Glacial dispersion of refractory minerals from the Gibraltar porphyry copper deposit, southcentral British Columbia, Canada L. Wolfe¹, K. Hattori¹, A. Plouffe²

Introduction

Drift prospecting examines the spatial distribution of minerals with specific chemistry in streams and glacial sediments. This method allows geoscientists to locate distal mineral deposits that may be covered by overburden. This project evaluates the feasibility of indicator mineral exploration for porphyry copper deposits using heavy minerals in tills. For this project, we selected the area near the Gibraltar porphyry Cu-Mo mine in south central British Columbia.

Study area

The Gibraltar porphyry Cu-Mo mine is the second largest open pit in Canada with reserves of 1.74 Mt Cu. The Gibraltar deposit is hosted by the Late Triassic Granite Mountain batholith, comprised primarily of tonalite and diorite with minor variations in abundance in minerals (Kobylinski et al., 2016). The mine has three pits central to our study area; Gibraltar, Pollyanna and Granite (Fig. 1-A). The batholith intruded into Nicola Group volcanic rocks in the western limit of the Quesnel Terrane near the boundary with the Cache Creek terrane. Nicola Group rocks are composed primarily of volcanic rocks that have been metamorphosed under greenschist facies conditions (Schiarizza et al., 2014). Cache Creek terrane rocks are composed of chemical and siliclastic rocks (Schiarizza et al., 2014). The region is in large part covered by till deposited during three phases of glaciation with ice flows towards southeast, southwest and north to northwest (Fig. 1-A) (Plouffe et al., 2014).

Samples

Heavy minerals were separated from ca. 10 kg of till samples at each site. Total of 440 grains from basal tills: Rutile (64 grains from 5 sample sites), epidote (185 grains from 4 sample sites) and zircon (191 grains from 5 samples sites). Sample sites were selected to examine mineral dispersion patterns from the deposit

Analytical methods

up to 2 wt.% MnO. Fig. 2-2 ▲ 12PMA-536-A01 11PMA-024-A02 • 12PMA-056-A01 • 12PMA-042-A01 11PMA-038-A1 v v v v V v v v v 100*Fe+Cr+V Cr (ppm) Fig. 2-3 Mo (ppm) Fig. 2-4 400 Fig. 2-5

¹Department of Earth and Environmental Sciences, University of Ottawa, 25 Templeton Street, Ottawa, Ontario, K1N 6N5; ²Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8

Results - mineral chemistry

Rutile grains have a composition close to the end member with >99 wt.% TiO₂. 26 rutile grains analysed by LA-ICP-MS have average trace element concentrations of 3970 ppm Fe, 2800 ppm Nb, 1220 ppm V and 658 ppm W. Inclusions of ilmenite occur in 16 out of 64 grains (Fig. 2). The ilmenite inclusions are composed of approximately 35-45 wt.% FeO(t) with

Rutile (26 grains)

1000*Sn+W

Fig. 2-1: SEM-BSE image of rutile grain #6 from sample site 12PMA-056-A01. This rutile grain displays typical ilmenite inclusions and homogeneous rutile composition.

Fig. 2-2: Rutile contains up to 1 wt.% W averaging 658 ppm W.

- Fig. 2-3: Rutile samples are sourced from both metapelitic and metamafic rocks according to the discrimination from Meinhold et al. (2009)
- Fig. 2-4: Rutile samples 11PMA-024-A2, 11PMA-038-A1 and 12PMA-536-A01 plot in the highgrade ore field of the El Teniente porphyry Cu deposit by Rabbia et al. (2010).
- Fig. 2-5: Zr content in rutile ranges from 18-535 ppm. Crystallization temperatures range from 460 to 700 °C using Zr-in-rutile geothermometry by Ferry et al. (2007).
- Samples 11PMA-024-A2, 11PMA-038-A1 and 12PMA-536-A01 plot in the high-grade ore field of the El Teniente porphyry Cu deposit by Rabbia et al. (2010).

Summary

- Trace element concentrations of rutile can be used to identify samples associated with mineralization

- Zircon grains are all igneous in origin.

- Zircon crystallized in both oxidized and reduced magma

Epidote shows a compositional variation from Fe-rich epidote to Al-rich clinozoisite

- Al-rich epidote is similar to that from the mine site reported by Kobylinski et al. (2016)

Rutile, zircon and epidote have similar compositions throughout the study sites independant of the proximity and directions to the Gibraltar mine, suggesting that the glacial dispersion of minerals was greater in distance.

Acknowledgments

This research project is supported by the Geological Survey of Canada through the Targeted Geoscience Initiative 5 (TGI-5) program. We also thank the Society of Economic Geologists Canada Foundation for their support to LW. We thank Glenn Poirier and Samuel Morfin for their help during the SEM, EPMA and LA-ICP-MS analyses.

References

Ferry, J.M., Watson, E.B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers Contributions to Mineralogy and Petrology, 154: 429-437. doi:10.1007/s00410-007-02010

Kobylinski, C.H., Hattori, K., Smith, S., and Plouffe, A. 2016. Report on the composition and assemblage of minerals associated with the porphyry Cu-Mo mineralization at the Gibraltar deposit, south central British Columbia, Canada; Geological Survey of Canada, Open File 8025, 30 p. doi:10.4095/298804

McDonough, W.F., Sun, S.s. (1989). Composition of the Earth's primitive mantle. 223-253.

Meinhold, G. 2010. Rutile and its applications in earth sciences. Earth-science reviews, 102: 1-28.

Plouffe, A., Ferbey, T., and Anderson, R.G., 2014. Till composition and ice-flow history in the region of the Gibraltar Mine: developing indicators for the search of buried porphyry mineralization; Geological Survey of Canada, Open File 7592, 1 poster. doi:10.4095/293839

Plouffe, A., Ferbey, T., Anderson, R.G., Hashmi, S., Ward, B.C., and Sacco, D.A. 2013. The use of till geochemistry and mineralogy to explore for buried porphyry deposits in the Cordillera – preliminary results from a TGI-4 Intrusion-related Ore Systems Project; Geological Survey of Canada, Open File 7367, poster. doi: 10.4095/292555

Rabbia, O.M., Hernandez, L.B., French, D.H., King, R.W. & Ayers, J.C. 2009. The EI Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineralium Deposita, 44: 849–866.

Schiarizza, P., 2014. Geological setting of the Granite Mountain batholith, host to the Gibraltar porphyry Cu-Mo deposit, south-central British Columbia. In: Geological Fieldwork 2013, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2014-1, pp. 95-110.

Fig. 4-4: Epidote with high-Al and low-Fe is considered to be associated with sulphide