,, and because M is an extraspecial p-group, we know that M/Z (M) = {(a,b)Z(M) :
a,beF,} =~ Z, x Z, and thus we have the p® representations

+bd 2mi
actbd =€ ,a,b€Zy, (c,d) e M

X(a,p)(C,d) = w

Next, since Z(M) = Z,, it has p one dimensional representations ¢y (px,0) = W 0 < k < p. Also,
Z(M)< N, and thus
N/Z(M) = {(zp,0)Z(M) : x € Z,}.

Thus, we can induce ¢y to a representation of IV, determined by its behavior on the coset representatives
t; := (ip,0),i € Z, of N/Z,. Let g = (x,0) € N and recall that (p,0) generates Z(M). Then,

(.0) - Y (ip,0) ® (p,0) = Y (x +ip,0) ® (p, 0)

7 7
and thus we are simply permuting the characters.

Alternatively, consider inducing this in matrix form, obtaining

Indgr(g) = Y ok(t; gti)e;
i,€Zy
where ¢i(g) = 0ifg ¢ Z(M) and e; is a standard basis vector for CP. Since (—jp,0)(x,0)(ip,0) = (x +p(i —
7),0),
wWk@=9) 2 =0 mod p

dr(ty gti) = {

0, else
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In fact, since N is cyclic of order p? it has p? character representations. Let ¢ denote the representation of
N. Then,

27

Yi(,0) = (e )* k,x e Fpe

Notice that if we restrict this to elements in Z (M) we get ;(py,0) = w'¥. This directly corresponds to the
p characters of the center when [ < p.

That is, since | € Z,> we can write [ = a + pk for some a, k € Z,. Then, we know that

Indg(M)d)k (z,0) = @aezpwa—ﬁ-kp
is a p—dimensional diagonal matrix and thus the direct sum of characters.

27

Then, ¥q4xp(w,0) = (e#? )*(@+*P)  Since this is true for all values of a we can take a = 0 to obtain

27

Yrp(2,0) = (e 7 )** = ¢p(p,0)

Finally, recall that the elements in N are of the form (a + pb,0) = f@z°. Thus,

27mi

Pp(a + pb,0) = (e »? ) @FPIkp) — jak

Thus, we can restrict ourselves to p distinct irreps of NV, as these induce to p distinct irreps of M. These can
be defined by ¢y (px,0) = 1,9, (x,0) = w*®, x € Z), k € Z,,.

Now, since N <« M we can induce ¥ to a representation of M. Note that if & = 0 then the induced
representation of 1y would decompose as a direct sum of the one-dimensional irreps xo, defined above and
so choose instead k € Z.

We have the quotient
M/N = {(0,a)N :a € Z,}

Denote the p coset representatives by h; = (0,1), i € Zj.
Let g = (a,b) € M. Then, h;lghi = ((1—pj)a,b+i—j), which is an element of N if (b—j+i) =0 mod p.

Then,
Indyi(g) = | vr(hj'ghi)e;

i,j€Lp
where e; is a standard basis vector for CP and

0, else

Ui (hy tghi) = {

Alternatively, consider the action of generators e, f, z. Let o) denote the final, p-dimensional representation
of M. Then, any element in N is of the form f* for some x € Z,2, and the coset representative h; = e*.Then,

eZei@)v: Ze”l@)v

i€y =
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and thus this is simply a permutation of basis vectors. This then implies
or(e) = D i+ 1l

i€y

Then, since [e, f] = 2z we get that fe = efz~!. We can generalize this to obtain fe* = (ez~1)*f, since z, f
commute. e,z also commute and so we get the relation fe* = e*27%f. Recall that f? = z and so we could
simply write this as fe* = e¥ f1=P*_ Thus,

fZ €i®'l): Z 6if17pi®,U: Z ei®w7ikv

€Ly 1€ZLp €Ly
This gives us the corresponding representation

= 3wl

i€Z,

Finally, since z, e commute and z = f? we get

Z Z ei®v= Z eiz®v= Z ei®wkv

€Ly €Ly 1€ZLp
and thus
AN
or(z) = Y, Wkl
€Ly
Now, since any element in M can be written as e® f¥z% = e® f¥*+P! since

fYe® = fy fy+ple:r _ ewf(yﬂ)l)(l*pr) — efrnyrp(l*Iy)

we can compute
6zfy+pl Z ei Rv = Z ex+ify+p(lfyi) Qv = Z 6x+i ®wk(l7yi),u

1€ 2Ly €Ly €Ly
Thus we get that

(e fvz') = > WP o 4 iyl

€Ly

which gives us p — 1 p”-dimensional representations, with k € Z;‘.

2.1.2 General group of exponent p?

Now that we understand M when |M| = p?, let us look at the general case,

Mp2"+1 :{617"'7€n7f13 "'afnv Z [ei3ej] = [flvf]] = [elvf]] = 1vl 7 jv
[€i7z]:[fiaz]:1[ezafv]_ze f=ff=1,j¢n7fﬁ=z}
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Claim 2.1.2.0.1. The group M,2»+1 can be obtained using the central product: Mpeni1 = MoHyoHpo...0H,
where Hy, appears n — 1 times and o denotes the central product.

Proof. A concrete proof is given in [I5] Theorem 4.3], however this will be discussed informally below.

Consider one copy of M, H,,, with both having centers isomorphic to Z, with the isomorphism z* — i mod p.
Let ¢ : Z(M) — Z(H, be the isomorphism t(2%) = z%. Then, we have the group

N={(g"¢(g):ge Z(M)} = {(z*,2") 1 i € Z}
which is normal in M x H,. Notice that (2%, 2') € N = i = 0. Then, since M x H, = {(e®f*2¢,2'y’2*) : b e

L2, a,c,1, 5,k € Zy} we get that

MoH, =M x Hy/N = {(e" f*2°, 2"y 2")N : be Ly, a,¢,k,i,j € Lp,p— ¢ # k}

Then, we have an isomorphism v : M o H, — M,s which maps generators as follows:

P((e,0)N) = e1, ¥((0,2)N) = e2, ¥((f, 0)N) = f1,4((0,9)N) = f2,¥((2,0)N) = 2

since then the identities are satisfied, with f} = z.

Next, consider o
H,oH, = {(x%b2¢, 'y 2*)N : a,b,c,i, 4,k € Zp,p—c#k}

where N = {(27%,2%) 1 i € Zy}.

Then, this is isomorphic to W, with |W,| = p® with an isomorphism p : H, o H, — W, which, defined on
generators, is

p((z,0)N) = 1, p((y, 0)N) = y1, p((0, 2)N) = z2, p((0,y)N) = 2, p((2,0)N) = p((0,2)N) = 2

Then, in the general case, we have W), with |W,| = 2(n—1)+1 = 2n—1 where z; = (0, ..., 2,0...,0) € 0" "1 H,,;
that is, one can think of it as i*" standard basis vector for Zg_l except with x in place of the one. The same
is true for y;.

Then, consider

Mo Hpyon = {(e2fz¢, Z xéy}ﬂzk)N tbeZy,l,m,c,a € Zy,p—c# k}
,J€Zy

where x;,; are the i*" standard basis element as discussed above and in Section m
We then have the isomorphism ¢ : M o Hy2n-1 — M2n+1 given by

$((0,2:)N) = eiv1, d((e; 0)N) = ex, ¢((0,4;)N) = fj+1, o((f,0)N) = f,6((2,0)N) = 6((0, 2)N) = z,
where ”0” denotes the identity. Then, letting 1 denote the identity, we see that,

ef:ff:zpzlvfp:,z’[e“fi] = [ei’f] =z
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2.1.2.1 HSP in M

The following subsection will briefly summarize the subgroups of M discussed above, with a focus on solving
the HSP in this group.

Consider the subgroups of M. These include the normal subgroups
N ={f)=Zy,N, ={2),y €Ly
Notice that Z(M) < N, N,. Also, {f*,e/) = M Vi,j # 0 mod p.
Next, consider {e) = Z,, which is an abelian subgroup. In fact, the remaining subgroups are the cyclic

subgroups

x

Ay = (foeby = {2+ @Mt g e 7,,)

where a € Zy2,be Zy,. If a = pc,c # 0 then A, = (z¢€®) = Ny. Similarly, if b= 0 then A, = (f%) = L.
Finally, a = 0 gives us {e).

Let us try to determine which subgroups are distinct. First, notice that since e, z commute we have that
Apep = (z%b) = {z°%eP® . gz € Ly}
Then, all such subgroups are isomorphic; that is, Apep = Ap1 = Zy x Zy, c,b € Zy,.

Some are also equivelant; take A,.. = (2°°) for example, with elements z**e“*. If we let cx = 1 mod p

then this is simply A, ;.

In addition, consider any Ap.q = (z°e?) where every element if of the form "¢, If we choose z such that
cx =1 mod p we get the element ze%  and since this is a cyclic group we have A, g = <zed”> = Apdz = Nag

Then, in order to solve the HSP we wish to determine the value of a, b.

Claim 2.1.2.1.1. Let Ay be a cyclic group as described above. Then, if a # 0 then Z(M) < Ay and the
group has order p*. Otherwise, Z(M) n Agp = {1} and every element in Ay has order p or 1.

Proof. Let A,y = (z) where z = f%?". Then, since this is a cyclic group, P € A, 3, where

2P = (faeb)p _ fa(er(g)pb)ebp _ fap — 0
Suppose a # 0. Then, since A, is a group we have that (z*) < A, = Z(M) < Aqp since (z%) = (z) and
clearly, (2*)P = 29 = 1.

On the other hand, suppose a = 0. Then 2P = 2% = 1 and we must have that |Ag | = p, which forces all
elements to have order p or 1. Let y € Z(M) n Agp. Then, y = 2* = z* for some i,k € Z,. Since z = €’ we
have that

2f=efteZ(M) = kb=0=1i=0
Thus, we have that y = 1 and so the intersection is simply {1}. O
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Now, we will consider one of the reductions given in [13]. Let 7 : M — V be the map given by (e’ fI2*) =
E'FJ where V is a two-dimensional vector space with basis {E, F}, i,j € Z, and let G = {n(x) : z € M}.
This is analogous to what was done in Section In fact, this vector space is isomorphic to M /Z (M) with
basis {eZ (M), f(Z(M))}

Then, let us define the group operation on G by w(x) » w(y) = =w(zy) for elements in G. That is, if
ECFY EiFJ € G then E9F® B = B+ Fb+ and G = M/Z(M) = 7, x Z, and is thus abelian.

Finally, by [I3| Lemma 2] we have that finding A, ,Z(M) can be reduced to finding 7(A,Z(M)) in G.
Since G is abelian this is simply an analogue of the abelian HSP.

Then, if Z(M) < Aqp then A, 3 Z(M) = A, p and so one can immediately find A, . On the other hand, if
Z(M) n Aap = {1} then we have shown that there is no element of order p* in A, ;. Thus, this subgroup is
isomorphic to a subgroup in H,, and so one can use the methodology for solving the HSP in H,. Then, if f is
the hiding function, one can restrict f to A, and then extend to a function F' on H, which hides the group
isomorphic to Aqp in Hy. Specifically in [13] F is defined on elements Tz e H, and etzb e Ayp < M as

F(z'yz") = (. f(e'2"))
This is true for the general group My2n+1, as well, where if Z(M) n A,y = {1} then A, is isomorphic to a
subgroup of H2n+1. In this case the hiding function would be

Now, in [I3] an algorithm is given which requires four entangled coset states, however in [I7] this is reduced
to two states when solving a group of exponent p. We will attempt to use the latter methodology for solving
the HSP in M and M,2n+1. First, recall that when solving the HSP in W), and H),, we were relying on the
conjugacy classes of A, . Thus let us first determine what these are in M.

Claim 2.1.2.1.2. The conjugate groups of A,y are of the form Ay for some a € Zy:.
Proof. Let Aqp = (f%"), fue¥z* € M. Then, consider conjugation on the generator:
(f-ueyzk)—l (faeb)(fueyzk) _ (faebzbu—ab—ay)
If a = 0 then this is simply e’z € Appu,b and so a = pbu. Notice that Z(M) < A, in this case. In fact,

Appup = <ebzb"> ={ez"Y<a M

Otherwise, if a # 0, then (f%eb2bu=0=a) e A, ; since Z(M) < A, and so 2249~ € A, ;. That is, A.p
is normal. ]

Now, if a = pk,k # 0 then A, = {e’z)< M, if a = 0 then A, ; = (e’) which is simply {e)M if b # 0, and if
a # 0 mod p then A, < M and if b # O then, in fact, A, = M.

Then, the only non-normal case is when a = 0.
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Claim 2.1.2.1.3. Aoy = (e*) ~ H where H < H,. Specifically, H = {1} if b= 0. Otherwise, H = {(x).

Proof. Suppose we have the group Ao, < M. First, suppose b = 0. Then, A, = (1) = {1}, which is clearly
isomorphic to {1} < H,.

Next, suppose b # 0. Then let ¢ : Agp — Z, be given by Plet) =iie Z,. This is clearly an isomorphism
and so Agp = Zy.

Let H = {(x) where z is a generator of H, such that 2? = 1, and let ¢ : H — Z, be the isomorphism
d(z%) = i,i € Zyp.

Thus, Ao, = H. Recalling our notation in Section [2.2.3] for the cyclic subgroups, H is in fact Agy = Ag1 =
{(0,1,0)). O

Thus, we can simply use the procedure in Section to solve the HSP when our hidden subgroup is Ag .
As such, given a hiding function f and hidden subgroup A, we can proceed as follows:

First, query f(1) and f(2") for some i € Z¥. If f(1) = f(z") then Z(M) < A, and so Ayp < M. In this
case, one can use the efficient algorithm given by [10] for normal subgroups, discussed in Section ?7?.

If f(1) # f(2") then our hidden subgroup is of the form Ag; = {(e*) ~ H < H, where H = {(0,b,0)) is an
abelian subgroup of H,. Thus, we can use the methodology of [2] or [I7] to solve for b. In fact, it suffices to
simply determine if b =0 or b # 0 since b =0= Ago = {1} and b # 0 = Ay = Ap1 = {e).

2.1.2.2 HSP in Mp2n+1

In the above section we saw that solving the HSP in M reduces to either solving the HSP in H), or solving
using the method for normal subgroups.

Now, consider

Mp2"+1 :{ela"',en7f1a“'afn7z : [eiaej] = [fwf]] = [e’ufj] = 17Z #* j7
[eiaz] = [fzvz] = 17[€i7fi] = Zaef = Zf = f]p = 1a.7 # nvfg = Z}

with normal subgroups . o '

N = <f> = Zp27NI,J = <fila ceey 7?76{17"'76%”
where I = (i1,...,in) € Zp~" x Zy,> where at least one iy # 0, J = (j1,...,Jn) € Zy. Clearly, if j, # 0 or
Jarta # 0 then, since fF = [fa,eq] = 2z Z(My2n+1) is contained in the subgroup; otherwise this is not a
normal subgroup and is instead the abelian subgroup discussed below. For brevity call the center Z'.
Also, we have the the cyclic abelian subgroups

b
Kap={ff.  fonedt. el

where A = (ay,...,an) € Z' X Zy2, B = (b1,...,bn) € Z7.

26



Recall that f? = z and so if a,, # 0 then Z’ < K4 p, since Z' = [M, M], and so K4 p < M2n+1.

If a,, = 0 then the subgroup is
Kap={M" ...fg:leff...efi"

and since 2° ¢ K 4, we have that Z' n K4 g = {1}. As before, since all elements in K4 p in this case have
order por 1, K4 p = H < W,,.

Recall the non-normal subgroups of W, are
Ai g = (0,0, K))y = G altalry™ k)
for J,K € Zy,i € Zy.

If we let ¢ = 0 and k, = 0 then A; ; x = K4 p with an isomorphim ¢ : K4 5 — A; sk given by ¥(e;) =
x4, ¥(fi) = y;. If we then solve the HSP for A; ; x using the methodology in [I7] we can solve for K4 g.

As such, as before, we first need to determine if the hidden subgroup is normal by checking if f(1) = f(z)
for a hiding function f. If it is then proceed using the method for normal groups; see Section ?? for details.
If it isn’t then use the methodology in [17], where we can define the function f on W), as F, as seen in [13],
where F(zih, ... xin ylt . yin 20 = (iy, f(2l2, .. 2l g0t L yde ) 2h)

s YR v dn

2.1.3 Conclusion

Since solving the HSP in extraspecial p-groups of exponent p? can be reduced to solving the HSP in ex-
traspecial p-groups of exponent p, the latter case will be focused on in the subsequent sections, beginning
with the Heisenberg group — that is, groups of the form Hs,; when n = 1, followed by the more general
case, for all n.

2.2 Heisenberg Group

This section will examine the Heisenberg group. It will give a slightly different construction to the one
discussed above, and will closely follow the paper [2]. This section will begin with a discussion of the
representation theory of this group, followed by an implementation of the Clebsch-Gordon (CG) transform
given in [2]. Finally, the method given in that paper for solving the HSP will be described.

Let H, = (Z, x Zy) x Z, be the Heisenberg group with multiplication defined as

(a,b,e)(a’ b, ) =(a+d +Ve,b+V,c+ )
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2.2.1 Representation theory

Then, we know that there is a bijection between degree one representations of H, and irreps of H,/ HI', by a
lemma from [27], where H), denotes the commutator subgroup of H,.

Since
we can see that elements of the form (a,0,0) are in the center of H,, which is the commutator subgroup in
this case. In addition, we have a series of other subgroups:

There are a series of normal groups, generated by N; = {(a,xi,x) : a,x € Zp}, for each ¢ € Z,. There is
an additional normal group N = {(a,b,0) : a,b € Z,} = Z, x Z,; thus there are a total of p + 1 normal
subgroups.

We also have a series of subgroups of order p: p? subgroups A, = {(a,b,1)® : x € Zp} and p subgroups
Ay = ((k,1,0)).

Now, notice that H,, ~ Z,< H, and H,/H,, = {(0,a,b) + H,|a,b € Zy} = Z, x Z, is an abelian group. Thus,
we can use it to find the degree one representations of H,. As in the previous section, these can be denoted

27mi

Nx,y)€Zp X Lpp, w=1¢€ P
(z,9) P P

X(%y)(a’b’ C) _ wby+cx

There are p? such degree one representations. Thus, there are p — 1 representations left, each with degree p,

since p%(p — 1) + p* = |H,|.

Recall that N = {(1,0,0),(0,1,0)) < H,. This is an abelian subgroup and thus has unique degree one
representations given by 1, ,(a,b,0) = w®¥ % 0 < 2,y < p. In addition, consider H,, = {(1,0,0)) which
has 1-dimensional representations ¢ (a,0,0) = w®, 0 < k < p. Since Hj, < N we can induce ¢ to a
representation of IV by noting that the coset representatives of N/H,, are T' = {(0,4,0) : i € Z}; denote each
representative t; = (0,14,0).

Then, the action of any (a,b,0) € N on the induced representation is given by

(a,0,0)- > (0,4,0)®(4,0,0)) = . (0,4 +b,0) ® a(j,0,0)

i\j€Lyp i,5€p

Let 7 denote this induced representation. Then, we can consider how it acts on g = (a,b,c) instead by
noting that tj_lgti = (a,b+i—j,0) for each t;,t; € T. Then,

Ty = D O

i,J€Zy

where ¢}, = 0ifh ¢ Hz’, and e; is a standard basis vector for C?. We then end up with a permutation matrix
with the entries ¢q. As expected, when b = 0 this is simply ¢, ® Ip.

Now, consider 9, ,|gr = ¢,; this can be seen easily if one lets w$7y|H; = 15 0. Then, by Schur’s lemma we
know that Homp, (¢|m;,¢) = C and, by Frobenius reciprocity, the same is true for Homp, (4, 7). It then
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follows that m, = 94,0 so we can define 7,(0,0,0) = 1, and thus we have m;(a,b,0) = w*® which is one
dimensional and thus irreducible.

Now, one can induce this to a representation of the whole group H, by determining how it acts on the
generators (1,0,0), (0,1,0),(0,0,1). Since H,/N = {(0,0,4) + N : i€ Z,}, |Hpy/N| = p and the vector
space being induced to is CP, we have the usual basis vectors {e; : i€ Z,}. Then,

(0,0,1) X2 (0,0,i)®v = > (0,0,1+i)®v

1€ 2Ly 1€y

which is just a "reshuffling” of sorts; that is, for the representation o : G — GL(V?) we get that

1(0,0,1) = Y |i+ 1)l

1€ZLp

Similarly, consider

(0,1,0) 32(0,0,i) ® v= > (0,1,i) ® v= Y (0,0,i)(—i,1,0) ® v

€Ly €Ly 1€ZLp
2,(0,0,4) ® ¥r(—i,1,0)v
1€ 2Ly

27(0,0,4) ® ¥r(—i,1,0)0

1€ 2Ly

= Z 0,0,i) ® w'v

€Ly

We can reindex 7 and thus define the action of oy, as

01(0,1,0) = > w™i)i|

i€Z,

Combining the above calculations one can get the final solution:

or(a,b,c) = w™ > Wi 4 e)(c]

€Ly

2.2.2 Clebsch-Gordan Transform

Now, we are ready to try the Clebsch-Gordan (CG) transform described in [2]. First, let us start with two
degree one representations. This clearly yields a one-dimensional irrep:

X(z,y) ((l, b, C) ® X(u,v)(av b, C) = wby+cw ® wbv+cu = wb(v+y)+c(m+u) = X(z+u,y+v) (bv C)
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Then, this is already an irrep and no CG transform must be enacted. Next, consider a degree 1 and degree
p irrep:

X(z.) (@, b, ¢) ® o (a, b, c) = whyter @k Z Wi + )| = waktbyFer Z Wi + e)c|

€Ly €Ly

Notice that this is simply another p-dimensional irrep, call it o¢. The question remains: what unitary matrix
V would be able to transform the above equation into w?/ Ziezp Wi + eXc|?

The one given in the paper in equation (60) works.

Example 2.2.2.0.1. Suppose p = 3 and consider the irreps x(2,1), 02 acting on (1,2,0).Then,

0 O
0x(2,0,1)=| w 0
0 w

o o €

0 0 1
) X(Z,l) (27 Oa 1) = OJ27 X(I,y) (a7 b7 C) ® O-k(a‘a b7 C) = 100
0 10

V= (12)40] + [0)A1] + [1)2) (J0)0] + w2 [1)(1| + w™H2)2]) =

= O O
o
&

L

After applying this to the tensored representations we get

Uf(2,0, 1) =

o€ o
€ oo
o o €

And thus f = 2.

Now, take two p dimensional irreps, ok, and og,. Then,

ok (a,b,0) ® o, = W™ Z Wi+ )| ® wz Z w*z2)i 4 e)(c|

€Ly €Ly

Which results in a p? dimensional matrix. Recall that there are p? 1-dimensional representations. Then,
this matrix may decompose into these, or it could instead decompose into a degree p representation with
multiplicity p. Using the unitary matrices from [2] in the following example we will see that this depends on
what the labels of the representations sum to; that is, if k1 + ko # [0], then the tensored representation is, in
fact, reducible to p copies of o, +%,. On the other hand, if this sum is 0 then this is a series of representations
of degree 1.

Example 2.2.2.0.2. Suppose p = 3 and consider 05(2,0, 1) from before, as well as
0 0 w?
01(2,0,1) = w* 0 0

w
0 w? 0

For clarity let us use block matrix notation, where [0] denotes the 3-by-3 zero matrix.
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Begin by considering the case when k; + k2 # 0, such as when the labels are 2,2, respectively. Then, we
obtain:

[0] [0] wo2(2,0,1)
02(27071)®02(2,0,1) = w0'2(2,071) [0] [0]
[0] wo2(2,0,1) [0]

This is clearly
0 0 1
LW | 1 0 0 |=L®0(2,01)
0 1 0
where I3 is the 3-by-3 identity matrix, and using the unitary matrix defined in [2] would yield this same
result. Notice that 2 + 2 = [1]3 as expected.

Finally, consider the case where k1 = 1,ky = 2,1+ 2 = [0]3, and note that o is not defined. Then,
0 01
01(2,0,1)®02(2,0,1) =13 | 1 0 0
0 1 0

Using the unitary transform in [2], one can obtain
1 0 O
Le| 0 w? 0
0 0 w
Which is simply a series of degree one representations. Note that this doesn’t occur very often; with high
probability after sampling the registers one obtains a representation of degree p that is the tensor of two
degree p irreps.

2.2.3 HSP

Let us now look at solving the HSP for the Heisenberg group by using the methodology in [2]: the following
section will act to interpret and explain the results of this paper. Note that we only need to consider the
subgroups A, for this problem, as all other subgroups are normal in H, and thus one can use the HSP
method for normal groups to solve.

Recall that each element in A, can be written as (ax + (920) b, zb, z). The conjugate subgroups of A, ; are
Acp, CELp:

(x,y,2)(al + (é) b,1b,l)(—x + yz,—y,—2z) = (l(a —y + bz) + <;> b, 1b,1)

This will be important when considering the HSCP, as we can see that one only needs to know b to determine
the conjugacy class of A, .
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In addition, the p? cosets of A, ; have coset representatives of the form (I,m,0), I,m € Z,, giving us the
coset state

[(,m,0)A ab>77h6; [(I,m,0)h leZZ: l+xa+(2>b,m+xb,m)>

We then have the mixed state

1
;m=p%w=;—§] (1,m, 0)H){(l,m, 0)H|

Now, we wish to re-express py in terms of the irreducible representations discussed above. This can be done
by performing a Fourier transform, which results in the density matrix

pit =~ @4 (W) ®1u,), V(H) = 3 0(0)

heH

for irreps 1 with degree dy.

Specifically for the Heisenberg group, we know that the irreps are either of the form x. 4 or o} from before.

Thus,
X
Xed(H) = D) Xealaz + <2)b, whx) = Y witbter (2.2)

TEZLy TE€Lyp
_ z _ anr ibxk
ox(H) = Z or(ax + <2> b, xb, ) = Z Z Wi+ 2 )| (2.3)
€Ly TE€ZLyp 1€l
Notice that
,db+c=0
Xc7d(Aa,b) = {p )
0, else

tr(og((az + <326) b,xb,x)) = p, since x =0

Thus, pj is a block-diagonal square matrix with dimension p?, with the irreps on the diagonal. The proba-
bility of observing either a 1- or p-dimensional irrep can be calculated using the formula

P(y) = =5 > tr(y(h)
b heH
. Thus,
1 Lo db+c= 1
P c = = Xec Aa =17 7P = -
(Xe,a) X d(Aap) {0, olse (o%)

For an arbitrary b there are p solutions to the equation db 4+ ¢ = 0. As such, the overall probability of
observing a one-dimensional representation is %. Since probabilities must sum to 0, it follows that we will

observe any p-dimensional representation with probability pp%l, although this can be verified by noting that
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there are p — 1 p-dimensional representations, each with probability % of being measured for an arbitrary

subgroup, and so the overall probability is ijl.

Now, when solving the HSCP, we are trying to determine the conjugacy class of a subgroup. As such, our
desired state, which contains a conjugate subgroup with uniform probability, is (|2, Eq. 36, 38])

1 1 _
PlH] = 3 Z PgHg=1 = —3 Z Rr(9)puRr(g7")
p geH) p geH )

where Rp is the right regular representation. After performing the FT we have a state very similar to p (2}
Eq. 40)):

LS tr((h))*

prm = @y ey (H)la, @ 1a,), cp(H) = 0
PO ey

Now, since

1

=, db+c=0 1 1
Cy. ,(H) = {7 Cop = — E ==
Xc,d( ) {0, else k p4 xezpp p2

Now, suppose the hidden subgroup is the trivial subgroup. We then have that

r04(0.0.0) =p = Plo) = - = Plo) =2
P(xca((0,0,0))) = {g“’e’lsz U Lpy = %

Thus, the probability distribution for observing a particular representation for A, ; is the same as for the
trivial group. For this reason, it is beneficial to consider multiple hidden subgroup states to solve the HSCP.
This is done in [2, Section 5.2]. Denote these pyz,, Where m is the multiplicity of the state. Then, consider

P = Y, Poirgr = 2, RR@FFR (07"
geH, geH,
Consider prg). This, when measured, yields a particular coset state px where K is a conjugate of H. Then,
when considering the multi-copy state, p%z would yield a state, upon measurement, which is px ® pg, where
K’ is a potentially different conjugate subgroup of H. This would not be particularly useful. Instead, we
wish to entangle the two coset states first before measuring, thus yielding a state of the form px ® pg; this
is the state we obtain if we measure p[g) 2

One can perform QFT on the two hidden subgroup states pgy to obtain a state which is in the basis with
representations as described above. After measuring we are left with the tensor of two irrep labels, say
11 ® 19, and the space on which they act, |1,...,dy,) ® |1,...,dy,). This will be the input for the CG
transform. That is, we have the state ¢1(Aap) ® P2(Aap)-

Now, there are four possible options for this state, as described in Section [2:2] The probability of observing
a one-dimensional state is %, and thus the probability of observing a p-dimensional state is 1 — %. Then,

1
p2

P(x®0) = P(o®x) = ”p;l,Pw@a) _ 2= ly

P(x®x) = ’
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As such, the last case occurs with the highest probability. As discussed in Section if we have two p-

dimensional irreps so that oy, ® o, one must consider the sum k1 + k2. Since k1 + ko = [0], = k1 = [—k2],,

sampling such a tensor product occurs with probability ”p;l. Thus, with high probability, the sampled tensor

product is two p-dimensional representations with ki + ko # [0],.

Consider the case where where have the state o, (Aqp) ® 0k, (Aqp) Where ki + ko = k' # [0]p, and recall

(2.3). Then,

0y (Aap) @ 01y (Aap) = D) wlest @Dk ST bk i@ 37 wlavt (0 N ibuka)jy 45

TE€ZLyp €Ly YELy JEZLy
_ Z w(aac-ﬂ-(z)b)kl-&-(ay-!-(g)b)kg Zwibzkﬁjbkali ta,j+ y><z,]|
T,Y€Lyp 1,7

The state we obtain will contain these irreps with high probability so that our state is pg, (Ag.p) ® P, (Agp) =
p%akl (Agp) ® Ok, (Aap). We can conjugate this by the unitary matrix

W= > |r—dXr|®|(kir + kad)(ky + k2) " )d]
r,d€Lyp

given in [2| Eq. 63], to obtain

ig Z w(aac-&—(g)b-‘rbxr)m+(ay+(g)b+byd)k2|T —d+z— y><7“ _ d|
x,y,r,dely

i

® |(k1(r + x) + ko(d + y)) (k1 + ko)X (kyr + kod) (ky + ko) ™!

Here, the second register may be measured; there are p possible outcomes. Since with the CG decomposition
are irreps of interest lie on the diagonal we only need to consider the diagonal entries of the second register.
These occur when kiz + koy = 0; thus we can make the substitution y = —k;lklx. In addition, we can
relabel w = r — d. This results in the density matrix

a(l+ky 'k
2

1)
+")|u +xz(1+ k51k1)><u|

1 Z Sk

T, UEZLy
Finally, one can relabel this with s; = u + x(1 + ky 'k1) and collapse the result to the pure state

k1kab

1 t92
E w"® |s), where RS

\/ﬁ SE€ELyp

We wish to find b, however this requires a unitary transform which decomposes the state so it does not
contain a square.

(2.4)
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Specifically in [2] it is claimed that there is a unitary transform

U %W@ | = V) — [ty and Uy - [0) — [0)

See Claim [2.3.3.0.1] and the discussion below for some additional details.

Now, we can consider the above sum as being over x € Z,, where 2 = s?; then s = +4/7, so Eq becomes

1 T T
—( ] W' |y + > W' = V) +|0))
\/]77 TE€Lp,x#0,5=1/T TE€Lp,x#0,s=—+/T

1
=— W (W) + | — 0 2.5
\/ﬁ(zez;;eo () + | ») +10)) (2.5)

Applying U, to Eq[2.5 we obtain

2 . 1
= WPl + —=[0)
\/;welp,z#O \/ﬁ
1

Then, after an inverse QFT and measurement one obtains ¢ with P(t) = 5 + O(p%) from which one can
determine b.

What if instead of a degree p representation we measure X, 4, ®Xe,,d,; that is, two degree one representations?
In this case,

b dy+x2da)+ +
Xcl,dl(Aa,b)®XCQ,d2(Aa,b) — Z w (z1di+z2da)+cr1m1+caza _

Z1,T2

{pz7 with prob p%
0

That is, given an arbitrary X, a, ® Xe,.d, We will measure the value p? with probability 1%. Since the

probability of measuring a one-dimensional irrep is 1% we have that the overall probability of measuring two

one-dimensional irreps is %%p%% = 1%. And so the probability of obtaining any information from this case

is quite small. However, this would result in X, +¢,,d; +ds (Aa,b) and so standard techniques could be used to
solve, since cq, ca,dq, dy are all known.

If one of the irreps is of degree one the process would be similar. The resulting state would be nonzero
with probability %; overall the chance of this happening would be p%. Since the label of each irrep is known
determining b would be simple from x. 4.

Finally, if both irreps are of degree p but ki + k2 = [0], then their direct product is a series of degree one
representations. Thus, summing over all of it would yield similar results to above. In addition, this would
occur with very small probability.
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2.3 Weyl-Heisenberg Group

The following section interprets and describes the methodology and results of [I7], which is similar to the
methodology described in Section by [2] but has been generalized to extraspecial p-groups of exponent
p and order p?"*! for any n > 1. Such groups are called Weyl-Heisenberg groups and are of the form
VAR W/

P i

The definition of this group is very similar to that of the restricted Heisenberg group: W, = {(a,b,c) : a €
Zp,be Ly, ce Z;} where the group operation is defined by

(a,b,e)(a’ b, ) =(a+d +V - -c,b+b,c+ )
as before, except now b - ¢ is a dot product of vectors.

Let us denote the vector space ZIQJ” by V and let m : W, — V be the projection map defined by n((a,b,c)) =
(b, ¢).

Claim 2.3.0.0.1. The map 7 defined above is a homomorphism where w(gh) = w(g) + w(h) Yg,h € W,

Proof. Let g = (a,b,¢),h = (z,y,2) € Wp. Then, gh = (a + = + yc,b+ y,c + z) € W,. Now,
m(gh) =7m((a+z+yc,b+y,c+2)=0b+y,c+2z)=(bc)+ (y,2) =7(g) + w(h)

since V is a vector space and thus linear in addition. O

2.3.1 Subgroup structure

The subgroup structure of this group is a generalized version of the Heisenberg group.

Claim 2.3.1.0.1. The center of the group W), is the commutator subgroup W, = {(1,0,0)) = Z,.
Proof. W]; is clearly a cyclic subgroup. As such, it commutes with every element of W),:
Let g = (a,b,c) € Wy, (2,0,0) € W,. Then,

(a,b,¢)(x,0,0) = (a + z,b,¢) = (x,0,0)(a,b,c)

Also, it is normal:
(a,b,¢)(x,0,0)(=a + be, =b, —¢) = (x — a + bc — ab,b— b,c — ¢) = (2,0,0) € W,
However this also follows from the fact that Wzl) is the kernel of :

7((a,b,¢)) = (0,0) < (b,c) = (0,0) = (a,b,c) € W,
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Since the kernel of a homomorphism is a normal subgroup, we get that Wz/) must be normal in W),
Finally, let ¢ : W) — Z,, be a map defined by 1(x,0,0) — x. This is an isomorphism:
It is clearly surjective. It is also injective: suppose (x,0,0),(y,0,0) € W,. Then,
¥((2,0,0)) = ¥((y,0,0)) © z =y < (2,0,0) = (,0,0)

Finally, it has the homomorphism property:

¥((2,0,0)(y,0,0)) = ¥((z +,0,0)) = (z +y) = (z) + (y) = ¥((=,0,0)) + ¥((y,0,0))
Thus, we have that W) = Z,. O
In fact, more can be said about the vector space V: we can associate it with the quotient Wp/Wz’) =
{(0,0, c)WI') 1 b,ce Zg}. That is, recalling the projection map 7, notice that this gives an isomorphism on

{(0,b,¢) : b,ce Z;}}. Thus, if we associate each coset with an element in the above set we see that 7 allows
us to associate the quotient with Zp.
Next, we have the subgroups N; = {(a, i, ) : a € Zy,x € Zy},i € Zp, N = {(a,b,0) : a € Z,,be Zy}.

Claim 2.3.1.0.2. The subgroups N;, N are normal.

Proof. We know that for any two elements g = (z,y,2),h = (a,b,c) € W),
ghg™ = (a — yc + bz, b, c)
Now, suppose h = (a,vi,v) € Nj,v € Zy. Then,

ghg™!

= (a — yv + viz,vi,v) =€ N; since a — yv + viz € Z,,
Similarly, if h = (a,b,0) € N then

ghg™! = (a + bz,b,0) € N since a + bz € Z,

Finally, we have cyclic subgroups of the form
H = {(a,b,c)y = {(ax + (;)b e,bxyex) ra,v € ZLyb,ce Ly}

These can be divided into two subclasses, with either ¢ being the zero vector or a vector with only ones and
zeroes as entries.

The first subclass, call this A, p . can be enumerated by allowing a to range through all of Z;, and b over Zj.
On the other hand, there are )" ; (7;) possible choices for ¢, with each ¢ having i ones and n — i zeroes.
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The other subclass, A, is given by letting ¢ be the zero vector, allowing a to range over all of Z,, and b
to be vectors in Z;; with ones and zeroes as entries. Note that if b is the zero vector then this subgroup is

simply the center. Not including b = 0 € Z;; there are Sy (") choices for b.

i

Moving forward, a cyclic subgroup H = {((a, b, ¢)) will be considered to be generated as described above, in
order to avoid considering duplicate subgroups; this will be referred to as ”standard”.

Claim 2.3.1.0.3. Let H = {(a,b,¢c)) be a cyclic subgroup of W,. Then its conjugate subgroups are of the
form {(e,b,¢)), a € Zy,. That is, its conjugacy class is determined by the value of b, c.

Proof. Suppose g = (d,y,z) € W, and let h = (ax + (3)b - ¢,bx, cx) € H where x € Z;,. Then,

(d,y,z)(ax + (;C) be,bx, cx)(—d + yz,—y, —z) = ((a — cy + bz)z + (;) b, bx, cx) € Afa—cytbz)bie

Since the values of y, z range over the whole group we have that the conjugate subgroups of H are all the
subgroups Aq p,c, ¢ € Zp,. O
Since the subgroups V;, N are normal subgroups we will not consider these in our analysis.

Consider a subgroup H = (a,b,c)” = (az + (3)bc, zb, zc) and define the vector space Sy = {(b,¢) : (a,b,c) €
H} = {w(h): he H}. Our goal is to determine the value of b, ¢, since these determine the conjugacy class of

H as per the claim above.

Now, we have that
Sug ={m(h):he H} = {(bz,cx) : v € Zyp},

and all that we need to determine is the value of b, c.

Claim 2.3.1.0.4. Suppose H, K are non-normal subgroups of Wy,. Then, these are conjugate < Sy = Sk

Proof. Suppose H = {(a,b,¢)), K = {(d,e, f)), where the generators are of the standard form mentioned
above.

Assume H, K are conjugate. This means that b = e,c = f. Then,
Su ={n(h):he H} = {(bz,cx) : x € Zy

Sk ={m(k) : ke K} = {(by,cy) : y € Zp}

These are clearly equal. However, this can also be shown be letting (bx,cx) € Sg. Then, since x € Z, we
know that (bx,cx) € Sk = Sy < Sk. Finally, |Sg| = p = |Sk and thus Sy = Sk.

To prove the reverse direction, suppose Sy = Sk. Then, we must have that

V(bx,cx) € Sy, (bx,cx) € Sk = (bx, cx) = (ey, fy)
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Since this is true for all x, take x # 0, which implies that y # 0. Then,
= (bx,cx) — (ey, fy) = (bx —ey,cx — fy) = (0,0) s cx — fy=0=bz —ey
for some y € Zy.

Since this is true Ya € Z, consider = 1. Then, b = ey,c = fy,y € Z,. Then, H = {(a, ey, fy)). Similarly,
we could rewrite K as K = {(dy, ey, fy)) since every element is a generator because it has order p.

Then, by Claim [2.3.1.0.3] we have that H, K must be conjugate. O

Thus, in order to solve the HSCP one must find a basis for Sg.

Now, consider H = {(a,b,c)),h = (ax + (g)bq br,cx)e H,g = (u,y,2) € Wy,a,u € Zy,,b,ce Zy;. Then,

(u,y, 2)(ax + (g) be, bx, cx)(—u + yz, —y, —z) = ((a — yc + bz)x + (;) ¢b, bz, cx)

1

and so gHg™" = H = b-z—y-c=0. We wish to determine when this is the case.

To do this, let us define the operation on the vector space V' where V(x,y), (z/,y') € V,S((z,y), (/,y)) =
x-y —y-a.

Next, let (y,z) = n(g) € V and Sy = {n(h) : h € {(a,b,¢))} = {(bx,cz) : x € Z,} from above. Also, define
S = {(b,c) e V: S((b,c), (z,y)) = OV(z,y) € Su}.

Thus, V(bx, cx) € Si, S((bx, cx), (y,2)) =0 = (y,2) € S§.

On the other hand, suppose (y, z) € S7. Then, S((y, 2), (bx,cx)) = 0 = (bz — yc)z¥(bx, cx) € Sy.
Now, let G ={ge W, :7(g) = (y,2)} = {(¢,y,2) : c€ Z,}. Then, gHg~* = HVg € G.

This proves the following claim:

Claim 2.3.1.0.5. Suppose H = {(a,b,c)). Then, Yge W, gHg™! = H < n(g) € S%

Claim 2.3.1.0.6. The subgroup H = {(a, b, c)) is abelian.

Proof. While this follows from the fact that H is a cyclic subgroup generated by one element, we can alsso
justify it by letting h = (ax + (3)bc, bz, cx), g = (ay + (4)be, by, cy) € H. Then,

(az + (;) be, bx, cx)(ay + (g) be, by, cy) = (ax + (g) be+ ay + (g) be + bexy, bx + by, cx + cy)

= (ay + (g) be, by, cy)(ax + <§> be, bz, cx)

since the dot product and scalar multiplication commute. O
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Claim 2.3.1.0.7. If a subgroup H < W), is abelian then ¥(b,c), (V',¢') € Sgr,bc’ —b'c =0 and thus Sg = S
In fact, forall one-dimensional subspaces S of V., S < S*.

Proof. Let h = (a,b,¢) € H and suppose H is abelian. Then, for all g = (z,y,2) € H,

ghg™ = (a —yc +bz,b,c) = (a,b,¢c) = bz —yc =0
Since h, g € H we know that w(h) = (b,¢),m(g9) = (y,2) € Sg. Recall the inner product defined above. Then,
Vr(g) € Su,

(b,e) - (y,2) =0 = (b,c)eSIJ;, — SHCSIJEI

2.3.2 Representation theory

The representation theory for this group is analogous to that given in We have p?" one-dimensional
representations

2mi

a-y+b-z n
VTR w=e" ,a,b,y,2 € Ly, x € Ly

Xa,b(mayv Z) =w

as well as p — 1 p"-dimensional irreps

or(a,b,c) = w* Z Wi+ )i, ke Z%

€Ly
with character

n, ak b —
abe) - [P @b = @00
0, else

We will need to consider these as a normalized sum over all of H = {(a, b, c)):

Xe,d(H |H| Z Xe,d(az + <2>bc xb,cx) = — Z dzb+tcex

:L’EZ“ :EEZ”

_J1L, db+ce=0modp = (e,d) € S
B 0, else

Z or(ax + < >bc xb, cx) p— Z (az(5)be)k Z W™k i + e )il (2.6)

z€Z2 €Zy i€z

IHI

Since Sy is a one-dimensional subspace of V', and dimV = 2n, we know that dim(S3) = 2n — 1.
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2.3.3 HSP

We are now ready to describe how [17] solved the HSP in this class of groups.

As before, we want to prepare two coset states, perform a QFT over both states, and measure the irrep label
and index for each state. The probability of measuring a certain representation p is given by the formula

du|H|
P(u) = £
(W,

trace(u(H))

where in general P(x) and P(o) refers to the probability of measuring any 1- and p-dimensional represen-
tations, respectively. Thus we have that

\H| —t, (c,d) € S 1Szl 1
P(X(e) = X (e (H) = { P P(y) = S
(X(e,a)) |Wp|X( ) (H) 0. else (x) T
1 1 p—1
Ploy) = ——xk(H) = - = P(o) = ——
(k) oS (H) ’ (o) )
There are four possible outcomes, which occur with probabilities:
1 -1 —1)?
Px®x) = ?aP(X®U) = QpPT,P(aQ@o) = (pﬁ)

This will result in measuring oy, and oy, with high probability.

Now, after Fourier sampling we have a state proportional to o (H)®c;(H). If k+1 = 0 then after performing
a CG transform ([I7, Eq.13]) we obtain

k

w3 @@= w ) —ul ) 1y 4 b whu,w + ¢ — ¢f (2.7)

(a,b,c),(a’,b@c’)EH,u,wGZg

Consider the entries on the diagonal of this matrix. These occur when u + b — b = u = b = b’ and when
w+ ¢ —c¢=w= c=c. Since our subgroup is H =)(a, b, c){, we also have that a = a/, since the elements
in H correspond to (az + (3),bx,cz) and (ay + (), by,cy) so by = bx = y = v = a = /. Thus, we have
one-dimensional entries along the diagonal; these are

i Z wk(wauc) = X—uw (H) (28)

n
p (a,b,c)eH,'u,,wEZLL

While our goal would be to obtain such a state, with high probability we will instead obtain the state

|H2 oy
= WRatb)H U@+ 1 4 ey 4 W, vl (2.9)

(a,b,c),(a’ b, c")eH u,vely

ox(H)®oy(H)

We wish to relabel the irreps so that k = —I. As such, consider the equation 221 4+ k = 0 which has a solution
with probability % (see below for a discussion). We then require a unitary transform V' which returns the
square root of a register.
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Claim 2.3.3.0.1. There exists a unitary transform U which which acts as follows:

1
Vs (V) +] = V) = [o)
U (W) | - VE)) — |ex)

Sl

2
U:10)—10)
Where ex = y* for some y € Z,.

Consider the unitary U defined above. Then, if we apply U instead, we obtain a superposition of two square
roots of x. Measurement will allow us to obtain one of the two solutions with equal probability.

1

-k, 1 1 —k —k
VIOl 7510 + 1) = ﬁ<ﬁ, 0+ 1)

Measuring the second register will yield the desired 4/_7]“ with probability % Set a = 4/_Tk and let

Specifically, since we wish to find consider

Uy : |luy — |au) be a unitary transform. If we apply this to the first register of the above state; that
is, to o (H), then we obtain

Ugor(H)U! = Z Wk | o (u + ) Waul
(a,b,c)EH,ueZ;f

_ Z wk(afza'Jr(a*lb')(a*lu'))|u/ + C/><’LL|

(a’,b’,c’)eH,u’EZ}T;

_ Z wka72(a'+b’u')|u/ + c’><u|

(a’,b/,c’)EH,u’EZ;}
= Oka—2 (1/Ja (H))

where we have defined v, (a, b, c) = (a?a, ab,ac), and v’ = au.

Since we specifically chose a = \/? and a2k = (F})k = —l we have successfully relabeled oy (H) as
Ul("/}a(H))'

Claim 2.3.3.0.2. 9, : W, = W, is an isomorphism whenever o # 0.

Proof. Suppose a # 0. Then, consider keri,,:
(a,b,c) € kery < u(a,b,c) = (0,0,0) < (aa,ab,ac) = (0,0,0) e a=b=c=0

Thus 1, is injective. It is easy to see that it is also surjective: consider (a,b,c) € W,. Then, the element
(@', b, ) = (@ %a,a b, o™ c) must exist in W, and ¢, (a’, V', ") = (a,b,c). O
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Claim 2.3.3.0.3. 9, (H) is a conjugate of H.

Proof. Since 1), is an isomorphism we know that |1, (H)| = [H|. It suffices to show that Sy = Sy_ (m)

Sy ={m(h):he H} = {(bz,cx) : x € Z,}
Sy ) = {(abz,acr) 1 x € Ly}

Since a € Z;, we must have that az € Z, and thus if we let y = ax we can rewrite Sy, (mr) as
Spamy = {(by,cy) s y € Lp}

Clearly, Sy = Sy, gy and thus by Claim [2.3.1.0.4] H, 1, (H) are conjugate.

Claim 2.3.3.0.4. Let Ay p. = {(a,b,¢)). Then, Yo(Aap.c) = Avap.e

Proof. Note that by Claim [2.3.3.0.3| we immediately get that 1, (A4 ) must be a conjugate of A,y . and
thus it must be of the form Ay g ..

Specifically, since ¢, ((ax + (925) be,bx, cx)) = (a?(ax + (;)bc),abx, acr) we get that
Ya(Aap.e) = {(aPa,ab, ac)) = {(a*(azx + (g) be), abx, acx) : x € Ly}
Anape = {(aa,b,c)) = {(aaz + <§) be,bx,cx) : x € Ly}

Let (a?a,ab,ac)® = (a?(ax + (3)bc), abz, acx) € Yo(Aap.e), @ € Zy. Then, since a~t € Z, we have that
z = a2’ for some 2’ € Z,. Thus,

/
(a®a, ab, ac)® = (a’a, ab, ac)o‘_1$ = (aax’ + (2)1)0, ba', cx') € Anap,e

Similarly, let (aa,b,c)¥ = (alay + (32/) be), by, cy) € Aaape,y € Zp. As before, since o,y € Zy, let y = ay'.
Then,

/

(aa, b7 C)y = (Oé(l, b7 C)ay/ = (O[2 (ay, + <y2 ) bC), abyl7 acy,) € 1/}01 (A(l,byc)

Thus, Aap = {aa,b,c) = {(a?a,ab,ac)) = ¥ (Aap.c) as required.
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Consider the state in Eq[2.9] and suppose we have relabeled oy, (H) as 0_;(¢o(H)). Then, we get

H 2 ’ /
o 1(Va(H)) ®oi(H) = % Z wTHAFBOH@ ) 1y 4 O v+ ¢ W, v
p (A,B,C)eyo (H)

(a’,b',c")eH,
u;uEZf,"*z
_ % Z wl(a(i—ay)+bc((§)—a(g))+b(vm—yu))|u+ ez, v +cy><u,w|

p

x,yEZp,u,vEZg

To this we can apply the CG transform given in [I7, Eq.21] to obtain

1 Z wl(a(:rfozy)+bc((g)fa(g))+b(va:fyu))+%(u+cz+v+cy)wlfé(u+v)w2
2n—2
p w,yeZp,u,v,wl,wgeZg
lu+ cx — v — cy, wi Xu — v, ws|
_ 1 Z wl(a(wfay)erc((;)7a(g))+b(vw7yu))+%((u+v)(w17w2)+(cw+cy)w1
2n—2
p x,yEZp,u,v,wl,wzeZ;}
|u+ cx — v — ey, w1 ) u — v, ws
Now, to simplify7 we can substitute v’ = v — v,v’ = u + v and note that v = “+_2“+“ = ”/;“/ and
u = u+v;v+u — u +U Then we get
21 . wl(a(m—ay)+bc((g)—a(g))-&-b(%z—y%)ﬂ-é(v’(wl—wg)+(cr+cy)w1
p " x,yEZp,u’,v’,wl,wZGZg
|U/ +cx —cy, w1><u/7 w2|
_ Qi_Q Z wl(a(zfay)erc((‘;)fa(g) *12/17(z+y)+w1c(z+y)+”7ll((w17w2)+(937y)b) (210)
p

m,yeZP,u’m’,wl,wzeZ;’
[u' + ez — cy, wi){u’, wo|
Ideally we would like to simplify this. Since w is a root of unity, we know that summing over, say, w* for all

of k€ Zy, k # 0 will yield 0. Thus, as seen in [I7], since v only appears as an exponent of w in Eq. it
can be factored out. Thus, consider the portion of the above equation that is a sum over v’:

2 w ((w1 wa)l+(z—y)b) {pn7 (wl - w2> + (LU — y)b =0

vieZp 0 else
Thus, we only need to consider when (w; —ws) + y)b=0= b(x —y) + w1 = we. With this substitution
and then relabelling by w = w; + b(x — Eq - becomeb
1

wl(a(zfay)+bc((z)7a(g))+b (z— y))+§((r+y)(w7bz+by)|u/+cx_cy’w_b(x_y)><ul7w| (211)
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Now, recall that the conjugate subgroups of A, ;. are determined by b, c. Suppose c is the zero vector; then b
%n its ”standard form” is one of >7_; (f ) possible vectors with only ones and zeroes as entries. Then Eq
is

o WD E Dy — bz — ), wl

z,yeZP,u’,wEZ;}

If we then let 2’ = x — y then we obtain

wl(a(x/+y(1—a))+b“7la:’)|u/’ w— bm'><u’, wl
pn72

/', y€ly ,u’,weZ;
After measurement we obtain a |w—bz’) and |u’), both with probability #, collapsing the state to a multiple
of
Z e +y(1—a))+b4 )

y'€Lyp

which is only nonzero if 2’ + y(1 — a) = 0.

On the other hand, consider H = A, ., ¢ nonzero, for which the value of b, c determines the conjugate
subgroups. As such, we do not care about the value of a for the HSCP. Thus, we want to remove in from
our sum. To do this we can use the trick in [I7], in which it is observed that for a subgroup H there is
a conjugate subgroup of the form Ho = {(%£,z,y) : (z,y) € Sg}. If H = A, this subgroup would be

Aope = {(bcg”2 Jbx,cx) s w € Ly}

To obtain this conjugate subgroup, let g = (&, 7, 2) € W), be an element such that H9 = gHg ' = Hy. Then,
we must have that for any (z,y,2) € H,
-1

IN Yz
= (x+yz—yz7y,z) = (?J/vz)

9(z,y,2)g
Once again, if H = A, then this would correspond to

2

bew bz, cx)

glax + <§> ch,bx, cx)g! = (az + (;) cb+ bxz — gx,bx,cx) = (T, ,

In addition, for 1, (Aap.c) We want 1, (g) = (a2, af, a2) so that

Vo (9)(a?(az + (;) be), abr, acx)a(g) " = (o (azx + (;) be) + a’brz — ojex, abr, acr)

a?bex?

:(2

, abx, ace)

However, since 94 (Agpc) = Aaap,c we could instead consider some ¢’ = (', ¢/, 2') so that

/ Y —1 _ Y NV _ bcy2
g (aay + L by,cy)g™ " = (aay + o )be by =7 cy, by, cy) = (T,by,cy)
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However, it is easy to see that the Hy = Aoy, for both A, p . and Agepe and thus g = ¢’. Now, consider
Eq. with the normalization omitted, and make the required substitutions with g defined above:

wl(%(12fyz)+@6(mfy)fb2(rfy)+b%'(rfy))Jr%((Hy)(wﬂbwy)‘u'+0(xfy)7wfb(z,y)><u'7w| (2.12)

T,YELyp,u’ ,wEZZ

Consider the substitution 2’ =z — v,y = v + y. Then Eq becomes

N ~ ’
wl(%c(x'y/)+ycx/szx'+b“7xl)+%Cy'(wfb:r') \u' + CSC/, w — bx/><u/7 w‘

',y €Ly ,u’ ,wEZg
After measuring to obtain u’ + cx’,w’ = w — bx’, we are left with a multiple of

2 wl(%(w’y’)+@cx'7b2x'+b“7/z')+%Cy'w'

y' €Ly

If we modify Eq somewhat this may yield better results. First, do not simplify v, (H). Second, consider
g = (2,9, %) where

be

glax + (;) be,bx,cx)g™t = (a + <2) bc + bz — e, b, c) = (§’b7 c)

Make this substitution and ¢, (¢g) instead and relabel so that our sum runs over elements in Sg; this is allowed
as the substitution will remove the ”7a” term from the equation. That is, let b := bx,c := x,V := by, :=y.
Then,

in Z wé(2(@cfb2)72a(@c’72b')+u'(b+b’)+w(c+c')|ul Ye— CI,U) Sy b><u’,w\

p (b,c),(b/,c’)GSH,u’,we‘Z;}
Here we have used Claim [2.3.1.0.6| and Claim [2.3.1.0.7] in order to simplify, as these claims imply that
b'ec—c'b=0since (V,c),(b,c) e Sy

Now, let us try to simplify by setting ¢; := ¢—¢’, b := b—b'; since Sy is a linear vector space this is allowed.
Then,

S

o Z wé(2(@(cl+c')7(b1 +b')2)—2a(gc’ —2b")+u’ (b1 +2b") +w((c1+c')+c’) |ul e, w— b1><u,7 ’LU| (213)

(b.c), (b, )eS h ! weLy
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Finally, this becomes:

1 Z wz(b'(u/+z(a—1))+c’(g(1—a)+w))+g(bl(u/—22)+q(w+2@))|u/ + e, w — by !, w)
pTL

(b1,c1),(,¢')€SH W ,WELY
Measuring yields pairs |u' + ¢1), |w — by) with the result

2 wl(b’(u’+2(a*1))+c’(g(lfa)+w))+%(b1(u'722)+01(w+2?§/))|u/ toep,w— bl><u', 11)|

(b’,c’)ESH

This is only nonzero when ' (v’ + 2(av — 1)) + ¢/ (9(1 — ) + w) = 0 since the values of (¥, ¢’) go through all
of Spr. Recall the symplectic inner product we defined previously. Then, this is nonzero when

v, ) (1 —a) +w,u +21—-a)=0= (§(1 —a) +w,u + 2(1—a)) e Sy
Thus, measurement yields the vector (J(1 — a) + w,u’ + 2(1 — a)) € S#.
If the above procedure is repeated n times we obtain a series of elements (u;,v;) € Sy and thus
(u; + (1 — )i+ (1 —a;)2) e S, 1<i<n+1

After a division by (1 — «;) and taking differences one can obtain vectors

Uj Un+1 Vi Un+1 1
= S
) ((1_041') (1_an+1)7 (1—a;) (1_an+1))€ "

(uj, v;

which form a basis for SIJ;, with high probability. From this one can obtain Sy, Hy, and H, by setting
(9, 2) = 1257 (w1 — uh, 01 —v}).

2.4 General Conclusions

A natural question to ask is what made the CG transform useful in the regular and generalized Heisenberg
groups. While investigating other groups may be useful to determine when this transform is helpful, the
observations listed below may help shed some light.

Firstly, the hidden subgroup in the above groups were normal in a normal subgroup of the overall group.
Furthermore, due to the nature of the conjugacy classes, solving the HSP could be reduced to solving the
HSCP, followed by some post-processing and the algorithm for solving the HSP in normal groups. Thus,
groups in which conjugacy classes have a useful characterization may benefit from the CG transform, or have
some reduction from the HSP to the potentially simpler HSCP.

Next, these groups are extraspecial p-groups. Thus, they have some useful properties, which makes them
almost abelian. Firstly, they are two-step nilpotent and solvable. Further, the group mod the center is an
elementary abelian p-group, and this is exploited in the solution.
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The fact that the hidden subgroup is abelian was exploited in the procedure for the Weyl-Heisenberg group,
and the fact that all subgroups are either normal or abelian may be of assistance, as well.

In the paper by [2I] a proof is given in Theorem 1 for why the hidden conjugates of a subgroup H, =
{(a,0)),|Ha| = q,a € Z are fully reconstructive in A, = Z x Z,, partially because of the high probability
of observing a p — 1 dimensional representation, and because of a reduction, for Z, x Z, as well. This is
similar to the fact that for the regular- and generalized Weyl-Heisenberg groups, one observes a p dimensional
irrep with high probablity; otherwise the irrep has dimension one. Not only does this allow the consideration
of only two kinds of irreps, it indicates which one will most likely be measured. Further, the fact that the
tensor product of such irreps decomposes in a useful manner is also of interest.
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Chapter 3

Wreath Product Groups

3.1 Wreath Product Overview

This chapter will discuss the HSP in wreath product groups. It will begin with an overview of these groups:
a definition, some general results, and so on, followed by some important background on the representation
theory of such groups. Finally, a specific group, Z; Zg will be examined in its relation to the HSP.

There are a number of reasons why this class of groups was chosen to be analyzed. First, wreath product
groups, in general, have a fascinating subgroup structure and interesting representation theory, with limited
discussion in existing papers. Next, under certain conditions, as will be discussed later, these are nilpotent
groups, which may have been one of the beneficial characteristics of the Weyl-Heisenberg group which allowed
for the HSP to be solved. Additionally, for Z; Zg, as will be shown, the representations are all of dimension
a power of the prime p, which may indicate that the tensor product of two representations may decompose
nicely.

Definition 15 (Wreath Product). Let G, H be groups, where H acts on a set X with |X| = n, and let
B = [,cx Gs, where “product” is the direct product. Then the wreath product of G, H is

GVH=BxyH={(0bh):be B,he H}

where B is called the base group, and v is a homomorphism ¢ : H — S,,.

The group operation can be defined by
(b:h)(c;9) = (g (b)eshg),  and  (bih)™" = (Y1 (b71);h7Y)

An alternate way of viewing this group is according to the definition in [5]. Let G, F' be two groups where
G acts on a finite set X. Let FX = {f : X — F} be the set of maps, and define the operation on FX as

(f -h)(@) = f(x)h(z) Vh,fe FX xe X
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Figure 3.1: Z31Z5 Tree

In this case, G can be considered to act on FX as

(9/)(x) = f(g~'x) and g(f - f') = gf - gf" and (gf) " = gf "

Finally, the group operation can be defined as

(L9 )= (g [ [, 99), where (¢f - f)(z) = (g7 ) f(x)

The similarities of this definition with the above one is clear. For the most part, this definition will not be
employed.

Finally, one can view H as a subgroup of S;, when |H| = n, so that X = {1,2,...,n}, and so H acts by permu-
tation on X, so that the end result is permuting the elements in B. That is, let (g1, .., gn;7), (R1, ..., hn;0) €
G ! H where g;,h; € G, 7,0 € H. Then the group operation is

(917 <y gns T)(h'h seey hn,U) = (ga(l)hla "'ago'(n)hn;TU)

Clearly, if |G| = m, |H| = n, then |G H| = m™n. Unfortunately, in [4] it is shown that G ! H is nilpotent if,
and only if, G, H are p groups. However, if G, H are solvable then G ! H will also be solvable.

Visually, one could picture this as a tree with height 2, where the first layer of nodes represent the base
group, and the roots are the elements in G. As an example, consider G = Z3, H = Z,. Clearly, we have two
“layers” of actions then: H permutes elements in the base group B by its action on X, and each element of
this base group is the group G which acts on a set Y. That is, the automorphism group of the above tree is,
in fact, isomorphic to the wreath product G H.

Figure helps visualize iterated wreath products, which can be thought of as increasing the height of the
tree by appending additional nodes to the current root. This helps justify that the wreath product is an
associative operation. That is, given three groups G, H, K,

(G'HN K =G (H 1K)
Lemma 3.1.0.0.1. Let G, H,K be three groups, where H acts on a set X and K on a set Y, where
|X| =z,|Y| =y. Then, there is an isomorphism ¥ : G (H1K) —» (G1H) ! K.

Proof. First, let
GV H = {(g9,h) : g€ GX ,h e H}

(GYH) K ={((g9,h),k) : (9,h) € (GLH)Y ke K}
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Since (GVH)Y = (G H),...,(GUH)) = (GX x H,...,GX x H) we obtain |XY| copies of G and |Y| copies
of H.

For brevity, denote the action of a group on the base group as a dot product; that is, for (g,h), (¢, ') €
(GUH)Y [ let (g,h) = ((g3, .., gL h1), ..., (97, 9 hy)), (g, 0) = ((g1"5 -, 953 P1), s (917, s 9225 BSy)), s0 that
g, h are y—dimensional vectors with entries (g%, ..., %), h;, 1 < i < y respectively. Then, for ((g, h); k), ((¢',h'); k') €
(GUH) K we get

((9,0), k) (", 1), k') = (K- (g, W) (g, "), k')
= (g1 s g2 1), oo (G s 025 1) ) (91 o G, o (9 0225 )5 )
= (K- (g1 92:00)) (g1 s gl 1Y), (k’-(gi’,- gL ) (97 g B R
= (07 B O ) (G s g 1) (0 Y g O By ) (91 gV ) )
(g KONy
(g <y))g/ g )
(

(0" (K - g))g', (K- I ), k')

On the other hand, let
HK ={(h,k) :he H ke K}

GU(HK) = {(g,(h, k) : g€ G*Y ,(h,k) e HI K}
where, (h,k) = (h1,..., hy; k) and thus (g, (h, k) = (91, .-, Gay; (R1, ..., hy; k)) with the group operation, for
(gv (ha k))v (g/v ( ,7 k/)) € GZ (H i K), defined by
(g, (h, k)", (W, k) = (W, ) - 9)g", (h, k) (W', "))
(W, E') - g)g", (K" - W), kK"))

Consider an element g = (g1, ..., guy) € GXY

so that g = (g1, ..., Gy)-

and partition it to obtain g1 = (91, ..., 92), Gy = (Goy—z» - Goy)s

Next, consider the action of (h, k) = (h1, ..., hy; k) on GXY. We wish to map this action; that is, the action
of H1K on GXY in G (H ! K) to an action by k € K on the base group (G H)Y in (G H)! K.

Then, one can define ¥ : (G (H1K)) —» (GVH) ! K by

\P(((hlak/) 'g)g/’(k/'h)h/’kk/) \Il(( IRRE ’hwk) (gAlw 7gAy)((‘gA/17"'7gZ/))a(k/' (h17~-~7h ))( IRRE h/) kk/)
(R4 (k‘ 91)gh: hir ), e ((hy - (K -gAy))gz/; i (yyhy))
((

( ( ))g ) (k, : h)h/)v kk/)

I

where g is a y-dimensional vector with entries g;,1 < <y, h is simply a y-dimensional vector with values
hi,1<i<y,and k = k.
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If the input to ¥ is simply (g, (h,k)) = (91, .-, Gzy, (1, ..., hy; k))), then
Y ((g; (h, k) = (91, - Ga; h1)s ooy (Gay—s o s By)); K)

This idea allows for the definition of an iterated wreath product, given in [23]:

Definition 16 (Tterated wreath product). Let r be a positive nonzero integers. Then the iterated wreath
product of a group G can be defined recursively as

Wy =G
W, =W,_11G
So that W,. = G {...1 G where G appears r times.

When G = Z,, for a nonzero integer n this group will be denoted W, ,..

3.1.1 Group structure

In this subsection we will consider the general subgroup structure of a wreath group, and also discuss
conjugacy classes in such a group.

Let G H be a group with base group G as defined above. Recall that if (b;h) € GIH,b = (g1, ..., g.) Where
gi € G,z = |H| and where 9 denotes the action of H on base group G, then

(b; h)_l = (wh*1 (b_l); h_l) = (g}:}l(l)a "'79;}1(@5 h_l)

Then, let x = (b;h),y (a, k) e GV H. Then,

)

= (Wp(b” );h’ )(a; k) (b; h) = (¥p-1(b); A1) (¢n(a)b; kh)
= (Yrn(p-1 (0~))¢bn(a)b; k™ kh)

= (Yr(b™ Wh(fl)b; h~'kh)

which gives us a formula for determining conjugates of an element. In general, if K is a subgroup of G H,
and g € G H, then let
K9={g'kg: ke K}

denote the conjugate of K by g. Two subgroups K, K’ of G H are then considered conjugate if K/ = K9
for some element g € G.

Notice that the subgroup B, = {(b;ep) : b€ B} is normal in G H.

Now, let us determine the commutator and center subgroups of G H. Let x,y be as defined above. Recall
that x € Z(G1H) < 2 'yz = yYy € G H. Thus, we wish to determine the form that z € Z(G ! H) takes
by solving this equality. Then,

o™ tya = (r(07 ) en(a)b; A kR) = (ask) if Y07 )¥n(a)b = a,h™kh = k
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Of course, h~'kh = k holds for h € Z(H). In addition, b must be of the form b = (g,...,g),g € G so that
Y (b) = bYEk € H. In general, the subgroup

AG)={b:be GX h(b) =bWhe HY ={(g,....,9) :ge G} =G

is called the diagonal subgroup of GX. Thus we require that b € A(G) so that any action on it by h leaves
it unchanged. Using such a b then the expression above becomes b~ 14, (a)b = a; that is,

-1 -1

(g ,--~,g_1)(ah(1)7~-~7ah(n))(9,--~>g):(g ah(1)9>~-~7g_1ah(n)9)

Thus, we require that g € Z(G) and that 1, (a) = a. Since this must hold for all a € GX, if | X| > 1 we
additionally require that h = ey. If |X| = 1 then h acts trivially on a and so h can be any element in H.
Finally, we obtain the following set for the center, provided that |X| > 1:

Z(GUH) = {(ben) : b= (g,...,9) € AG),g € Z(G)}
If | X| =1then Z(GVH) ={(b;h) : be Z(G),he Z(H)}
Next, the commutator subgroup is generated by
y~ Ty = (G (ah), KT k(07 ) (a)bs h T k)

= (Yn-1kn (-1 (™)) (b7 bn(a)b; k"R k)
= (Yppr—ry(a” k(0 )Pn(a)bs kA k)

When H is abelian this expression becomes

yrryr = (@ R(b )Y (a)ben)

3.1.2 Zni1Z,

As a specific subset of wreath product groups, consider G = Z}, H = Z;, B = Go x ... x G4_1, where p,q
are prime powers. Then,

Zy v Zy ={(g0s - 9q-15h) : gi € Z) ,he Zyp = {(b;h) : be B,h e H}

We can then consider the action of Z, on B as addition mod q: let (go, .., g4—1;@),, (ho,...,hg—1;0) € GLH
where g;, h; € G,a,b€ H. Then,

(905 - 9q—1; @) (hos oy hg—1;0) = (96 mod g + R0, s G—14b mod q + hg—1;a + b mod q)

Claim 3.1.2.0.1. Let P = ZQZZS, and Write any h € Zg as a unique string k = (kq—1...ko) = (ki)o<i<d € ZZ

where each k; € Z,. Let g = ((gv)vezg§ h) € P, where h = (h;)ogi<d, ¥ = (V;)o<i<d € ij. Then, for x> 1,

z—1

9" = (Z (gv+jh)vezg; zh)
7=0

where v + jh = (v; + jhi)o<i<d, Th = (Thi)o<i<d-
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Proof. Suppose g = ((gv)vezg§ h) € P, where h = (h;)o<i<d, v = (Vi)ogi<d € Zg. Let us prove the result using
induction on . When x = 1 this is trivial. If x = 2 then

92 = ((gv)vezg§h)((gv)vezd' h) = ((bh((gv)veZd)(gv)vezg; 2h>

((gv+h)veZd (gv veZds 2h Z ngrjh veZds 2h)
7=0

Suppose this holds for all 2 < k and consider = k. Then, since g* = g*~1g,

9" = (2 (Gusjn)vezs; (k= DR)((90)vezg; h)
= ( (gv-ﬁ-jh-‘rh)veZg (gqj)yezg§ kh)

= (2, (go+jn)vezai kh)

which proves the claim. O
Lemma 3.1.2.0.1. Let P = Z} 1 Z,, where p,q are powers of distinct primes. Then there is an element
g € P of order pq.
Proof. Let k = (e1,0,...,0;1) € P where e; = (1,0,...,0) € Z,. Also, suppose g = (((gv)vez,; ). Then,
using the previous lemma,

kY = (eq,...,e1;0),kP1 = (k)P = (pey, ..., pe1;0) = (0, ...,0;0)

Suppose 0 < z < pg and k% = (0,...,0;0). Then, g* = (3/_y Gis--r Dsjg gi—1;2h) = zh = 0 = = = agq for
some nonzero integer a.

Then,
9° = (g9 = (e1,...,e1;0)* = (aey, ...,ae1;0) =a=p
But this would indicate that x = pg which contradicts our assumption. That is, pq is the order of k. O

3.1.2.1 Nilpotency

This subsection will aim to determine the nilpotency class of P = Gt Z, where G is an abelian group.
Recall that a group P is nil-k-potent if its upper central series terminates with P after k iterations; that is,
(W' =2Zy<Zy...<Z, =P
where Z;,1 ={x € P : [x,g] € Z; Yg € P}, and since Z; = Z(P) so one can define Z;; instead according to

the relation Z;41/Z; = Z(P/Z;).
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First, let us determine what Z(P) is. Suppose z = (20, ..., 2g—1; 2q) € Z(P) so that 27! = (—z_.,, ..., —2—1-2,; —2q)
and let ¢ = (go, ..., gg—1;h) € P. Then,
2 lgr = (—2n + g2y + 2050y =2n—1 + Gzy—1 + 2g-15h) = (g0, -1 9q—1; h)

This occurs if for each i we have z; = 2,44 and z, = 0. Since this must hold Yh € Z; we must that each z;
is equal; that is, z = (2o, ..., 20; 0).

Concretely, consider the case when h = 1 and g; = 0Vi € Z;. Then,
2 tgz = (=21 + 20,0y 2g—1 — 20; 1) = (0,...,0; 1)
The last equality holds if z; = 2;41Vi € Z; which forces all the z; to be equal.
Similarly, consider when g = (1,0, ...,0;0) and then
27 g2 = (g2 ) 92,—150) = (1,0,...,0;0)
The final equality requires that g., = go =1 = 2, = 0.
Then, Z(P) = {(z,2,...,2;0) : z€ G} = G.
This gives us Z; in the upper central series of P. Next, let us find Z(P/Z;). First,
P/Z) = (9%, : g€ P}
and our goal is to find
Z(P/Zy) ={9Z1€ P/Zy : [9Z1,hZ1] = g, h]Z1 = Z1Vh € P}

Now, if 27, € Z(P/Z;) then

(9,212, = Z1 = 2 rg2Z, = g7, = 2z tgz € g7y
for all g € P.

Let z = (20, ..., 2g-1;2¢) € Z(P/Z1),9 = (90, .-, §q—1; k) € P. Then, to find Z(P/Z;) we must solve for z in
the equation

Zﬁlgz = (_Zh + 9z, + 20,00y —Zh—1 + 9z,—1 + Zq—1; h) = (907 o0y 9q—1; h)Zl

Recall that Z; = {(a,...,a;0) : a € G} and thus
9Z1 ={(g0o + a,...,gq—1 + a;h) : a € G}
Thus, the above equation becomes, for some a € G,

(—2h + g2y + 2050y =201+ Gzy—1 + 2g—15h) = (90 + a,...,9q—1 + a; h)
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Using the same process as before, first consider the case when g = (0, ...,0;1). Then,
2 tgz = (20 — 2150y 2g-1 — 20;1) = (a, ..., a;1)
Since z; = z;11 + a for all i € Z,;, we can make a series of substitutions; that is, we have that
Zo=21+a,21 =220+a=20=20+2a,20 =23 +a= 2y =23+ 3a

That is, in general, for z € Z,,
20 =Z2¢ + X0 = 2, = 29 — Xa

and thus we can write the center element as

z = (20,20 — @, ..., 20 + a — qa; 2g)

On the other hand, consider g = (1,0, ...,0;0). Then,
27 gz = (=29 + Gzy + 205y =2g—1 + Gzy—1 — 2q-1:0) = (92,5 -+, 92,-1:0) = (L +b,b,..,5;0)
for some b € G. As before, this forces z, to be equal to 0. Thus,
Z(P/Z1) ={(0,—a,....,a —qa;0)Z; : a € G}
and so
Zy ={(z,2—a,....,z +a—qa;0) : z,a € G}
This method described above for determining Z5 holds in general for subsequent Zj. It will by referred to

as the “upper central series algorithm” moving forward.

However, note that the final element can be written in two ways: z,1 = 20 — (¢ — 1)a and z4_1 = 2o + a.
Equating the two we get

zo—(g—lDa=z0+a=(1—-qa=a=a=00rqg=0eG

Clearly, if a = 0 then Z; = Zs, otherwise Z; < Z5. This motivates the following proposition:

Proposition 3.1.2.1.1. Suppose P = Z" Zg,m,d > 1, where g,n are not powers of a prime p. Then, P
is not nilpotent.

Proof. Recall that the center of P is

Z1 ={(9,..9;0): g€ Z]"}

Let g =bn? +k,—n <k <n,k # 0,0 <b<n,0< j. As discussed in [“upper central series algorithm”|
above, when trying to calculate Z, we obtain, for z = (2o, ..., 244_1;0) € Z5 and g = (0,...,0;1) € P, where
1=(0,...,0,1).

2 gz = (2 — 21, v Zga_y — 2051) = 9Z = (a,...,a;1)
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for a € Z'. After a series of substitutions one obtains two equations relating z,«_; and 2o:

zgi_1 =29+ aand zga_; =z — (¢* — 1)a =20 — (k — 1)a
Equating the two equations we get

a=—(k—1)a=a=0modn or k=0 modn

By our choice of k we know that k # 0 mod n and so that leaves a = 0 mod n. Thus, since an element in Z5
is of the form (2,2 — a, ...,z — (¢* — 1)a; 0) we get that

Zy ={(2,..,2,0): 2€ Z)"} = 73
Thus, since Zy = Z; we can conclude that P is not nilpotent. O

Now it remains to consider the case when p, ¢ are both p-groups. The following lemma describes the form
of an element in the upper central series.

Lemma 3.1.2.1.1. Suppose P = ng 1 Zg,q = p™,m = n,p prime, with the upper central series given by
{(0,...,0;0)} = Zop< Zy < .... Then, for0<j <gq, and any z € Zya,a = (a,) € B = Hwezq(Z;Ld), let

i )
zj =2+ Z (-1)* (j>az
r=1 x
then, the (i + 1) group in the series is given by
Ziv1 = {(20,21, 1 2¢—1;0) : z,a5 € Z;fd}

while i + 1 is less than the nilpotency class of P. For example, if i = 2 then we have

-1
Zs={(z,z—a,z—2a+b,z—3a+3b,...,2— (g—1)a+ <q2 )b)}

Proof. Use induction on 7' =i + 1 to prove. In the [“upper central series algorithm”| above we have already
shown that this holds when 0 < ¢ < 1. Suppose, then, that it holds for all 7/ < k and consider when i’ = k+1.
Then,

Zk+1/Zk = Z(P/Zk) = {ng S P/Zk : [g,h]Zk = Zth S P}
Let z = (20, ..., 2g—1; 2¢) € Z(P/Zk),9 = (g0, --, gq—1; h) € P.

Since the claim holds for all ¢/ < k& we know that

q—1

k—1
Zy ={(z, 24 a1,z +2a1 + ag, ..z + Y (—1)®
r={(z,24+a1,2 ay + as z 3;1( ) ( .

)ax;O) :z,a; € G}
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Thus, we need to solve for z when
k—1 g—1

27 gz = (—2p+92,+20, 0 —2h-1+0z,—1+ 21, R) 21, = (90+C’91+C—a17~-~7gq—1+C—Z (—1)96( - >az;h)
=1

That is, when 2z lgz € ng and thus 2~ 'gz = gy for some y € Z;, which in the equation above is given by

y:(C7<_a7 7C Zx O( ) (’1 1)0’1’0)
Consider the case when g = (0, ...,0;1). Then,

k-1
(20 = 215y 21 — 20;1) = ((, ¢ — a1, ..., ( + Z (=1)* <q; l)az; 1)

r=1

Using the [“upper central series algorithm”| we can see that, in general, we have that

k—1 .
Zj—1 = ¢+ Z (—l)x (i)aw + 25

r=1

z0=j(j+2 i()aw)—kzj

k—1 .
_jC+-§H—1y(i:1)&¢+zj

z=1

Using this relation, and the fact that if one considers g = (1,0, ...,0;0) then this forces the center to have
zqg = 0, we obtain that an element in the center of P/Z; must have the form

' j+1
275 = (20,20 — €y ey 20 — (g — 1)¢ — Z(—l)w( )cLz;O)Z;.C
rx=1

Notice that for 0 < j < ¢—1, if z = (20, ..., 74—1; 0) then

k-1
. j+1
Zj:ZO_JC_E(_ ( ):c
= z+1

where we reindex and let a; = (.

Then, the group Zi41 is

Tl = {(2;072;17.. 2q-1;0) 1 zj = 29 + Z ( )amzo Eng}
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Of course, (¢ — 1) = —1 mod p and (qgl) =1 mod p.
This proves the lemma. O

Proposition 3.1.2.1.2. Suppose P = Z,1 Z,,a where p is prime. Then, P is nilpotent of class pe.

Consider the p? — 1" group in the upper central series of P. By Lemma [3.1.2.1.1] this will be

x j
Zyi_1 = {(20, 215 s 2pa_1;0) 1 2j = 20 + E (-1) <x)ax,am,zo € Zyp}
=0

Before proving this proposition consider the following claim:

Claim 3.1.2.1.1. Z,a_; is the base group of P; that is, Zyi_q = ng

Proof. Of course, Z a_; < ng x 0 by the way it is defined. It remains to show that |Z,._,| = p”d.

Each a;, 20 € Zp,0 <z < p? — 1, and there are p? choices from Zp; that is, p”d possible choices for elements
and 50 [Zpa_4| = . O

Proof of Prop.[3.1.2.1.3 Denote the base group by B = Z&' x 0. Then, since Zya_, = B = {(b;0) : be Z'},
we get that
Zy ={x€P:[zx,g] € BVge P}

To determine the value of z, let x = (2o, ...,xpa_1;a),9 = (9o, .-, gpa_1;b) € P. Then,
[z,9] = (=%0 = ga + Tb + G0, s —Tpa 1 — Ga—1 + Gpa_1 + Tb-1;0) € B

Thus, x can be any element in P; that is, we get that Z,« = P and thus P is nilpotent of class p?.

Note that since the order of the k' group in the series, for k < p?, isp**! since there are k variables a, and
one z, all from Z,, if k < p? — 1 then |Z,| < B. Thus we could use Lemma [3.1.2.1.1| since Zpa_q could not
have been the whole group. O

When P = Z,» 1 Z,,n > 1, while the general form for a group in the upper central series of P is similar to
that given in Lemma [3.1.2.1.1] since p < p" there must be some modification.

Recall the [“upper central series algorithm”} these apply to this group, as well, in that we obtain, for
z = (2’0, ...,Zp_1;0) € ZQ,

(20 = 21, -y 2p—1 — 205 0) = (a, .., a; 0)

for some a € Zpn. Then, since z; — z;41 = a, after a series of substitutions we obtain two equations for the
value of z,_1 in terms of zy, namely z,_1 = 20 + a and z,_1 = zp — (p — 1)a.

While in the case when Z, ! Z,», —(p" — 1)a = a and thus this was the same equation, since p < p™ this is

no longer true. That is,

n—

wta=2—p—1a=a=p" '2,0<z<p
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and thus an element Z5 is

Zo = {(20,20 — @y, z0 — (p— 1)a;0) s a = p" " 'a, 20 € Zpn}

This will be true in general; each additional value will be of the form p"~!a, for some 0 < a, < p.

In addition, we will require that there are more variables than p; thus the binomial sum given in the lemma
must be modified to account for this. That is, consider Z,k > p in the upper central series. Suppose
z € Zy,z = (20, ..., 2p—1;0). Then,

i .
zi =20 + 2 (1)‘”(Z>am, where a; = p" ly,i<p—1
T
=0

and so a general element z is of the form
p—1 p-—l k
z = (20,21, -, Zp—2, 20 + Z (—1)1( " )az + Z az;0)
z=0 T=p

Then, for Z; we have k variables p” lag, a, € Zy, with p choices for each variable, and an additional value
20 € Zpn. This means that
‘ Zk| _ pn+k

Now, since the base group of P = Z,» 1 Z, has size p™, we require that, if P is nil-k potent, then |Z;_1| =
pt =D = prP Thus, n(l —p) = —(k—1) = k=14+n(p—1).
This discussion supports the following claim:

Claim 3.1.2.1.2. Suppose P = Zpyn 1 Zp,n = 1. Then, P has nilpotency class of 1 +n(p — 1).

3.1.2.2 Subgroup structure

Now that we understand the nilpotency class of this subset of wreath products, let us examine its subgroup
structure.

First, let us determine a generating set for P = G H = Z]" Zg. Let F = {f;: fi € H} be a generating set
for H. For simplicity take it to be the set of d standard basis vectors in Zg.

Let E = {e; : e; € G} be a generating set for G. For simplicity suppose each e; is the i*" standard basis
vector of G. Then GX has a generating set which can be found in a similar manner; namely the set
A = {(a;;0) : a;; € Z"} where a;; contains the i'" standard basis vector of Z™ in the j*" position,
0<j<q—1.

However, A contains “redundant” elements when considering I, since all elements of the form a; ;,,0 <k <
q% — 1 will be in the same H-orbit; thus only the subset B = {a; ¢ : a; o € A} should be considered.
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Note that if we are looking at a more general group then B is a set of representatives for the orbit of H on
elements in A.

Thus we can draw the following conclusion:

Claim 3.1.2.2.1. Suppose P =Gl H =Z]" ZZg with the sets B, F' described above. Then,
C=Bu{(0;f):0eG, feF}

is a generating set for P.

Now, let us find the commutator subgroups of P. Recall that the commutator subgroup is the group

P/=<{[g>h] :g7hEP}>

= (=G—ayes—9g—1—a;—0), h = (ho, .. hg—15b), ™1 = (—=h_p, ..., —h_1_p; —b) €

andif g = (go, ..., gg—1;0), 9"

P then

[gv h] (_g*av ey —G9—1—as _a’)(_hfba cey _hflfb; _b)(gb + hO, ey gb—1 + hfl; a+ b)
(=90 — ha + gp + ho, .. —9g—1 — ha—1 + go—1 + h—_1;0)
(=9-as-»—9=1-a; —a)(—ha + go + hos ..., =ha—1 + h_1 + gy—1; @)
(

= (=90 —ha+gp+ho,...; —gg—1 — ha—1 + hg—1 + gp—1:0)

Notice specifically when p = 2 then
z=[g,h] = (90 + ha + gb + ho, 91 + hat1 + h1 + gps150)
. Let k = (ko, k1;¢) € P. Then,

27 kz = (go + ha + b + hos g1 + hat1 + h1 + go41:0) (ko + go + ha + 9o + ho, k1 + g1 + hag1 + h1 + go150)

) (ko +2g0 + 2ha2 + gp + 2ho, k1 + 291 + 2hay1 + 2Ry + 2gp11;0) = kif c =0
(ko + 9o + ha + g + ho + g1 + hat1 + gos1 + ha, k1 + g1 + hag1 + hi + gog1 + 9o + ha + ho + g1 1)
=k

That is, P’ = Z(P) when p = 2.

Now, let us look at some of the subgroups of P = Z7 1 Z,.

Claim 3.1.2.2.2. Let P = Z}i 1 Z, and let K be a subgroup of B = Z,.". Then, A = {(k;0) : k€ K} is a
subgroup of P.

Proof. Clearly, A  P. Suppose (k1;0), (ko;0) € A. Then,
(k1;0)(k2;0) = (k1k2;0) € A, and (—k1;0) € A

Since K is a group. Thus, A is also a group, and |A| = |K]|. O
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Claim 3.1.2.2.3. Let P = Z;}d L Z, and suppose g = (go, ..., gp—1; ) € P. Then, if the order of a is b in Z,
and the order of Z;]:—g Gia 18 C N Z,a then the order of g is bc.

Proof. First, recall that

z—1 z—1
9" = (E Gias -+ 2 ia+(q—1); TQ)
i=0 i=0

If a = 0 then the order of g € P is the order of (go,...,gp—1) € Z;’f, which is ¢, a divisor of p¢. Thus the
order is bc = le.

Otherwise, the order must be at least g, since o(a) = g. Then,

qg—1 q—1
gq = (Z Gis-ees Z gl’o)
i=0 =0

and so the order of g? must be the order of (Zg;& gi,...,zg;& gi) € Z;f , which is simply the order of

S g e Z7;; once again this is a divisor of p?. Thus, the order of g is ¢p® where a = 0 or 1 and 0 < b < d.
Specifically, it is bc as required. O

Claim 3.1.2.2.4. Suppose P = Z}:1Z, p,q prime, and let B = Zgﬁq be the base group of B. Letbe B’ < B,
where and B' = (b). Then, H; = {(b;1)),i € Z, is a proper subgroup of P.
Proof. Of course, if ¢ = 0 then this is simply the case above.

Suppose ¢ # 0 and let b = (b, ..,bg—1) € B’. Then, the order of 7 is ¢ since ¢ is prime. Let d be the order of
Sy bie ZIn.

Then by Claim. [3.1.2.2.3| the order of (b;i) is dg < p"q # |P| = p"™%q and so H; is a proper subset. It is a
subgroup since b is also a subgroup. O

Now, let us consider subgroups of P = Z"1 Zg with multiple generators.

3.1.2.2.1 Subgroups generated by g; ;

Recall the set A = {(a;;;0) : a;; € Z™} where a; ; contains the i*" standard basis vector of Z in the j"
position, 0 < j < ¢ — 1 and the set of standard basis vectors in Zg: F={fi: fre Zg}. Finally, let

gk = (aij; fr) € P.
Claim 3.1.2.2.5. Any element of the form g; ;1 will generate a subgroup of order ng.
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Proof. The order of fj in H is ¢, and a; ; in G is n. Then, gf_j = (Z?iﬂl ;i j+if.;0). Since the order of any
element in Z7' is n we have that

j+l
(9f;2)" = (1 )] aij11,30) = (0:0)
I=j
and thus o(g; j &) = [gi,;,k)| = ng as required. O

Claim 3.1.2.2.6. Suppose H is a cyclic group, so that H = Z,. Then, the groups generated by elements of
the form g; j 1, so that fi, = [ € Zq is a generator, intersect trivially if the i values are not the same and as
a subgroup of the center otherwise.

Proof. Recall that the center of P is
Z ={(a,...,a;0) : a € G}

and we know that g, = (Z?;Ol a;;0) is in the center.

Then, since |Z| = |G| = n™ and o(gj ; ;) = n we get that {g{ ; ;> = {(as, ..., a;;0) : a; € G} < Z with equality
if m=1.

Thus clearly, a group with one generator is contained in the center. Notice that these rely on the value of
i; that is, since g; jx # ¢n(gy o 1 for any h € Z,, " # i, they do not contain the same subgroup of Z(P).
Then, (i j.k) 0 {gir.j7.k) = (0;0)

The claim follows quite easily. O

For simplicity let us consider the case when d = 1, so F' = {1}. For brevity let g; ; := gi .k
Let g = (b; h) € P and consider conjugating g; ; by it. Then,
(¢—n(d~1);—h)(aij; 1)(b;h) = (b~ ¢n(ai;)b; 1)
= (b"'aij4nb; 1)
ij+nil)

(
Gi,j+h

Of course, this shows that subgroups generated by g; ; are not normal in P; in fact, they are only normal in
the base group GX.

As well, this gives a characterization for conjugation classes; that is:

Claim 3.1.2.2.7. A group generated by g; ; is conjugate to a group generated by g; i, k € Z, under conjuga-
tion by (b;h) € P where h = k — j mod q.

Thus the conjugacy classes depend only on the value of 7. In fact, this is true in general:
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Claim 3.1.2.2.8. Let h = (g; f) = (] 4_oaji f). Then, {h) is conjugate to any group which is generated by
a cyclic permutation and shift of the elements ay; that is,

Z (B + ajtr); f)) ke H,Bj € G}

j=0

is the conjugacy class of (h).

Proof. Consider h above and conjugate by (b; k). Then,

(6-k(b71); k) (g5 /) (b5 k) = (@(b*)m(z a

= (D1(Bj + aji); f) where B; = b; — b
j=0

The result follows closely. O

Because of this, when considering a subgroup generated by two generators with the same i-value, that is,
{Gi,j» 9i,1), one could simply set j = 0. Then, g; 0g;; is in the same conjugacy class as g; jgi,i+j,J € Zq-

Consider a group generated by g; 0, gi,j, 7 # 0. Consider the group generated by combining the two generators,
9i.09ij = (ai1 +aij;2),9i39i0 = (@i j+1 + ai;2).

Instead, let us look at what happens if we conjugate one element by the other. That is, consider

Y
9i.09Y 3950 = (=i -1); =1)( D i jan;y)(aio; 1)
k=0

= (—a;-1); Z Qijik+1 + @0y + 1)

= (—aiy + 2 Qi jk+1 + @i03Y)

k=0
y+1
= (—aiy + 2 aijvk + aio3y)
k=1
The first generates elements of the form
z—1
(9i09i5)" = (Z (@ig+k +aijik); 2w)
k=0

and the second generates elements

Y
(91,49i0)" " = (Z (@ij+1+k + @ik);2y)



Claim 3.1.2.2.9. Suppose j = 1. Then, {(gi09:1)) = {gi2) if and only if P = Z} 1 Zs.

Proof. Suppose P = Z3 1 Z3. Then
(9i,09i1) = (2a;,152) = (a;2;1)7"
and since 0((gi,09:,1)) = o((a;2;1)7") we get that {(gi09i1)) = {gi2)-

Next, let = 0 and suppose there is a y where (g;,09:,1) = (9:,19:,0)Y. Then,

y—1
(2a:,132) = (Y (@i24n + ain); 2y)
k=0
bg
= (Z (@i2+k + aix);2),b >0, since y = 1 mod ¢
k=0
= (ai2 + a; o + 2bqa; 2)

where a = (e;,...,e;) € GX. Finally, we then require that 2a;1 = a;2 + a;0 + 2bga. This is true when
2 =0 mod n so n = 2. Otherwise, it occurs when a; 2 + 2ba; 2 = a; 0 + 2ba; o = 0 and a = (e;, e;, €;) so that
only 2ba; 1 remains. Thus ¢ = 3 and 20+ 1 = 0 mod n, say 2b +1 = an.

Finally, 2ba; 1 = 2a; 1 implies that b = 1 mod n, say b = 1 + mn. Equating the two equations with b we get
2(1+mn) + 1 = zn; that is, 3 = n(x —2m) = 0 mod n. This forces n = 3 and so only groups Z} ! Zs satisfy
this. O

Otherwise, the two groups are not equal. Consider all the groups generated by

x+1
gf,ogi,j:(Z @i k3 )95 = ( Zazk+a”7$+1) O0<z<gq
= k=1

For simplicity let o; € G be the value in the j'" entry.

Suppose x + 1 is a generator of Z,. Then, let 8 = ZJ oO‘J If B is not a generator of G then g7gi ;
will generate a subgroup of order o(8)g which contains a subgroup of the center given by {(3,...,3;0)) =

{((Bz,...,f7;0) : 0 <z < o(B)}.

On the other hand, if 5 does generate G then each g7 gi,; will generate a subgroup of order ng which contains
a subgroup of the center of order n, namely {(«e;,...,ae;;0) : a € Zy,}.

Suppose x + 1 is not a generator of Z, with order 0 < b < g. Then,

—1 z+1

(9709i.5)" Z Z Qi ks i(z+1) T Cijti(z+1)); 0)
1=0 k=1

Since b < ¢ this will not be a sum over all entries and so the group generated by such an element does
not contain the center. Let v = of ;:3( i‘q Qi kot i(z41) + Cijri(z+1))) I GX. Then the order of such a

subgroup is bv.
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Claim 3.1.2.2.10. Let P = Zpn 1 Zya, gi,j = (bj31) € Lign 1 Lga, where bj, a; are the element described above.
Let K be a vector of nonequivalent tuples, K = ((io,jo), - (i1—1,J1-1)), % € Zji,j € Lga,l = |K|. Then, the
set

A ={gi;: (i,7) € K})

is a subgroup of P containing a subgroups of the center generated by {g;]’j : i € Ak}

Let us examine groups of the form Ax = ({g;; : (i,7) € K}) as described above. First, notice that

() <9is.> < 2(P)
(ijo)eK

where all i’s are equal and j/ s distinct.

Now, consider what happens if we quotient out by an appropriate subgroup of the center. Let I =
(igy -y id—1) € Z& be a vector where 0 < d < m so that Z;(P) = {z € Z(P) : 2 = (2i,...,2;0),i € I};
that is, it is a subspace of Z(P) generated by the g; ;. Of course, when m = 1 then Z;(P) = Z(P).

Then, if K = ((40,50), -+, (d1-1,Ji-1)), I = (%0, ..., %) where each i € I is unique and is contained in a tuple in
K,sor <l—1, then Z;(P) < Ak.

Consider the simplest case, when m = 1 so that Z;(P) = Z(P) < Ak, K = (j). Then, since Ay = {g;) =
{(Xi_gajti;z) : 0 <z < ng}, every q'" power is in the center. Thus, when one quotients out by the center,
only the elements when 0 < x < g are important. That is,

AK/Z _{Zaj+lv 0<$<Q}

This group has order = = ¢ and, in fact, is isomorphic to Z,.

Now, consider when K = (0,1),1 # 0. Since go, g1 € Ax We know automatically that Ay /Z(P), Ay /Z(P) <
Ak /Z(P). In addition, any (g8g:)%, (97 g0)° is in the center when a = o(z +1),b = o(y + 1) in Z,. Thus only
consider the values of a,b such that 0 < a < o(z +1),0 < b < o(y+ 1). This gives elements of the form

a—1 z+1

(9591)" Z Z Ayi(z+1) T Ugi(es1)); a(z + 1))
b—1 y+1

(Qlygo)b = (Z(Z At k+i(y+1) T ai(y+1)); b(y + 1))
i=0 k=1

That is, these give coset representatives. Of course, if z,y = 0 then these are the coset representatives of
A/ Z(P),Aqy/Z(P). Now, when z,y # 0, it is important to ask if there is any overlap between these
representatives.

Suppose (95g1)*Z(P) = (g7 90)°Z(P); then we must have that ((g9¥g0)®) ' (g3g:)* € Z(P) for some value of
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a,b, x,y. Since

q b—1 y+1
((9790)") ™" = (g90) ™" = ( D] Z Aphi(y+1) + Gitye1)); —b(y + 1))
i=0 k=1
y+1
= ((9?90)_1)17 = (- Z Akt —y — G (y+1); —(Y + 1))b
k=0
y+1
= (- Z Zalﬂc i(y+1) T a—i(y+1)); —b(y + 1))
i=1 k=1
we require that
b y+1
(9790) (9690 = (= D. (D trsni(ys1)+at@+1) + Oi(ys1)+a(ern)+
i=1 k=1
a—1 z+1

Z Z Af4i(z+1) + Al +i(z+1) ) _b(y + 1) (ZII + 1)) € Z(P)

soa(z+1)—bly+1)=0mod q.

Suppose b = 1so a(x + 1) =y + 1 mod g and

y+1 -1 z+1
(9790) " (969)" = (= D Grk—y—1+a(e+1) — A (y+1)+a(a+1) Z Z Uti(e+1) T Qti(e+1)); 0)
k=1 i=0 k=1
y+1 —1 z+1
- Z Ql+k — Qo + Z Z A ti(x+1) + a’l+z(r+1)) O)
a(m+1 a—1 z+1
Z Gpt+k+1 + Z Apyi(z+1) — G0 + Z (Z Uk+i(z+1)); 0)
i=0 k=1
a(m+1) a(z+1)+1 a—1 z+1
= (- Z A4k — Z al+k + Z Q1i(z+1) — @0 T Z Z Uyi(z+1)); 0)
k=1,(z+1)|k k=1,(z+1)tk i=0 =0 k=1
a a(z+1)+1 a—1 z+1
- Z Alyi(z+1) — 2 a4k + Z Al ti(z+1) — @0 + Z 2 A i( m+1
i=1 k=1,(z+1)tk i=0 k=1
a(z+1) a—1 z+1
= (—Qyaes1) + a1 — Z Al4k4+1 — o + Z (2 Ati(z41));0) € Z(P)
k=0,(z+1)tk i=0 k=1

Clearly, analyzing such groups becomes increasingly difficult as the number of generators increases. The
following section will look at groups generated by a slightly different “type” of element. For simplicity, in
subsequent sections and when examining the HSP the focus will be on cyclic subgroups.
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3.1.2.2.2 Subgroups from “non-generators”

Suppose P = Z" Zg. Consider a class of smaller subgroups, generated by “non-generators.”

That is, suppose either b € Z,, or c € Z, is a non-generator, so that b = 0 mod n or ¢ = 0 mod g and
let by = bziel e; € Z7 and cx = cZkeK ey € Zg where I, K are nonempty sets of elements in Z,,, Zq,
respectively so that the resulting by, cx is a vector of dimension m, d with either b, ¢ or 0 in its entries. Then,
hj =(0,..,b1,0,...,0;cx ), where by is in the 4t entry, will generate a smaller group.

If b is a non-generator with order z,1 < x < n and c is a generator, then,
h? = (b[, ceey b[; 0)7 (hq)l = (07 ceey 0; 0)
and so ¢(h) has order xq and contains a subset of Z(P) generated by (by, ..., br;0) and of order x.

If ¢ is a non-generator with order y,1 < y < ¢ and the order of b is x,1 < x < n, then the group generated
by h has order xzy. However, since y < g,

y—1
hy = (Z brj+icw; CK)
=0

where b7 ; denotes by in the 4t spot. That is, the value of b only appears in the slots which are multiples of
¢ (shifted by 7). For this reason, this will not contain a non-trivial subgroup of the center.

Finally, consider more generally f = (b;c) where b = (b, ..,bga_1). Let Zgi_ol by = Pv, where v € Z has

entries which are either 0 or 1. If 8 is a non-generator in Z, then this will, yet again, generate a small
subgroup which contains a subgroup of the center of order o(8) generated by (Sv, ..., 5v;0).

Suppose P = Z, ZZ(’; where p, ¢ are prime. Then any non-generator of Z,n is of the form zp,0 < z < p"~1,

d—1

and for Zga it is of the form yq,0 <y < ¢“7*, and so p*,1 < z < n,q¢¥,1 < y < d are the representative

non-generators.

There are a = Z:il (T) vectors in b = Z;; with at least one, and at most m, 1’s, with all other entries being
zero, and Z£=1 (i) in ng of the same nature. Also, there are ¢% spots in the base group. As such, there

are (na)q?(bd) “non-generators” of P which generate unique cyclic subgroups, do not contain a nontrivial
subgroup of the center, and where only one of the elements in the base group is non-zero is zd.

Claim 3.1.2.2.11. Let f = (b;c) € P = Z" 1 Z%,b = (bo, ..., bga_1) where either ¢ or b is a “non-generator”
as described above. Then, the conjugates of f are also non-generators.

Proof. Let (g; h) be an element in P, where g = (go, ..., gqa—1). Then,

(¢—n(=9); =h)(b;¢)(gs h) = (p—n(—=9g); —=h)(¢n(b)g;c + h)
= (¢c(—9)Pn(b)g;c)

If ¢ is a non-generator then clearly (¢.(—g)¢r(b)g; c) is a non-generator.
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d
Otherwise, suppose ¢ generates Z, but 25:701 b, = pv and [ is a non-generator of Z,,. Then,

qd—l qd—l qd_l

Z (_gc+m+bz+h+gz) :BU+ 2 9z — Z gz :ﬂv

z=0 =0 =0
and so (¢.(—g)dn(b)g; ¢) is a non-generator containing the same subgroup of Z(P) as f. O
Consider the simplest case: when P = Zyn { Zgm,q"™ = p" for p,q prime. Then, if b; = (0, ...,b,0,...,0); that
is, b € Zyn is in the j'h spot, 0 < j < ¢™, then let B = {(bj;c) : b=p',1 <i<n,c+#0mod g}.

Recall that elements from B generate subgroups of order o(h)g? which contain a subgroup of the center
generated by Zy(P) = (b, ...,b;0) of order o(b).

Consider modding out {(b;;c)), (b;;c) € B by this subgroup of the center. Since (b;;c)* = (Zfz_ol bjtic; cx)
one then obtains

z—1
(b33 0/ Zu(P) = {(0;0) Z6(P), (X bjic; cx) Zy(P) : 1 < w < ¢ ~ 1
i=0
Notice that
rz—1 y—1 y+z—1 y—1
(D bjvics @) Zo(P)( Y, bjnes e9) Zo(P)) = () bjvic + ), bjrreicla +9)) Zy(P)
i=0 k= i=y k=0
y+x—1
= (D) bjticie(x +y))Zo(P)

=0

so ((by; €))/Zy(P) = Z

qd.

In the more general case, consider S = {(bj,; co), ..., (bj,; cx)) where each generator is from B so that b;, =
p, 1 <i; < n. Assume it is ordered, so that if | < h then p" < pi» and let (8;;8;) = (Zi‘:o bji;Zﬁzo ¢),0 <
I <k.

We know that whenever o(c;) = ¢; that is, it is a generator, then ((b;);c;)) generates a subgroup
which contains a subgroup of Z(P) of order o(b;,) = p"~“. Thus there are k + 1 subgroups of the form
{(p¥,....,p";0)) < Z(P),0< 1< kin S.

Suppose (8;; ;) is such that ¢; is a generator (if it is not a generator then it won’t generate a subgroup of
Z(P)). If each §; is a non-generator then S only contains subgroups of the center of the form {(p?, ..., p"; 0)) <
Z(P),1 < x < n. Of course, {(p*,...,p";0)) < {(p?,...,pY;0)) whenever x > y. Otherwise, if any §; is a
generator then the whole group Z(P) is contained in S.

Let Z,(P) = {(p*,...,p";0)> = (XY, ...,p?¥;0)> < Z(P),0 < x < n; that is, it is the intersection of all the
subgroups of the center contained in S. Consider S/Z,(P).
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For the smallest subgroup, generated by (b, ;cx) we know that

<(bjk;c/€)>/Z93( ) = { 0 0 Z bgk+w70y ) I1<y< qd - 1} X~ qu

Then, the group generated by (bj, ,;cx—1), where b;, , contains p'-t < p* in the j* position, contains the

group generated by (bj,;ck), so
(bji—y ck-1))/ Z2(P) = {(bj,; ck))/ Za(P) L

(™, ™ ey) 2 bjytic; 0))Ze(P): 0 <y < g* =1}

Jk—1

= Ziga X Lo
where ZJ o @ =0 when y = 0. This continues inductively, so that
((bjo; €0))/ 2 (P) = {(bj,; €1))/ Za(P) 0
{((p",...p"; cy) mew (P):0<y<q’-1}
= Zga X L1

Then, consider the set of all elements {(5;;6;)} where &; is a generator and f; is not. Let b = > 71

> 1 Z bjj+z = (P*', ..., p™),1 < w; < n. Suppose the set has length r and is ordered so that o(bo)
(bl) Flnally, let i, be the exponent where p*“ < p'v. Then, as before,

((Bri0r))/ Ze(P) = {(bj, 3 ¢y))/ Za(P)U
{((p*r,...p"";0r) + (E Brii0))Zo(P): 0 < w < ¢ — 1}
= Zga X Lio_yy 41 -
and, inductively,
((Bo3 60))/ Za(P) = {(Br3 7))/ Za(P) U
{((p™,..,p";6,) + (2)1 B0::0))Zx(P) : 0 <z < ¢ — 1}

= Ziga X Li(k—y)+r+2

On the other hand, elements from C' generate subgroups of order o(b)o(c) which do not contain a non-trivial
subgroup of the center.

Let us now consider conjugacy classes. For any g€ P = Z7.1Z,, H < P denote

HY ={g 'hg:he H}
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Let 9= (g07 "'7gq71;a)7g_1 = (—g,a, vy "9—1-as _a')7h = (h07 "'7hq71;b)' Then7

9 'hg = (=g, -»—9-1-a;—a)(ha + g0, -+ ha—1 + g—1;0 + b)
= (=gb+ ha +go,---, —go—1 + ha—1 + g_1;b)

Thus the value of b determines the conjugacy class.

3.2 Representation Theory

This section will examine the representation theory of a wreath prodcuct G H where H acts on a set
X, |X| = n, B denotes the base group G x ... x G, with G appearing n times. The notation G, will be used
to refer to the 2" occurrence of G in the direct product.

Suppose R = {p("} is the set of irreps of G. Then, the irreps of the group GX = {(g,...,g;er) : g€ G}<G1H

are of the form

pr = ®mEXp(z“)

where I = (iy,...,1,), and where
P(I) (gla ooy 9n; eh) = ®z€ngl)(gm)
Recall that GX is normal in G ¢ H. Then, as discussed in [11], G H acts on the set of equivalence classes

of irreducible representations of GX, as discussed below. In order to determine the irreps of all of G H one
can use induction of irreps; that is, the “little group method”. First, a few definitions must be presented.

3.2.1 Some Definitions

Definition 17 (g-conjugate). Let G be a group with normal subgroup N and let o be a representation of
N. Let g € G. Then, the g conjugate of o, denoted o9, is defined by

o9(h) = o(g~"hg)

for any h € N.

Note that ¢9 is again a representation of V.

An equivalence relation between two irreps o, p is given according to whether they are conjugates. That is,
o ~ p, if there is a g € G where ¢9 = p. This construction will be used below.

Definition 18 (Inertia group). Let G be a group, N a normal subgroup of G, and let o be an irrep of N.
Then, the inertia group of ¢ in G is
Ig(o) ={ge G:09 ~ g}
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This will be an important group when determining the irreps of G ¢ H using the irreps of G¥.

Definition 19 (Extension). Let G be a group, N <G, and let o be an irrep of N, 6 an irrep of G. Then, &
is an extension of o if
Res$6 = o.
Definition 20 (Stabilizer group). Let H be a group acting on a set X. Then, the stabilizer group of x € X
is the subgroup of H which acts trivially on x; that is,
H,={heH:h z=uzx}
Definition 21 (Isotropy subgroup of o). Let H be a group acting on a set X and let G be a group with

the set of irreps G. Consider the group GX with the set of irreps GX so that every o € GX is given by
0 = Quex 0y, 0, € GX.

Then, for such a o, define the isotropy subgroup to be the subgroup of h € H which stabilizes o, given by
Ty(oc) ={he H:op, ~ 0o,V € X}

Definition 22 (Inflation). Let G be a group, N <<G. Let 1 be an irrep of G/N. Then, define the inflation
of n to 77, an irrep of G, by

n(g) = n(gN)
for every g € G.

Note that this defines a representation of GG that is trivial on N, and all representations of G that are trivial
on N occur in this way.

3.2.2 The “Little Group” method

For the remainder of this section, consider the group G ! H where H acts on a set X, |X| = n and let
GX = {(b;ey) : be B}. Use N to denote the set of irreps of a group N.

Let (b;h) e G H, O‘zEéfOI“ each v € X, anda=®mexaxeé}.

To begin, let us determine the (bsh)-conjugates of o. Fix (a;em) € GX. Then, since
(-1 (071 h ™) (aser)(bsh) = (b7 Pn(a)ben)

if one lets b = (g1,...,9n), a = (k1, ..., k,), and define the ¢ (a) = (k1) .- knn)) then the above relation
becomes

(0~ n(a)bsen) = (97 kn)91s - Gn knny9n; €
One can then calculate the following:
"M (g e) = o (b~ hn(a)b; ex))
= Quex02(9; kn()9a)
= ®y€XUh—1(y)(g;}l(y)kygh_l(y))

In—1(y)

= ®y€X‘7h—1(y) (ky)
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using the substitution y = h(x). Then, since g, € G so that %= (eq) = o.(eq), we get that
ol ~ o,
and so one can obtain the following result:

Lemma 3.2.2.0.1. Let 0,0, (b;h) be as defined above. Then,

b;h
U( ) ~ RrexOh-1z

Using this relation one can prove the following:

Lemma 3.2.2.0.2. Let 0 = Quex0s € (E} Then, the inertia group of o in GVH, denoted Icyu (o), is given
by
Ig(o) = G Ty (o)

where Ty (o) is the isotropy group of o in H.

Proof. Recall that I (o) = {(b;h) € GLH : 0" ~ o} and Ty (0) = {h € H : op,(y) ~ 0,Y2z € X}. Then,
GUTh(o) ={(b;h):be B,he Tg(o)} = {(b;h) :be B,h € H,op(,) ~ 0.Vx € X}
It follows from Lemma 3.2.2.0.1] that
Ig(o) = {(b;h) e GUH : opz) ~ 0xVx € X}
and thus G Ty (o) = Ig(o). O

Thus far we have been dealing with irreps o of GX < G ! H which are the tensor product of irreps of G.
Before inducing these to the whole group, they must be extended to Iz (o), as this will allow one to use the
“little group method” to find irreps of G H, as described in [5].

First, these extensions must be found. Of course, GX < I5(0) (take h = ep), on which o is defined (see
above). Then, it remains to determine how o acts on (ep;h) for h € H which satisfy o, ~ 0. That is, if
this relation is satisfied, choose the two representations to be equal by being of the same basis.

Lemma 3.2.2.0.3 (Lemma 2.4.3,[5]). The extension of each o € GX toge Iz\w) is defined by
5(b7 h) (®CE€XUCE) = ®z€XJh_1w(gz)vh_1w
for every (b;h) = (g1, .-y gn; h) € G2 Ty (o) and v, € V., where o, acts on the vector space V.

Now that the extension to the inertia group has been determined, the “little group” method may be employed,
summarized in the theoren/ll)elow. Note that the terIBiG ! H-conjugacy class” refers to the conjugacy classes
of the representations of GX in G H, where o, p € GX are equivalent if ¢(9") = p for some (g;h) € GV H.
Note that since o@€#) = o the conjugacy classes depend on the value of h € H. This is important to
avoid ”double counting” when one induces the extended representation. The set of representatives for these
conjugacy classes will be denoted T'.

Recall, as well, that GX <t I, and so Ty (0) = I (0)/GX and so one can inflate its irreducible represen-
tations to irreps of Ig,z (o) by making it act trivially on GX.
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Theorem 3.2.2.0.1 (Little Group Method, Thm. 1.3.11 [5]). Use the notation from above. In addition,
for irreps n € Ty (o), denote the inflation to Iy (o) by 7, defined so that 7j(b; h) = n(h). Then, the irreps
of the wreath product group are given by the following set:

—

GUH = {IndS" (5®ﬁ):a€F,ne@(a)}

I (o)

3.2.3 Small example: 75?7,

Before looking at more general wreath products of cyclic groups, in order to better understand the repre-
sentation theory of wreath products, this section will explore the representations of Z31 Z,.

In order to synthesize this group with the notation and theory above, note that G = Zy, H = Z,, X =
{0,....,n —1},G¥X = {(g0, s gn-1;0) : g; € Zo}. As well, the action of H on the base group B = G x ... x G
is defined as

On(b) = ¢n(gos - gn—1) = (ghs -, Gh+n—1)
for b = (9o, .., gn—1) € B,h € Z,,.
Since Zs, Z,, are abelian groups, their irreps are all one dimensional. Specifically, we have
Zy = {1,-1} = {(e™)* : k € Zy)
Zn={(eF)* ke Z)

for simplicity let w,, = e for any nonzero m.
Since the tensor of one-dimensional irreps is also one dimensional, the following set of irreps of GX:
GX = {Ruez,wh” : ky € Zo}

will result in a value of 1 or —1 when applied to a vector in ZF. More precisely, let v,k € Z7, and let
Xk € GX, Xk = ®iez,wh'. Then, x(v) = (=1)F.

Next, consider h € Z,, which acts by permuting the base group. Then, hxr = Xnr+k, where addition occurs
component-wise, and so Z,, simply permutes the representations of Z73'.

Let xx € G¥, whe, € Gy, where k € ZF'. Then, y, has the stabilizer group
Tz, (xk) = {y € Zn 1 wh,,, = who Vo € Z,}

Note that the ks denote the label of the irrep, whereas the x subscript denotes which entry in the direct
product it belongs to.

Example 3.2.3.0.1. If n = 3,k = (1,0,1), then the irrep xr = w20 ® 11 @ wa.o. While wo,g = wa.s the
stabilizer is still only the trivial group, Tz, (xx) = {0}, since Z3 acts by addition. If instead we had H = S3
then the elements (), (13) would stabilize the above expression.
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In general, since the stabilizer group must be a subgroup of Z,,, its order must divide n. Consider the stabilizer

of a xx € GX, where h € H acts by hxxr = Xn4x where h is added to each k; so that h+k = (ko+h, ..., kn_1+h),
since

hxr = ®meXXZ”+m = Quex Xo " = Xntk

In this case, the stabilizer is analogous to the period of k viewed as a function; that is, if k(h) = (ko +
hy...;kn—1 + h) then the smallest integer ¢ such that k(h +¢) = k(¢) for all integers h is the “period” of k
and will be in the stabilizer; in fact, it will generate the stabilizer.

Since addition is being done modulo n, 1 < ¢ < n and k(h +n) = k(h) as well. Thus, n = tm for some
1 < m < n, and so t must divide the order of Z,,, and actually generates the stabilizer. Thus, we obtain the
following claim describing the stabilizer subgroup:

Claim 3.2.3.0.1. Suppose P = Zy ! Z,, and let H = Z,,. If X, = Quex X > is an irrep of Z5% and t is the
smallest integer such that k(h+t) = (ko +h+t,....kn—1 +h+1t) = k(h) then the stabilizer subgroup of xy, is

Tr(xe) ={h€H :hxi = Xn+k = X6} =) = Zp,

where m = %

Example 3.2.3.0.2. If n = 4,k = (1,0,1,0),k = (1,1,1,0) then Ty(xx) = {0,2} = (2) =~ Z5 and
T (xw) = {0}

Let m = [Ty (xx)| = |Zm|. Note that while m < n, the elements in this stabilizer group are still acting on
the full set X, and thus the action of Z,, is not transitive on X. For this reason, the wreath product is still
a semidirect product with GX = ZI'. Then, the inertia group is

Izpz,(xx) = {(b;h) :be Z3, h e (t)}

Next, an extension of yj to the inertia group, denoted xj, must be found. This definition is quite straight-
forward: for h € Ty (xk),b€ 2%,

Xk (b h) = xk(b) = wh™®

This is because every h € (t) is of the form h = ty and so h=! € (t). Then, h™!(x) = z since it is a multiple
of the period of k. Thus, using Lemma (3.2.2.0.3

XNk (b, h) (®IGXU1) = ®zeXXh*11 (gr)vhflz = ®z€XXz (gz)vz

Since Z\l = {wF : ke Z,}, the irreps of the stabilizer group, which is isomorphic to Z,, for m < n, will be a
subset of this.

The irreps of a group Z,, are the m-roots of unity; that is, the set Z\n ={wk : ke Z,}. Consider w’ € ZL
Then, when restricted to the stabilizer group it only acts on elements of the form tb where b is an integer.
Then, since n = tm,

27 271y tb

Wh(th) = (Y = F = ui (b)
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To avoid confusion with the larger group define the irreps of the stabilizer group in terms of the m**-roots
of unity; that is, as

Tu(xx) = {wh, : 5 € Zm}
where wi (bt) = wib| and, of course, the particular choice of m, ¢ depends on the value of k (it can be thought

of as a function of k since it is dependent on its value. For brevity, though, this dependence will be omitted
from notation).

Let n; € Tm) and define its inflation to the inertia group as
(b h) = 1;(h) = wi,
where h = tl € (¢).
Since 7;, Xk are both one dimensional representations, their tensor product is also one-dimensional, given by
Xk @175 (b; tl) = X (D) (1) = w5 Pwiy

This tensor is now defined on the inertia group and thus can be induced to the whole group. First, however,
the set ' of the irreps of representatives of the Z3 Z,,-conjugacy classes of Z3 must be determined. That

is, not all x; € @ will give distinct representations. Since conjugate representations under Z,, will induce
to the same representation, one only needs to consider representatives for these representations.

To determine the orbit of Z,, on Z% one can use Pdélya-Redfield theory, as discussed in [8]. Let |Fixz(h)]
denote the number of elements in Z§ which are fixed by h. For example, if h = 0 then all elements in Z3
are fixed by h, so that |Fiz(b)| = 2™.

Then, the number of elements in I' is given by a variation of Burnside’s lemma, so that

|Z| Z |Fiz(h

heZ,

T =

Example 3.2.3.0.3. Suppose n = 2, and so Z3 = {(0,0),(0,1),(1,0), (1,1)}. Then, the sum is
1 . . 1
0] = 5 ([Fiz(O)] + [Fiz()]) = 5(123] + [{(0,0), (1, D}) =

Next, since
Zy (0 0) = {(0 0} Z2 - (L,1) = {(1,1)}

(1,0) = Z5-(0,1) = {(1,0), (0, 1)}

there are three distinct orbits, and so the set {(0,0), (0,1),(1,1)} holds representatives of the orbits. Note
that we could have chosen (1,0) instead of (0,1). Then,

= {X(0,0)aX(O,l)»X(l,l)}

Returning to the general case, since Ty (x) = {t) = Z,, stabilizes xy, the orbit of yy, is

Zn Xk = {Xk+c i CcE Zn}
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Since xtwpir ~ Xi the above definition restricts ¢ so that it is not a multiple of ¢. That is, it gives represen-
tatives for the orbits of x,. Thus, I', which is a set of representations of the representatives of the orbits
should given by

T = {Xktc:CE Zn,c¢ (tH}.

Finally, it remains to employ the “Little Group” method, given as Theorem [3.2.2.0.1] Use the notation
above. Then, the irreps of Z5 Z,, are given by

230 Zn = {Ind (2% ((Xu ®10) < xi € Ty € T (o).

Since the inertia group is
1202, (Xk) = {(b;h) : be Z3, h e ()}

and is normal in 75 Z,, its quotient with this group is given by
220 Zn 1202, (0) = {(050) 2,12, 1 c € Zyn,c )} = Z,
In fact, more generally, we have the relation

(G H)/Igu(o) = H/Tg (o).

Because of the isomorphism above, instead of considering (G H)/Igu (o) we can consider H /Ty (o); that
is, use the set of coset representatives for this quotient. This is simply {0,k : h ¢ {t)}.

We can thus specify the irreps of Z2/27n Suppose we are inducing the irrep X3 ®1; which acts on the vector
space V = C since it is one-dimensional.

Then, let (b; h) € Z21 Z,,. To determine its action on v € V, note the following:

(b:h) D (0;0)@v =D (Ye(b);h+ ) ®v

cEZ: CcEZ:

D7 (0;0) (e(b); ) @ v

CcEZy

2 (0:0) ® (o @ ) (e (b); 1) v

CcEZy

2, (0:0) ® (xi (e (b)) @ (h))v

cEZ,

> (0:0) @y st

cEZy

Thus, the final, induced representation, denoted oy, ; is given by

ok,;(bjh) = Z wswﬁ(b)wf;h|c><c|.

ceZy
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3.2.4 Another example: Z7"Z,

Let us now consider the representation theory of a group P = Z' 1 Z,. For brevity let G = Z]', H = Z,,
with base group GX (of course, X = {0,1,...,q — 1}).

First, consider the irreps of G; these are simply the n™ one-dimensional representations

3 2mi
Xe(a) = wh® wy = e Lake

This gives rise to n™? one-dimensional irreps of GX:
GX = {®x€Zquz : ka: € nglt}
where, for i = Qzez, Xk, € GX, v,k € Z1 k = (ko,...,kq—1),v = (vo, ..., Vg—1),

K(V) = ez, Xk, (Va)

ke Vg
= ®xezq Wy,

Zwezq ke -ve
= Wn

_ kw
= Wy

Next, we need to find the isotropy group,
Tr(kr) ={Y € Zq : Xkoy, = Xk, VT € Zg}

As before, this will be a function of k; that is, if k(h) = (ko + h, ..., kq—1 + h) then the smallest integer ¢
where k(h + t) = k(h) for all integers h generates the isotropy group.

Since the order of ¢ must divide ¢, if ¢ is prime then

Zq if x1, = Xk, VT, y € Z,

T (i) = {{0} else

Since G is cyclic abelian, the irreps of GX can be extended trivially to the inertia group.

Next, suppose d = {. Then, since the irreps of Z, are of the form wg, J € Zg, the irreps of the isotropy group,
with elements of the form tb € (t), are given by

wy(tb) = wy(b)
where, of course, if ¢ is prime then d is either 1 or q. That is, we get the set
T;(/{\k) = {wé :j € Zg}, where wg(bt) = wib
The inflation of any irrep n; € T;(n\k) can be defined simply as

17;(b; k) = n;(h) = Wil h = tl e {t)
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Finally, the tensor product of an irrep Kj € G_X7 n; € Tr (ki) is given by

e @17 (b5 1) = rp (D) () = whbw])

Now, consider inducing £}, ® 17; which acts on the vector space V' = C, since it is one-dimensional, to an
irrep of GV H = Z" 1 Zj.

To determine the coset representatives, consider (G1H) /I (0) =~ H/T (o) = {0,h: h ¢ (t)}. Let T denote
the set of coset representatives. Then, let (b; h') € GVH where (b;h') = (b; h+d) for some h € {t),d ¢ Tr (ki)
and consider its action on v € V. One can calculate the following:

(B 1)) D1 (050) @ v = Y (Wel(b); B + ) @ v

ceT ceT

= D (05c+ d)(We(b); ) @

ceT

= > (0s¢+ d) @ (R @ m3) (e(b); b))

ceT

D 1(05¢+ d) @ (i (e (b)) @ nj (h))v

ceT

= Z (0;¢+d) ®w§'wC(b)wghv
ceT

Thus, the final, induced representation, denoted oy, ; is given by
ok, j(b; ') = Z wﬁ'wC(b)wghlc + d){c|
ceT
with dimension d = {.

If ¢ is prime then all irreps are either dimension 1 or ¢. In fact, for G = Z)*, H = Z,,q prime, there are
n™ irreps ky of GX which have Ty (ki) = Z4, occurring when k = (4,4, ...,4),i € Zy. These will induce to
1-dimensional irreps. The remaining irreps will induce to irreps of dimension gq.

Since each element in Z, when ¢ is prime fixes elements in GX which are in the diagonal subgroup, and
0 € Z, fixes every element in GX,

™4 (g —1)n™

=2 3 [Fia(h)] = ~(GX| + (¢ — DIG))
q heZ, 4

gives the total number of kj one needs to induce.

That is, each element g € Z" has an orbit of size (qil) where [ is the number of zeroes in ¢ when acted on

by Z,. Then, the n™ elements in the diagonal subgroup have orbit of size 1 and thus are fixed by every

h € Ty (k) giving n™ 1-dimensional irreps and n(g—l)n™

ma_ m i . .
—n™ =12——="_ g-dimensional irreps.
q q
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n d
3.3 ZNZ

This section will specifically consider the group P = Z;? Zg = Gl H,n,d = 1. Of course, this must be a
nilpotent group, and has order (p")pdpd = ppd”'+d.

The set X being acted on by H has size p?; it can be considered H itself where the action is addition as
defined in H. Specifically, consider elements in H,G as uniquely encoded strings. Let h € H be the string
h = hg_1...ho = (hi)o<k<da Where each hy € Z,. Similarly, let a € G be the string a = ap—1...a0 = (@;)o<k<n
where each aj, € Z,,. Addition occurs component-wise, so that if h,t € H then h +t = (hg + tx)o<k<d, and
similarly for addition in G.

In order to define an ordering, identify each h = (hy)o<<q € H with a unique string so that each hy is an
integer, 0 < hy < p, and consider a map ¢y : H — Zya and ¢g : G — Zyn given by

d—1

Or (hi)osk<d = Z hip*
fry

n—1

¢ (gk)oshen = Y gip"
k=0

Then, we define the ordering as follows: for h,t € H,h <t < ¢p(h) < ¢p(t). An analogous relation holds
in G.

Finally, since GX = [, v G, let g € G* be defined as g = (92)zepn(x) = (90s---»gpa_1) where each
95 = (ai)o<i<n, @i € Zy as described above, and ¢ (X) = {¢g(x) : © € X} is a set ordered in Z,a. Of course,
one could equivalently write ¢’ = (¢}, )zex = (g(ok)osk<d’g(0k1)1<k<d""9(12k)0sk<d—1’g(zk)0<k<d)'

Now, let us specify the action of H on GX. This will simply be a permutation of GX according to component-
wise addition in the elements of X. That is, for (¢; k) = ((gz)zex; (hk)o<k<d), (¢'; 1) = ((¢)zex; (P} )o<k<d),
and where addition occurs component-wise as described previously,

(g: ) (g5 1) = ((gasn)aex + (94)zexs (P + hi)osk<d)

and inverses are given by
(g5 h)_1 = ((_gxfh)zeX; —h)

where —h = (=hy)osk<d, —9z—h = (—@i)o<i<n)-

Consider conjugation in this group: let (g;h), (¢’; h') € P. Then,

(=9 )zex:—h') (g h)(g'; 1)

((*g;—h)zeX; 7hl)((gz+h’)reX + (g;;)mEX; (hk + h%)0<k<d)
((_g;+h)weX + (gx+h1)weX + (g;)zEXy h)
(=Goyn + Goth + 9o)wex; h)
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Clearly, two elements (g; h), (r; h') are conjugate only if h = h'. Let (r;h) = ((=gl,p + Got+n' + Gh)wexih)
and notice that

(1) = (3 rasin)acx:0)
i=0

p—1

= ((Z gm+ih+h’)zeX; 0)

i=0
= (= Goon)wex; =) (g )P (s 1)
and thus if (g; h), (r; h) then Zf;ol Totih = Zf;ol Gotinsn for all z € X and some h' € H.

Now, suppose (g; h), (r; h) are conjugate, so that (g; h)(¢’;h’') = (¢'; h')(r; h) fore some (¢’; h’') € P. Then we
get the equation

((go+n)aex + (95 )wexs (hi + hi)osk<d) = ((Gorn)oex + (Tz)zexs (M, + hi)o<k<a)
That is, for each x € X we get the equation
Goih + Gy = Goip +Tx

Claim 3.3.0.0.1. Suppose (g;h), (r;h') are two elements in P. Then, they are conjugate if and only if
h=H and goir + g = gyop + 72 for all z € X and some k € H,g' = (¢.)sex € G*. Note that this will

imply that (P25 Gevinik)eex = (X5 g Tovin)zex -

The center, as shown in a previous section, is given by

Z(P) = {((9)2ex;0) : g € Zp}, [Z(P)] = p"

3.3.1 Subgroups with one generator

3.3.1.1 General theory

This section will examine the nature of single-generator subgroups. In order to better understand these,
consider the orbit of a fixed element in H on each X. Of course, the action of H on X is transitive, however
given a (g;h) € P, repeated products will not permute all elements in g; that is, 1,(g) is not transitive,
where (g; h)(g; h) = (¥r(g9)g; h). Instead, the size of its orbit is p.

Specifically, fix h = (hi)o<k<d € H,x = (zr)o<k<d € X and consider h - z, where - denotes the action by

component-wise addition. Then,

h-x = (hy + x1)osk<d, h - (h-x) = (2hg + 1 )o<k<d, h- (h- (h-1)) =z

Consider a subgroup generated by any (g; h) € P.

y—1

(9:h)? = (D (Gutin)zexiyh)
=0
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Of course, if h # 0 then o(h) = p and so (g; h)? = (Z?:O(gm+ih)meX§ 0). Then, if Zfzo(gxﬂh)rex # 0 then
O(Zfzo(gx+ih)zex) = p and so (g; h)p2 = (0;0). As well, note that if y = pk+¢t,k > 0,p>t >0,y > 0, then

p—1 t—1
(g; h)y = (k Z (ngrih):rGX + Z(ga:+ih):c€X; th)
=0 =0

For this reason, we obtain the following lemma:

Lemma 3.3.1.1.1. Suppose a subgroup of P is generated by a single element (g; h) = ((9z)zex; (hk)o<k<d), b #
0, where each g; = (ai)o<i<n, @i € Zp. Then, {(g; h)) will contain a nontrivial subgroup of the center if and

only if Y575 Gevin = g Garvin # 0 for all w2’ € X

Specifically, this subgroup will be generated by ((Zﬁ:& Jin)zex;0).

This gives us the following brief corollary:

Corollary 3.3.1.1.1. Suppose a subgroup of P is generated by a single element (g;h) as defined in the
lemma above. Then, the order of {(g;h)) is:

1.1, if (g; h) = (0;0)
2. p, if Y20 guyin = 0 for allz € X
3. p? in all other cases.

Let us try to determine the conjugate subgroups of ((g; h)). Before doing so, however, let us determine when
two distinct elements (¢’; &'), (g; h) € P commute. This occurs if

(950 (g;h) = (Gogn + gz)aex; B +h) = ((gosn + G)aex;h + R')

Since component-wise addition commutes, we require that g/, + go = gotn + g, for all z € X. This occurs
if components in the same h,h’ orbit are equal; that is, if g4 = geqan and g, = g/, ), forall 0 < i <p
and for all z € X. To summarize, this indicates the following lemma:

Lemma 3.3.1.1.2. Let (g;h) = ((ga)zex;h) € P. Let g’ = (g)zex € GX be such that that gl, = g’ ., for
all 0 < i < p and x € X. Call this property the “h- orbit property ”. Finally, suppose g has the h’{orbi]
[property} Then, (g;h) commutes with (g'; 1').

Note that any element must always have the 0{orbit_properti}

Recall that for an element (¢’; h') € P, and where —h' = (—h})o<i<d,

(-w(=g"); =1")(g: 1) (g's ') = (=i + 9o + Gutn)zexi h)
Of course, if (¢’; h'), (g; h) commute, as per Lemma [3.3.1.1.2] then the final value is simply (g; h).

Otherwise, we know by Claim [3.3.0.0.1|that two elements (r;h), (g; h) are conjugate if g, 4x + g, = g4, + 72
for all z € X and some k € H.
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Additionally,
p—1
(=Gosn + o + Gorn)aexi )P = (O (Gosinsn)zex; 0)
i=0
which is just a permutation of GX in (g;h)? by b’ and so if (g; h) is conjugate to (r;h) then Zf;ol Torih =
Zf;ol gar+in for some x, 2’ € X. Of course, this implies that {(r; h)) will generate the same subgroup of the
base group as (g; h).

Suppose (g’; ') stabilizes {(g; h)). Then, one obtains a series of p equations which must be satisfied for each
0 <t <p, where Z;:log =0, and for any 0 < k < p:
p—1 t—1
(6w (=9"); =1 g WP (g 1) = (n (=) =H)((E Y Gurin + Y Guvin)zex;th)(g's H)
i=0 i=0
p—1 t—1
= (6n(=9) + O (k Y. Goin + . Garin)aex + g';th)
i=0 i=0
p—1 t—1

= ((~Ghytn + 5 D) Govinew + O, Gotinan + Gy)aexi th)
=0 =0

p—1 t—1
= ((¥' Z Gr+in + Z Gatin)zex;th)
i=0 i=0

. -1 -1 -1 -1
and thus the equality —g;, ), + kzls:o Jatih+h + Z’ti:o Gutihth + gy =K Z?:o Ya+in t Zzzo Gz +in mMust be
satisfied for all z € X. Consider when t = p — 1 and subtract from it the case when ¢ = p — 2 to obtain

p—1
9ot F Gy—on T Go—hih' — Ga—2n = K Z Jz+ih
i=0
Thus we can conclude with the following claim:
Claim 3.3.1.1.1. Consider an element (g;h) € P. Then, (g;h) is conjugate to any (r;h) if there exists

some k € H where, for all v € X, the relation geqr + g, = ghyp, + Tz is satisfied.

If the above conditions hold then Zf;ol Totih = Zf;ol Jotktin and thus {(r;h)y and {(g; h)) will contain the
same subgroup <((Zf:_01 Totih)zex;0)) of the base group.

As well, the subgroup generated by {(g;h)) is stabilized by (g'; h') if there exists some 0 < d < p so that the
relation g, — 9o + Goih — Jo = de;()l Gorintn 15 satisfied for all v € X.

Example 3.3.1.1.1. Consider the case when &’ = 0,p = 3, and (¢’;0) stabilizes {(g; h)). Then, this implies
that g, — gL, p + 92 — 9o = dZ?:o Jz+sn and thus for a fixed z we get the equations

9; - g/w-&-h = k7g;+h - 9;+2h = k,g;-r?h - 9;; =k
where k = de:O 9u+in € Z5. Then,
29; _'g;+h ::g;+2ha2g;+h _'QQQ =k

which gives 3™ possible solutions for each value of k.
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3.3.1.2 Specific generators

Let us now limit ourselves to subgroups generated by a specific subset of elements in G, H in order to obtain
unique single-generator subgroups. Note that every non-zero element in Z, is a generator, and G, H cannot
be generated by a single element.

Let cx € H,K € Zg be an elements such that cx = (k;)o<i<dq; that is, an element in H with only ones and
zeroes as entries. Note that H = ({cx : K contains exactly one 1 }).

Similarly, let by = (iz)o<z<n € G where I € Z5. Then, let gr x; = ((0)rex,a<j(b01)zex,2=5(0)zex,z>;; CK)-
For brevity write this as gr x,; = (br,;; k).

Consider a subgroup generated by a single gr i ;. Since

p—1

9= ( Z (brj+ick )3 0)
i—0

by Lemma [3.3.1.1.1| for this to contain a non-trivial subgroup of the center we must have that {j +icx : i €
Zp} = X, which implies that d = 1.

To summarize this as a claim, we get that

Claim 3.3.1.2.1. Let g; x; be as discussed above. Then, {gr K ;) contains a non-trivial subgroup of the
center only if d = 1.

As well, if either b = (0)zex or cx = (0)pgy<g then Zfz_ol (b1 j+icx) = 0 and so the generated subgroup has
order p. (Of course, if both are zero then this is simply the trivial subgroup).

Suppose cx = 0. Then, by Claim|3.3.1.1.1} g70; = (br,;;0) is conjugate to any (r; 0) where g, +r+9), = gb+72
and thus r, = g,k for some k € H and for all z € X. Note that such an element (r;0) will then satisfy
SP o, =0forall z € X.

Specifically, this equality must hold when 2 = j — k so that g; = b;, and thus in this case we get that
rj_ = g; = by. For all other values of x we get that r, = 0.

Alternatively, one can suppose that g ; and (k;0) are conjugate by (¢'; ') € P. Then, the equality is the
following:
(brj+n + g5 h') = (¢ + ks h) = brjen =k

where A/ is arbitrary. Thus g7, 91,0,; are conjugate for any j,j € X.

This holds in general; that is, (a;0), (b;0) € P are conjugate if and only if (¢p,(a)) = b for some h € H since
for some (g;h) € P,

(a;0)(g; h) = (¢n(a) + g; h)
= (g;:h)(b;0) = (g + b; h)

84



As well, it is normal in a subgroup generated by (¢'; h') if 9, — b + Gath — Gz = Gaihr — Jo = dZ?:O gz = 0.
Thus, since g; = by and g, = 0 when = # j we get that (¢'; h’) stabilizes (g7 0,;) iff B = 0. Thus this group
is normal in the base group.

Similarly, suppose by = 0. Then go j x is conjugate to all elements in P and the subgroup it generates is
normal in P.

In general, assume I, K are not all zeroes. Thus, we have a subgroup of order p? which does not contain a
non-trivial subgroup of the center, since

2 brifa=j+ick,0<i<p
§ (bl,jJricK)x = .
= 0 otherwise

In other words, g7 ;- . will contain the value of by in the j, j + ¢k, j + 2ck spots and zeroes elsewhere. We can
thus apply Claim [3.3.1.1.1] to see that gk ; is conjugate to some (w;ck) where g,y n + gy, = goic, + We-
Specifically, since g; = by and g, = 0 for all other x € X, consider when z = j — I’

’ ’ ’ ’
95 T 95 = Gj—hitex T W = br —wj = Jj—n'+cx — 95

for all other values of x we get that

/ / _
9z = Gotcx = Wa

In addition, (w;cx) must satisfy the relation that Z?:o Wy ticp+h = by for the ' € H given above.
Finally, the subgroup generated by g5k ; is stabilized by (¢'; A’) if

p—1

g;: - g;c+cK + gx+n — Gz = d Z Gr+h'+ick
1=0

consider four cases: when z = j, when z = j — b/, when z = j — I/ — acg, for 1 < a < p— 1, and all other
choices for € X, which give the following equations, respectively:

p—1 / / . ’
g.-—g.. . =dbyif k' =0
L g = Gisep + jrw —br =d Z Gjthiriex =40 IR
i=0 95 = Gic, = br else
p—1 ’ / . ’
0 =gy = dby if W =0
2. gl'—h,' o gl'—h,' + b[ —Gi_p = d Jiticx = J JTCK
J J +cK J Z;) Jjt+ick g;_h/ N g;'_h/+cK _ (d . 1)()1 clse
p—1
P i h—ack — Yi—h'+(1—a)ex = d Z Gjtice = dbr
i=0

Thus, ¢’ must have the cx

The above discussion can be summarized in the following lemma:
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Lemma 3.3.1.2.1. Suppose g1 k,; € P is as defined above. Then:

1. gro,; and gro ;o are conjugate for all j,j' € X and the subgroup gro,; generates is normal in the base
group.

2. go,k,j s conjugate to all elements in P and is normal in P.

3. g1.k,5, 1, K # 0 is conjugate to any element (w;cx) where gz n + gl = g;HCK + wy and which implies
that 37, Wyt h+icre = br and the subgroup it generates is stabilized by (g'; ') if g~ gl e + Gt ht —Ga =
-1
dZ?:o Jot+h/+ick for allx e X.

3.3.2 Representation theory

This section will focus on the representation theory of P. It is essentially just a specification of the discussion

in Section B.2.4

First, consider the irreps of G; these are simply the p™ one-dimensional representations

27
Xk (a) :w;,f“,wp:e » a ke

This gives rise to p”pd one-dimensional irreps of GX:
GX = {®uexXt, : kz € G}
where, for ki = Rrex Xk, € GXv”v ke GXa k= (kl‘):tEX’v = (Ux)zeXa

k(v) = pr”EX Fo e _ w;;'v.

Next, we need to find the isotropy group, which will be a function of k& and will have order dividing p¢. It
is given by

Tr(re) = {y € Zg : Xpeay, = X0, V2 € Zp}
= {h € H : k has the h{orbit propertyl}

;Zg, for some 0 < f < d.

Next, the inertia group is given by
Iy (k) = {(b;h) : be G¥, h e Ty (k)

and we must extend the irreps kj of 6} to irreps Ky of this group. In order to do this, recall Lemma|3.2.2.0.3
Then, for ((gs)zex;h) € Icia(ki),

Ki((9e)zex; D) (®eexVz) = Qrex Xn—12(92)Vh-14
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Then, if k has the hforbit property] then it immediately has the h~'-hforbit property] as well, and so

h=1(x) = 2. Thus we can choose the trivial extension so that

ﬁk((gm)mEX; h) = Hk((g:c)xeX) for all h € TH(Hk).

Next, the irreps of H = Zg are of the form py(a) = wf;'a, a,le Zg, and there are p? such irreps.

To determine T;Z/f\k) consider the set of generators T = {h* : 0 < i < f,h € Ty(kr)},|T| = f < d where
f = d implies that Ty (k) = H. Then, any b € Ty (k) can be written as b = Z{:O a;ht where 0 < a; < p.
Thus, for py € H,

f )
7 2 ,{7 aih"
pe(0) = pe( Y] aihi) = wp =0
1=0

z-hi)ai

(wp

I
,:]&“

=0

pe(h')%

I
k:]\

0

?

Notice the redundancy of £ when Ty (ky) # H, which occurs due to the dot product relying on multiplication.
Thus, one can limit the choice of £ to the p/ elements in Ty (ki). That is, Ty (ki) = {pe : £ € ZI} . As an

aside, note that the indices when A’ = 0 do not contribute to the sum and could be “removed”; this is what
allows for the isomorphism to be stated (that is, that Ty (kg) = ZZJ;, f<d.

Then, we get the set
TH(Kk) = {wZJ, : j € TH(Hk)}

The inflation of any irrep n; € T (ky) can be defined simply as
1 (b; ) = m; (h)

—

Finally, the tensor product of an irrep K, € GX,1; € Ty (k) is given by

f _ S ‘ ash i
ki @175 (b; Z a:hl) = ”k(b)m(Z a;hi) = w;f b+3i_p aif-h’)
=0 =0

Now, consider inducing &}, ® 1; which acts on the vector space V' = C, since it is one-dimensional, to an
irrep of GV H.

To determine the coset representatives, consider (G H)/Igu(o) = H/Ty(o) with coset representatives
D = {0,h : h ¢ (T)}. That is, suppose t € Ty (k) is of the form t = (0;) f<i<a(hi)o<i<s so that one can
write any h € H as h = ¢t + ¢ for some ¢ = (¢;) r<i<d(0)o<i<y € D and so the cosets of the quotient group are
«T) for c ¢ {T).
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Then, let (g;h') = (g;h +b) e GV H,h = Z{:O(aihi), b ¢ T (ki) and consider its action on v € V. One can
calculate the following:

(g:h) D (0:0)@v =Y (1he(g);h + ) @

ceD ceD

= > (0;¢+ D) (ve(9);h) @

ceD

= Y (05 +b) ® (R ® ;) (tbel9); b))

ceD

= Y (0:c+b) ® (ri(Le(g) ®;(h))v

ceD

- Z (0;c+b)® wgw“(g)JrZ{:“ aidh),,
ceD

Thus, the final, induced representation, denoted oy, ; is given by
kb (9)+30_, aij-ht
ory(gih) = Y wy VOIS gy
ceD

with dimension p?~/. We thus get the following corollary:

Corollary 3.3.2.0.1. Suppose k = (i,1,...,i),i € G is a label of an irrep of GX so that ry € é} There are
|G| = p™ choices of such irreps, and each give Ty (ki) = Zg. Thus these irreps induce to the 1-dimensional

irreps of P. Since the orbit of each such k is k there are p™ such labels. For each there are |H| = p? choices
for the label of n; and thus a total of p"*¢ one dimensional irreps.

Notice that for a given k = (k;)zex, k. € G, if we associate it_to k = (k:0) € P, then there is a direct
correspondence between the values of h € H for which k has the h{orbit property|and the values of h € T (k%)
since if k has the h-orbit property|then k, = k., for all x € X and so h is in the isotropy group of xy.

Consider t}}e elements of GX which are fixed by a specific h € H and labels k = (kz)zex, ks € G associ-
ated with k = (k;0) € P. To determine each Ty (ki) one must understand the values of h € H for which
(¢n(k);0) = (k;0); that is, values of h € H which fix an element in G*X. Similarly, T is the set of representa-

tives of the orbits of elements in GX with unique orbits; that is, for each label k, k' such that &' = (kyyp)zex
for some h € H one only requires a single representative k for the orbit.

Note the following observation:

1. If h = (0) then it fixes all p¢ elements in X and p™" elements in G

2. If W' € (h) then it fixes the same elements as h and thus elements being acted on by h,h’ have the
same orbit.

3. If an element is in the diagonal subgroup of GX then it is fixed by every h € H and thus has an orbit
of one.
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4. Any h e H fixes at least p"" ' elements.

Then, by Burnside’s lemma we have that || = r; 3,cpy [Fiz(h)| and so

]. d—1 d

pl (™" + (! = )p™" ) < T < p?

In order to understand I' and understand the number of irreps of a certain dimension, one must understand
the what elements k associated with k € GX a given element h € H fixes.

Example 3.3.2.0.1. Suppose p = 3 and h = (0)1<j<ql so that it generates the subgroup (h) = (0)1<;<ab =
Z3,b € Zy. Then, (h) fixes all elements of the form k = (k.koka)oca<zi-1,ka € G.

For example, if d = 2 this corresponds to k = (aaa, bbb, ccc) for a,b,c € G.

There are |G|3d71 = 373""" guch elements. 3" of these elements are in the center and thus their isotropy
group is all of H instead. There are additional elements of this form which are fixed by other elements h € H
as well. This will be addressed more later.

Example 3.3.2.0.2. Consider when p = 3 and h = (0)2<;j<q10 so that (h) =~ Zs. Then, this subgroup
fixes all elements of the form k = (kakaka)o<a<si—2,ka € G3. For example, if d = 2 this includes k =
(abc, abe, abe).

There are |G |30l72 = 373" such elements, of which 3" are in the center and will thus have a different isotropy
group. As before, there are additional elements of this form which are fixed by other elements h € H as well.

As demonstrated in the examples above, if an element k is stabilized by a subgroup of H of order p’, then
there exists some smaller subgroup of order p’~! by which it is is also stabilized, for 1 < j < d. Thus,
one must be careful to avoid double-counting, and thus it is beneficial to begin by considering the elements
stabilized by the largest subgroups of H and decreasing. That is, begin with subgroups of size p® of H which
have d generators and examine what happens as the number of generators decreases. From before we already
know that there are p” elements k stabilized by all elements h € H; thus these have an isotropy subgroup of
order p.

Note that the number of subgroups of H of order p? is given by the number of j-dimensional subspaces of a
d—dimensional vector space over Z,. The group H can be associated with the vector space ZZ. Then, the
Gaussian binomial coefficient can be used to enumerate the j-dimensional subspaces of this vector space:

(), - 5=
i), japT -1

Thus, if j = d — 1 then this gives (jfl)p subspaces in total. For each subgroup associated to a subspace

of this dimension there are p?~7 = p cosets in H on which a representation is constant, giving |G|? = p"?
elements k fixed by such a subgroup. However, there are p" elements which are fixed by a larger isotropy
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group, namely the whole group. Thus there is a total of (jfl)ppp" — p" labels fixed by a subgroup of H

associated with a d — 1-dimensional subspace. Each label has an orbit of p®~7 = p and isotropy group of
order p®~!. Thus there are a total of (ji) pP?~1 — p"~1 elements which will induce to a p-dimensional irrep
P

inT.

For each irrep kj, € I' with a stabilizer of order p?—! there are p?—! choices for 1, € |Tg (k)|, resulting in a
total of (jfl) pPrtd=2 _ pntd=2 induced representations of dimension p.
P

This continues in general, as summarized in the following proposition:

Proposition 3.3.2.0.1. Suppose P = Z; Zd GUH. Then, for 0 < j < d there are (‘;)p j-dimensional

subspaces of Zg corresponding to subgroups of H with order p?, with each element having an orbit of size
d—j
pdI.

Then, for 0 < j < d there is a total of

pjd((d) P - < a ) P
/) p j+1 »

labels k which correspond to elements ki in I', where (‘;) =0 if j = d. Associated to each is an isotropy
p

group of size p’ and thus there is a total of
ij_d(<C.l) p - ( d ) p
I/ Jj+1/,
representations of P of dimension p®—7

Proof. Before proving the above inductively, consider two “sanity checks”. First, we require that the total
number of labels k sum to |GX| = pP’". That is,

50 (- -4

- pnp

Similarly, the irreps must satisfy the equation Y peh di = |P| where d, is the dimension of each irrep p.
Then,

: d—3\2(,2j—d d np?= d np?=i=1 d ! d npd=I d npd—I~1

2T ) =) D=p' () () e )

i=0 I/ p J P i=0o N/ p J P

d d
_ pd(pnp ) _ pnp +d

Now, use induction on j and thus the dimension of the irrep to formally proof the relation. In the discussion
above the proposition, the relation has been shown to hold for the case when j = d and j = d — 1. Suppose
it holds when j = d — k and consider t = j — 1 =d—k — 1.
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Then, we are considering a subgroup of H of order p* with i generators. Consider h € H, one of the n
generators of this subgroup. Then, the label k is stabilized by h if k has the h{orbit property] There are
thus |G| choices for each triple above, and d — 1 such triples. This means that any single generator stabilizes

i—1 k+1

|G |pd_1 elements, and i generators result in p’~! such triples to consider. More precisely, the p¢=* = p

i

cosets of H must be considered, which then results in |G|pd7 = p"pdfi elements k stabilized by such a

subspace.

Since there are (‘j)p such subspaces there is a total of (‘ii)pp"pd_i elements fixed by such a subgroup.

Now, by the inductive hypothesis, we know that there are (‘;) P’ (jil) p"" """ labels k which are
P
d—j

P
stabilized by a subspace of size j,d > j > i, and thus (;l) p™P " stabilized by a subspace of size greater than
P

or equal to j. Thus, if we let j = i + 1, this gives the number of elements stabilized by a subspace greater

than 4, and thus (‘f)pp"”dii - (ifl)pp”pdﬂ;1 gives the number of elements stabilized by a subgroup with 4

generators.

However, prior to inducing any such representation, one must consider the size of the orbit of each label k.

Since the order of its stabilizer is p’ it follows that its orbit is p?~*. Thus, the number of labels of irreps in
d—i—1

Tis pifd((tj)ppnpd_i _ (ifl)ppnp ).

Finally, there are p® choices of irreps of the isotropy group for each choice of irrep of the base group. This

results in a total of in_d((?)pp"pdii - (ifl)pp"pdﬂfl) irreps of dimension p®~?, as expected. O

As a proof of concept consider the following example:

Example 3.3.2.0.3. Suppose d = 3 so that |P| = p"*"+P. Then, there are p” labels k which induce to a
total of p"*P one-dimensional representations of P. Clearly, (g ) =1 and pP~P(p") = p™ corresponds to the
P

number of elements y in T'. As well, p?p” = p"*+¢ and thus the equations in Prop.|3.3.2.0.1| are satisfied.
Then, for j = d — 1 = 2, according to the proposition there are

P = 1DP*=1) ., (p*-1)

(P*-1-1) (p—1)
=p ' ((p> +p+1)p"" —p")
= P et

labels fixed by a two-dimensional subspace resulting in a total of

—p") =p PP —p")

p

ppn+3 +ppn+2 + ppn+1 _pn+1

irreps of dimension p.
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For j =d— 2 =1 there are

72( (p3 — 1)pnp2 _ (p3 — 1)pnp) _ (pS — 1)p72
(p—1) (p—1) (p—1)
- 2n n,
=p 2P +p+ D" ")
_ pp2n _|_pp2n71 +pp2n72 _pnp _pnpfl _ pnp72

—(+p  p ) =) = =P

(""" —p™?)

labels resulting in a total of
_ 2
(p+1+p )" " =)
irreps of dimension p?.

Finally, for j = 0 there are

. 3 _ .
p73( np® (p 1) np?

labels and thus a total of

irreps of dimension p>.
Notice that when p is very large the subtracted terms are almost negligible. That is, with high probability

one will obtain a p3-dimensional irrep.

Now, a Gaussian coefficient (‘;)p yields, in fact, a polynomial of degree j(d — j) of the form Zgi%_j ) a;p

where a; = a;jq—j)—; [?].
Then, there will be

. g npd—i ; i np®
ng d(@(py(d J))p p~7 7@(p(a+1)(d J 1))p P

—9'—1) _ O(pj(dfj)+npd_"+2jfd 7p(j+1)(d7j71)+npd_j_l+2j7d)
_ O(ﬁ(d—j+2)+npd*j—d)

representations of dimension p?~7. This proves the following corollary:

Corollary 3.3.2.0.2. The number of irreps of dimension p*=7 is in O(pj(d_j+2)+”pd7j_d).

Thus, as p tends to infinity the probability of observing a p® is significantly greater than the probability of
observing any other representation of dimension p®~* where i > 0.

3.3.3 Introduction to the HSP in Z? Zg

Recall the methodology of [2], as discussed in Section as well as [I7], discussed in Section The
goal of this section is to apply similar methodology to solving the HSP in P = Z; Zg.

92



Begin by only considering the cyclic subgroups

p—1 c—1
Ag,h = <(g; h)> = {((k Z Gz+ih + Z gm+ih)xeX§th) it=pk+ce ZPQ}
=0 =0

where g = (gz)zex, gz € G, h = (hg)o<k<a and which has conjugate subgroups of the form
Ay ={(g';h)) where guik — gi = Yath — Va

for some (v; k) € P and for all z € X. Of course, this condition implies that Zf;ol Jrtktrih = Zf;ol Ghyin for
all x € X.

Claim 3.3.3.0.1. Suppose k = (i,...,1),1 € G so that ki induces to a one-dimensional irrep xi, ; for every
je H. There are p™ choices for k and thus p™+% for Xk,j- Then, for an element (g;h) € P,

Xk (g h) = wp=esx S g

if

1. i=0 and j = 0, giving p® choices for h and p"pd forg
Divex 9z = 0 and j = 0, giving p? choices for h and p" for k
Diex 9z = 0 and h =0, giving p? choices for j and for a fized k

e e

Divex Yz = 0 and h # 0 and so is orthogonal to a d — 1-dimensional subspace, giving p4=1 4+ 1 choices
for j for a fixed k

5. Disex 9 15 one of the p" 1 +1 elements in G which are in the the n—1-dimensional orthogonal subspace
of i and either h =0, j = 0, or h is orthogonal to j, giving p®=* + 1 choices for j for a fized h (or vice
versa)

6. j = ah for somea=1,2 andi-Y 9o # 0 and thus (i,7) - (X ,cx gz, ) = 0.

Proof. Notice that >, .y g € Z. If this equals zero there are |G| = p™ choices for 7 and j - h = 0. If
h = 0 then there are |H| = p? choices for j. Otherwise h generates a one-dimensional subspace and is thus
orthogonal to a d — 1-dimensional one. Thus, there are p®~! + 1 choices for j.

Otherwise, suppose > .y go # 0. If i = 0 then there are yet again p? choices for j if h = 0, otherwise there
are p?~1 +1 choices for j. Otherwise, if i->], _y go = 7 # 0 then j-h = —y implies that j = ah+ 1/, k' ¢ (h).
This gives p? choices for j. O

Theorem 3.3.3.0.1. Suppose Ay = {(g;h)) is the hidden subgroup. Then, the probability that one observes
any p*~I -dimensional irrep o) s
(p?77) |Ag,nl j—p+2 d_ . j d =i d d=j—1
Pl N Agn) > —omay 0 P = (| pp’“’ it pp”” )

where as p tends to infinity this tends to equality.
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Proof. Note that when considering a cyclic subgroup it is sufficient to consider the behavior of the character
on the generator. The following calculates the probability of measuring a one-dimensional irrep x ;:

play) = 22l S (b))

P
| | (asb)eAg n
_ [Agal it S, ex gottih
- pnpd-‘rd Wp
0<pf+t<|Ag h‘
p—1 lz Dwex got+lj-h 2

) s 2o ‘ if [Ag.n| = p
- p— 1 lz Diwex g +lj-h

T 20=0 ‘ if [Agn| =p

e i [Agal =P and i 3, v go + b =0
=< —A —if|[Agpl=pandi -}, g.+ji-h=0

pnpd 2+4d

0 otherwise

Thus, using the claim and calculations above, for a fixed g, h where h,>’ _y g» # 0 there are pd=t 4 pntd

choices of k, j that result in 0. If 3 _\ g, = 0 then there are p?(p?~! + 1) choices.

Note that if |4, 5| = p then we require that Y. _y g, = 0. If h = 0 then there are p" ¢ choices for the labels
k,j, otherwise there are p™(p?~! + 1) choices. Note that h = 0 if and only if |Agol =pand Y v gz =0.

This gives that the probability of observing any one-dimensional irrep is

1+p:+2 if |Ag,h| = p272:peX gz # 0

prr
d—1
P(x) ;iﬂ_plfh4 =% Xrex 9o =0
X =
7n(pd 5 if |[Agpl=p,h#0

Lp® " if Ay | =p,h =0

pn(p’lfl)72+d

Let agj;.) denote a p'-dimensional irrep and consider J(p) There are p~ ((di)ppnp* (g)pp”) = pd*2((‘;)ppnpf
p") such irreps. Consider the probability of observmg such an irrep. Suppose D is the set of coset represen-

tatives of H /Ty (ki) with |D| = p and let h = Z ) a;t' + r where r € D,t* € Ty (k). Then:
[Agnl
Plo) = 55T Y al((@ib))
(asb)eAg n

d—1 . i
Z Z wk Ye Zu Owuh(g))"'fZi:O a;j-t )lc + f’r‘l><c|)

ceD 0<f<|Ag nl

Ay,

np +cl

The trace of the above matrix is given when ¢ + fr = ¢ and so fr = 0 mod p. Thus, either r = 0 and thus
h = 2?2—01 a;t" € Ty(ky) or f =0 mod p.
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Case 1: r=0

Al e (ST bun () +F X asjit
P(Ul(cpg)(A ) = npngrd Z Z wh (X0 Yun(@))+f 220 aid )\c><c|)
ceD 0<f<|Ag,n]

_ |Agnl Fetbe (028 Yun (90)+F 2028 asjt?)
nderd 2 Z Wp
ceD 0<f<|A

yh‘

p—1 1 p _ .
_|Ag sl ( Z (g erinla)y 3 wg-wc@z:o Yon(9)+30L asit'y

- pnpd+d
ceD 1=0 =0
_ {p‘" if Y070 verin(9) = 0.k - e(Xi_g en(9) + Nisg aij - ' = 0 for each 0 < I < p
0 else

where at * the fact that f is of the form pl + ¢

We require that k - Zf;ol Yerin(g) = 0. If h € Ty (ky) then this is always true, since Zf;ol Yerin(g) =
pYe(g) = 0. Otherwise, Zf;ol the+in(g) must be orthogonal to k. Since dim(span(k)) = 1 there are p"~! + 1
such vectors. Thus, for a fixed k,j we have that

-1
() [ Agnl | Tu(sR)| Pt 41
P(Ukz,)j (Agn)) = (pnpdid,Q)( H] + o )
d 1( n—1

P41

|A07h| d+1)+2d 2
a—j , ,
Finally, consider a,(f j 7); that is, a p?~J-dimensional irrep corresponding to an isotropy group of order p’

which is associated to a j-dimensional vector space. There are p2j_d((?) pnpdij - (ji1) pnpdijil) such irreps.
P P

Let ((g;h) = (g; 1 +b) € P,h = 372 (a:h'), b ¢ Th (k).

Then, any (a;b) € Ay can be written as (a;b) = (g; h)pf+t = ((fo;ol Gorin + Zz;é Jutih)zex;th) =
((F P20 Gurinriv + — g Gorinrviv)sex; th’ +tb) for 0 <t <p — 1.

Then, the probability of measuring such an irrep over A, ) and assuming k # 0 (if k = 0 this will be a
one-dimensional irrep, discussed above) is given by

Ay
Pl (g = T Y orel(@d)
(a;b)EAg,h
A - v Pl i J=1 gy
_ ]lnpd,+d (Z wé}k 2o wc+m(g))(2 w;f Do Yetin(9)+121 5 ail-h )|C I tb><C‘
ceD 1=0 =0

I;M‘;:?;‘ ifr=0,k- Z 7/Jc+zh( )—0 k - Zz owC-&-zh( )+M'h:0VZEZP
={ PAerl i 20 and k- P Owcﬂh()

pnpd+d

0 else
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r = 0 occurs if h € Ty (k). For a fixed k, since [Ty (kx)| = p’ this occurs with probability g—i = p/~%. Since
h e Ty (ki) we get that £-h =0 only if £ =0 or h =0. For a fixed k £ =0 with probability p% As well, the
probability that h = 0 given that r = 0 is also —5; in general though it is p—d.

J 7

Then, k - Zf;ol Yerin(g) = 0 if k Zp_l erin(g) are orthogonal. Since k € ng” it is orthogonal to pP'm!
1

i
elements. Thus, k - Zf;ol Yerin(g) = 0 with probablhty =p L

Finally, suppose p; gives the probabilities that k - Zi;é Ye(g) + 10 -h =0 for 1 <1 < p. This corresponds
to the probability that (k,1¢) - (Zi;(l) ¥e(g),h) = 0. Since (k,1¢) yields a one-dimensional vector space in a

pinpin = p?¥n2-dimensional vector space it will be orthogonal to p”zdnz_1 elements. Thus for each [ it will
dp2_4
—1

2 n
be zero with probability pran2 =p

Then the overall probability in this case is given by p(r = 0) /\p(k'Zf;Ol Yetin(g) = 0) A (p((k- Z 0 CUerin(g) =
OAL-h=0)v (k- Yerin(g) + 1th = 0))). That is,

J d *11—[ )7pj dp71(2+p])

pj+1

2+t

B pp(j+1)+d72j

> pJ—d—p

Case 2: 7 # 0 If f = 0 mod p then we obtain the following equation:

[ Ag.nl ke (178
P(O.(P)) _ np%+d( wh Ye(Xuo ¥ h(g)))
p ceD

~ [Agal (14 Wb EE 3 berin(9) | 2K (500G Yerin (o)
- P
pﬂpd+d ceD

_ {"“ if k- Y20 Yerin(g) = 0

0 else

Now, r #0if h ¢ TH(nk)
occurs with probability p~*. This gives an overall probability of ppdﬁ for a fixed k.

#(9) =0

Thus, for a fixed k, upon which all other terms depend, we get that
P [Agnl 2+ PPt plAgal p? —
pnderd pp(j+1)+d—2j pnpd+d pd+1

[Agnl - j
= pnpg+2d (pj P2 +pd _p])

d—j
P(Ul(cpl )(Ag,h)) =
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Since there are p2=4((4) pm* ™7 — (.} pnP" 77"} irreps of dimension p?~7 we get an overall probability of
17 p Jj+1 P g Y

d—j A . . - d npd—i d npd—i—1
P(o® )(Ag,h)) > M(pj P2 pd T p? d((j) p — ( ) PP )
P p

pnpd+2d jr1
_ 1A 2 od i (A pti d npd—i=1
_W(P] +p —P)(jpp — i+l pp )
as required. O

Note that the character of a representation over the trivial group always yields zero and thus over the trivial
group:

O = ()

1 P

,p(U(Pd_j)) =
pnpd—l

P(X) = pnpd-‘rd—j

Now, consider the general algorithm in [I7]: first, we need to set up two coset states, and perform the QFT
over each. After relabelling, perform a CG-transform so that the irreps decompose into one-dimensional
representations. After measuring and classical post-processing one can obtain the hidden subgroup.

In order to implement such an algorithm we must understand how the tensor product of two (or potentially
more) irreps decompose.

Let (g: 1) = (gh+b) € P.h = 332 (aih®), b ¢ Tr () and (wsr’) = (fir+t) € Por = S (ar'), t ¢ Try (),
with induced representations oy ; with dimension p¢=71 and 0¢,y with dimension p=12 | respectively, for
j €T (kk),y € T (ke), and with coset representatives given by the set Dy, Do, respectively, given by

or(gil) = 3wy VTR e g

CED1

b, f2 ot
ory(wsr’) = 3wy TRII py

C'EDQ

An entangled coset state after the QFT and measurement is given by

|Ag,nl |Ag,nl
|fj| o (Agn) ® ey (Agn) = —520 D1 ong(gsh)®@ Y, ouyl(wir)
p (g;h')eAg n (wsr")eAg n
|A ,h| ke(g9)+ fl a;j-ht
T AR R PR

(g§}Ll)7(w;T/)eAg,}L ceDy

b, f2 i
® Z wﬁwc (w)+2":0a1yr)|C/+t><cl|

C/€D2

With high probability, the measured irreps will both be p%-dimensional, and thus D; = Dy = H. As well,
this implies that the isotropy groups has order 1 so that the only element stabilizing any label k is 0 € H.
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Thus, denote this representation as py := o ¢ instead. Then,

|Ag,h| _ |A9,h

|P| pk(Ag,h) ® p@(Ag,h) = apitd Z Z wg'wc(g)k + h/><c| ®wﬁ~wc/(w)|c/ + 7"’><Cl‘ (31)
p (g;h'),(wir')eAy p, c,c’'eH
A
= Il"pgd)-’:d Z Z w;f'wc(g)+é-wc/(w)|c + h/,C/ + T/><C, CI| <32)

(g;h"),(w;r")eAgy p c,c’€H

and the resulting matrix will be p?¢-dimensional. Recall that with the Heisenberg groups, for a p?>-dimensional
matrix, resulting from the tensor product of two p-dimensional representations with labels k1, ko, one could
apply a CG transform to obtain the p? distinct one-dimensional irreps (that is, each with multiplicity one)
when k1 = —ko and p copies of the same p-dimensional irrep otherwise. This was motivated by the fact that
if k; = —ko then k1 + ko = 0 which was not a valid p-dimensional label, whereas for all other values the
resulting sum is a valid label and thus the tensor reduces to the irrep corresponding to that label. Following
this line of thought one obtains the following:

Theorem 3.3.3.0.2. Consider p, ® pe; that is, the tensor product of two p®-dimensional representations.

Let v = k+ ¢ and suppose 7y is a label of k € GX which induces to a total of p? representations of dimension
p?=7 for 0 < j <d.

Then, each of the p? irreps occur in the tensor product of the representation with multiplicity p?.

Proof. Let B = {(g;0) : g € GX} < P and begin by considering the restriction Resgpy ® p¢. Then, for any
(g;0) € B we can see that

R _ RQSBIDk ®p[(g; O) _ Z wz.¢c(9)+£-¢c/(g)|c’ C,><C, C/|

c,c’'eH

With character

0 else

2d if ~ . s _ ic H
H| Y wh e +10) _ pd 3 o t0)0i(0) _ {p if y-¢i(g) =0 Vie
i€H i€H

Consider the inner product of the character of this restriction with x., and suppose p? > [Ty (k+)| = p/ > 1.

98



Then,

1 o "y
(o X(R)) = 1y 2 o0 0w

geGX €H
_ pd—np? Z Z —y-g+71i (g)
geGX icH

_ pd—npd 2 Z 2 2 w;’Y'(Z+Q)+’Y'1/’i+c(Z+9)

2€Z(GX) geGX /Z(GX) i€TH (k) c€H /TH (k)

- pd—npdpn Z Z Z wp—7~(g)+'v~wi+c(g)
9eGX /Z(GX) i€Ty (k) c€H/TH (k)

= pltn—np Z pf Z wp—7<(9)+'v-1/fc(g)
9eGX/Z(GX)  ceH/Tx (k)
d+nfnpd'pf+npd'*’ﬂ Z Z w;v-(9)+v~¢c(9)
9eGX /Z(GX) ceH /Ty (k)
d+f Z Z wp*v(g)Jr'v-wc(g) "
9geGX/Z(GX) ceH/TH (Kk~)
d+fpd7f

2d

=p
=p

=p

Where the line * is simplified by noting that ZCGH/TH(M) w;T(QHV'wC(g) = p?=f if g = 0 and 0 otherwise.

This gives the multiplicity of x, in R.

Now, we wish to determine the behavior of py ® p, when restricted to I = GX x Ty (k). Suppose (g;h) € I.
Then,
R' = Resipy, ® pelg; h) = Z w§'¢c(9)+£-wc/(9)|c +h,c + hyc, C/‘
c,c’'eH
with character
Xr(9;0) if h =0
0 else

xr(g;h) = {

Thus, consider any one-dimensional representation a. ; = £, ® n; where 7; € Ty (k). There are pf such
representations, and if x, occurs in R with multiplicity m then each o, ; must occur in R’ with multiplicity
pﬂf. However, the size of the induced representation must be accounted for. Thus, by the calculations

above, and since the irrep will have dimension p®~/, we see that each a; j occurs in R’ with multiplicity
PP pt= T = pt,

Since
<O"Y,ja X(R/» = <I’ndfoz%j, X(Pk ® P£)>
we have that the multiplicity of each Indfa. ; in py ® py is p?.

As a check, notice that since there are p/ irreps of dimension p?~/ and each having multiplicity p, this has
a total count of p?? which is the dimension of py, ® py. O
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Conjecture 3.3.3.0.1. Using the notation from Theorem |3.5.5.0.9, there is some unitary Clebsh-Gordan
transform Ucg which transforms pi,®pe into a tensor of the p=I -dimensional irreps of P which are obtained
by inducing k. Each of the p’ irreps will occur with multiplicity p?. More precisely,

d—j
Ule(pr ® po)Ucq = La ®@15TH/@)U$Z :

Remark 3.3.3.0.1. With high probability the tensor product of two p®-dimensional irreps will be a tensor
product of one p*-dimensional irrep with multiplicity p®; that is, v would correspond to the label of a p?-
dimensional representation. In this case, we begin with a state

pr((g: 1) ® pe((g; ) = Y, wi vV @le 4 h ! + hye,d|

c,c’'eH

and wish to obtain something of the form

D wul® Y wp ¥t Dd + h){d] = L ® py(g; )

ueH deH

3.3.4 HSP for Zgng: Next Steps

Now that we know that the tensor product of two p?-dimensional representations decomposes quite nicely
into irreps of certain kinds, there are two, similar proposed “next steps” for solving the HSP in this group.

In either case, the first step would be to obtain a correct unitary CG transform which can be efficiently
implemented on quantum circuits.

Next, one could apply the CG transform to py(Ag.n) ® pe(Ag,n) to decompose it into a direct sum of a single
p?-dimensional irrep, analogous to the methodology in [2]. One potential issue with this is that in [2] the
group was lower dimensional; the additional orbits and non-transitive action of H on G¥X may pose an issue.

Alternatively, one could attempt to utilize the methodology in [I7], since perhaps this group is more similar to
the one examined there. In this case, there may exist a transform which would allow for a clever “relabelling”
of one of the irreps in the tensor product in order to force v to be the label of an irrep which induces to an
irrep of a smaller dimension. Ideally, it would induce to a one-dimensional irrep, so that v = (i, ...,4),i € G,
however, any additional symmetry which can be “forced” onto ¥ would be beneficial. That is, the goal would
be to mazimize the size of Tx (k).

Of course, after such a transform is applied, one must measure and post-process the results. In the case that
the post-processing is inefficient, perhaps more entangled states would be beneficial.

Finally, it would be useful to better understand the conjugacy classes and subgroup structure of this group
in order to better exploit such aspects when solving the HSP. This may help when selecting which subgroups
are relevant, what information would be useful to obtain, and what simplifications one may apply. In [I7],
for example, the fact that there was a nice vector space associated to the group which helped characterize
conjugacy classes was exploited heavily in the simplification and post-processing of the quantum state.
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3.4 Conclusions and Further Research

Evidently, wreath product groups are quite fascination, and for the specific class of groups studied above,
the representation theory seems to imply that the methodology used to solve the HSP in certain extraspecial
groups may be exploited for this group as well.

It would be of interest to not only solve the HSP in the groups of the form P = Zp ng, but more generally,
as well. While P is nilpotent, it is relevant to ask if this is a necessary condition: perhaps the HSP would
be efficiently solvable even groups of the form Z" ! ZZ | which, in general, are not nilpotent.

More general groups would be useful to study as well: what happens in G? H when G, H are non-abelian?
What about infinite wreath product groups?

Since any Sylow p subgroup of Sj» is isomorphic to an n-time iterated wreath product Z, { .... ! Z, under-
standing this group may provide insight into solving the elusive HSP for the symmetric group, and thus
valuable information regarding the graph isomorphism problem.

Finally, wreath product groups become increasingly complex and further away from abelian as the chosen
base groups become more intricate. There is a hope that if the CG transform successfully solves, or at least
simplifies, the HSP in wreath product groups, then similar methodology would be useful for tackling the
HSP in other non-abelian group.
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Chapter 4

Conclusion

4.1 Summary and Concluding Remarks

Evidently, the HSP is a fascinating problem with many avenues still left to explore. It is a relevant area of
research both for its theoretical properties — namely, the relationship between a group, its structure, and its
representations — and due to its applications in post-quantum cryptography.

This report aimed to introduce readers to some of the relevant research conducted in this area, and attempt
to understand how and in which groups one can utilize the Clebsch-Gordon transform to solve the HSP. This
was done by exploring the methodology in [2] and [I7] to understand why the techniques were successful
in the Heisenberg and Weyl-Heisenberg groups, respectively. Ultimately, one of the main factors was the
symmetry of the hidden coset states in these groups across conjugacy classes; that is, the HCSP lent itself
to using a Clebsch-Gordon transform, and in these groups the HSP reduces to the HCSP. Furthermore, the
nature of the representations of these groups also made this technique successful.

Wreath products of the form Zj ¢ Zg were then chosen to be analyzed due to their useful group structure:
they are nilpotent, have many p’-dimensional representations, where 0 < j < d, and have a fascinating
subgroup structure. In order to simplify the problem at hand, it was assumed that the hidden subgroup is
a cyclic subgroup. Unfortunately, the conjugacy classes of such subgroups were not as easy to classify as for
the Heisenberg groups, and the enumeration of the representations was also more complex. This means that
utilizing the Clebsch-Gordon transform to solve the HSP proved to be more difficult.

Further research in the area includes attempting to solve the HSP using the CG transform in other wreath
product groups, including iterated wreath products. Furthermore, better understanding when this transform
is useful could aid in determining which groups to employ it in. A recommendation would be to examine
other p-groups; nilpotent groups; and groups in which the HSP and HCSP are equivalent.

102



Bibliography

[1]
2]

3]

[10]

[11]

[12]

M. Aschbacher. Finite group theory. Cambridge University Press, 2000.

D. Bacon. How a clebsch-gordan transform helps to solve the heisenberg hidden subgroup problem.
arXiv preprint quant-ph/0612107, 2006.

D. Bacon, A. M. Childs, and W. van Dam. From optimal measurement to efficient quantum algorithms
for the hidden subgroup problem over semidirect product groups. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’05), pages 469-478. IEEE, 2005.

G. Baumslag. Wreath products and p—groups. Mathematical Proceedings of the Cambridge Philosophical
Society, 55(3):224-231, 1959.

T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli. Representation Theory and Harmonic Analysis
of Wreath Products of Finite Groups. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2014.

A. M. Childs and W. Van Dam. Quantum algorithms for algebraic problems. Reviews of Modern
Physics, 82(1):1, 2010.

D. A. Craven. The theory of p-groups.

R. Curtis. A course in combinatorics (2nd edn), by j. h. van lint and r. m. wilson. pp. 602. £24.95. 2001.
isbn 0 521 00601 5 (cambridge university press). The Mathematical Gazette, 87(509):399-400, 2003.

J. M. Ettinger, P. Hoyer, and E. Knill. The quantum query complexity of the hidden subgroup problem
is polynomial. Information Processing Letters, 91:43-48, 07 2004.

S. Hallgren, A. Russell, and A. Ta-shma. The hidden subgroup problem and quantum computation
using group representations. SIAM Journal on Computing, 32:2003, 2003.

M. S. Im and A. Wu. Generalized iterated wreath products of symmetric groups and generalized rooted
trees correspondence. In Association for Women in Mathematics Research Symposium, pages 29—46.
Springer, 2017.

Y. Inui and F. L. Gall. Efficient quantum algorithms for the hidden subgroup problem over a class of
semi-direct product groups. arXiv preprint quant-ph/0412033, 2004.

103



[13]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Ivanyos, L. Sanselme, and M. Santha. An efficient quantum algorithm for the hidden subgroup
problem in extraspecial groups. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 586-597. Springer, 2007.

G. Ivanyos, L. Sanselme, and M. Santha. An efficient quantum algorithm for the hidden subgroup
problem in nil-2 groups. In Latin American Symposium on Theoretical Informatics, pages 759-771.
Springer, 2008.

D. Kaur. Classification of extraspecial p -groups using quadratic forms. 88:27-38, 06 2020.
H. Kobayashi. Dihedral hidden subgroup problem: A survey. IPSJ Digital Courier, 1:470-477, 2005.

H. Krovi and M. Rétteler. An efficient quantum algorithm for the hidden subgroup problem over
weyl-heisenberg groups. In Mathematical Methods in Computer Science, pages 70-88. Springer, 2008.

G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup problem.
SIAM Journal on Computing, 35(1):170-188, 2005.

C. Lomont. The hidden subgroup problem — review and open problems. Cybernet, Nov 2004.

C. Moore, D. Rockmore, A. Russell, and L. J. Schulman. The power of basis selection in fourier
sampling: Hidden subgroup problems in affine groups. In Proceedings of the Fifteenth Annual ACM-
STAM Symposium on Discrete Algorithms, SODA 04, page 1113-1122, USA, 2004. Society for Industrial
and Applied Mathematics.

C. Moore and A. Russel. For distinguishing conjugate hidden subgroups, the pretty good measurement
is as good as it gets. Jan 2005.

C. Moore, A. Russell, and L. Schulman. The symmetric group defies strong fourier sampling. /6th
Annual IEEE Symposium on Foundations of Computer Science (FOCS05).

R. Orellana, M. Orrison, and D. Rockmore. Rooted trees and iterated wreath products of cyclic groups.
Advances in Applied Mathematics, 33(3):531-547, 2004.

T. Pham, M. Tait, L. A. Vinh, and R. Won. A structure theorem for product sets in extra special
groups. Journal of Number Theory, 184:461-472, 2018.

M. Roetteler and T. Beth. Polynomial-time solution to the hidden subgroup problem for a class of
non-abelian groups. arXiv preprint quant-ph/9812070, 1998.

P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings
35th Annual Symposium on Foundations of Computer Science, pages 124-134, 1994.

B. Steinberg. Induced Representations. Springer New York, New York, NY, 2012.

104



	Introduction
	Overview
	Hidden Subgroup Problem
	Representation Theory

	Extraspecial p-Groups
	Overview
	Hp2n+1
	General group of exponent p2
	Conclusion

	Heisenberg Group
	Representation theory
	Clebsch-Gordan Transform
	HSP

	Weyl-Heisenberg Group
	Subgroup structure
	Representation theory
	HSP

	General Conclusions

	Wreath Product Groups
	Wreath Product Overview
	Group structure
	ZpnZq

	Representation Theory
	Some Definitions
	The ``Little Group" method
	Small example: Z2Zn
	Another example: Znm Zq

	ZpnZpd
	Subgroups with one generator
	Representation theory
	Introduction to the HSP in ZpnZpd
	HSP for ZpnZpd: Next Steps

	Conclusions and Further Research

	Conclusion
	Summary and Concluding Remarks


