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The Hualgayoc mining district in the Peruvian Cordillera is located 30km north of the Yanaco-
cha high-sulphidation Au deposit. The district hosts numerous Au-Cu deposits.
This study characterizes the igneous rocks in the district to evaluate the features associated 
with Au-Cu fertile magmas.

Fig. 1: Regional geological map of the Cajamarca province, from Cerro Corona technical 

Cretaceous sedimentary rocks were intruded by dioritic rocks, including the Cerro Corona 
porphyry, and overlaid by andesitic to rhyolitic flows, domes and tuffs.  Mineral deposits include 
the Cerro Corona porphyry Cu-Au mine, Tantahuatay high-sulfidation Au mine, and the AntKori 
Cu skarn deposit

Fig. 2: Simplified geology of the Hualgayoc mining district, after S. Canchaya, J. Paredes and R. Tosdal 
(1996), cited by Gustafson et al. (2004) and modified.

The dominant phase of intrusive rocks in the district is hornblende±biotite porphyritic 
diorite with magnetite micro-phenocrysts, suggesting relatively oxidized parental 
magmas. Volcanic rocks include rhyodacite domes north of Cerro Corona, and the 
andesitic to rhyolitic Calipuy formation which partially hosts the Tantahuatay and 
AntaKori deposits.
Weak to medium chlorite±epidote alteration affects the San Miguel and Cerro Quijote 
intrusions. Intense white mica alteration occurs in the San Jose and Cerro Jesus 
intrusion and rocks within the Tantahuatay and AntaKori deposits. Acidic alteration 
forming pyrophylite±alunite is present in Cerro Cienaga intrusion and within the 
Tantahuatay and AntaKori deposits. Potassic alteration forms K-feldspar + biotite + 
magnetite occurs at Cerro Corona, and locally in the San Jose intrusion. 

REEs are mostly +3, but Ce can be +4 under 
oxidized conditions and Eu +2 under re-
duced conditions. Zircon readily incorpo-
rates Ce4+ into the Zr4+ site. Therefore, the 
Ce and Eu anomaly in zircon may be used to 
evaluate magmatic redox state. All zircons 
have consistently low anomalies of Eu 
(Eu/Eu*=0.5-0.7) (Fig. a) and variable 
Ce4+/Ce3+ (10-900). Ce4+/Ce3+ appears to in-
crease with magma evolution (fig.b). 

All mineralized intrusions including the 
Cerro Corona porphyry have high median 
Ce4+/Ce3+ values (360-625) while all appar-
ently barren intrusion have low median 
Ce4+/Ce3+ values (200-290), except the San 
Miguel intrusion (~ 500) (Fig. c).
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The magmatic oxygen fugacity of the intrusions 
calculated following the method of Smythe and 
Brenan (2016) show moderately oxidized 
values, FMQ +0.5 to +2, independent of the 
association with mineralization. Mineralized 
Cerro Corona porphyry intrusions appear to be 
less oxidized with median value of FMQ +0.8 to 
+1.3.
Experimental data shows maximum solubility of 
Au in andesitic melt at around FMQ +1.5 and 
decreases at higher and lower fO2 (Botcharnikov 
et al. 2010). In contrast, the solubility of Cu in 
melt increases with increasing oxidation 
conditions (Zajacz et al. 2012). The median fO2 
value of magmas from the Hualgayoc mining 
district, FMQ +1.28, correspond to the condition 
for relatively high Au solubility and appears to be 
consistent with the abundant Au mineralization 
in the district including the high Au/Cu ratio, 
~1.7 x10-4, of the Cerro Corona deposit.

Zircon grains from mineralized intrusions have 
higher Ce4+/Ce3+ than most zircon grains from 
barren intrusions. This suggests that the Ce 
anomaly in zircon can be used to identify 
intrusions that may be potentially Au-Cu fertile 
within a district. 
Our results also suggest that Au-fertile 
districts are characterized by moderate 
magma oxidation conditions (FMQ +1 to +2). 
This may be useful to identify potentially 
fertile districts.

Au-Cu mineralization in the district is associated with hydrous, moder-
ately oxidized magmas that originate from amphibole-bearing source 
rocks, with little to no crustal assimilation. Contemporaneous em-
placement of mineralized and barren intrusions in the district suggest 
that oxidized magma do not necessarily produced Cu and Au mineral-
ization. The mineralization requires other factors including focused in-
jections of magmas and hydrothermal activity to concentrate the 
metals to economic values.
On-going work includes more U-Pb zircon dating, and trace element 
analysis of zircon and bulk rocks to evaluate any differences for 
magmas associated with high-sulfidation Au deposits, skarn and por-
phyry Au-Cu deposits.

The igneous activity in the district was 
previously thought to range from 
Paleocene to Miocene in age. New U-Pb 
zircon ages obtained in this study 
indicate that igneous activity ranged 
from 14.8Ma to 9.7Ma, similar to that at 
the Yanacocha high-sulfidation Au 
deposit. 
Most intrusions formed between 14 and 
15Ma. Some are associated with 
mineralization (Cerro Corona) whereas 
others appear to be barren 
(Coymolache). Magmatic activity from 
13.5 to 11 Ma is focused in the 
Tantahuatay and AntaKori areas, and  
consists of porphyritic intrusions and the 
Calipuy volcanic formation.
Late magmatism at 9-10Ma consists of 
barren rhyodacite-rhyolite domes near 
Cerro Corona.

All the intrusions have similar Mg-# (0.30-0.55) and 
SiO2 (59-65 wt%) except the early phase of the Cerro 
Corona intrusive complex with Mg-# (0.65), and the 
Cerro Hualgayoc rhyolite which shows high SiO2 
content (70 wt%) (fig.b).

All intrusions show listric-shaped REE pattern (Fig. 
a), and low [Dy]n/[Yb]n ratio (1.4-1.1) (Fig. c), 
reflecting preferential retention of middle REEs by 
amphibole in the source. Intrusions show a weak Eu 
anomaly (0.8-1.1) reflecting essentially no 
plagioclase fractionation.

All intrusions except Cerro Quijote show an 
“adakitic”-like geochemical signature with high Sr/Y 
ratios (40-90) and low Y (5-16ppm) (Fig. d). High 
Sr/Y can be explained by high water contents in 
parental magmas that suppress plagioclase 
crystallization (Sisson and Grove, 1993). This is 
consistent with the presence of phenocrysts of 
biotite and hornblende in most intrusions.

Low Th content in samples (3-7 ppm) indicates 
essentially no assimilation of siliciclastic rocks 
during magma ascent through the thick continental 
crust (Fig. e).

Sharp oscillatory zoning and low light 
REEs concentration in zircons confirm 
magmatic origin (fig. b). 

Zircon grains from all intrusions show a 
similar  REE pattern with relatively flat 
middle to heavy REEs, weak negative Eu 
anomaly and high Ce anomaly. In con-
trast, inherited cores show con-
cave-shaped heavy REEs profile and a 
strong negative Eu anomaly, suggesting 
the derivation from the basement rocks 
(fig. a). 

The Ti-in-zircon thermometer yielded 
crystallization temperatures between 
620-720 C° except the San Nicolas in-
trusion which appears to have crystal-
ized at higher temperature (720-800 
C°) (fig.b). 


