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The Hualgayoc mining district in the Peruvian Cordillera is located 30km north of the 
Yanacocha high-sul�dation Au deposits. The district hosts numerous Au-Cu deposits, 
including epithermal, skarn and porphyry. This study examine the igneous rocks 
associated with and without mineralization. 

Fig. 1: Regional geological map of the Cajamarca province, from Cerro Corona technical report (2004).

Cretaceous sedimentary rocks were intruded by dioritic rocks, including the Cerro 
Corona porphyry, and overlain by andesitic to rhyolitic �ows, domes and tu�.  Mineral 
deposits include the Cerro Corona porphyry Cu-Au mine, Tantahuatay high-sul�dation 
Au mine, and the AntaKori Cu skarn deposit.

Fig. 2: Simpli�ed geological map of the Hualgayoc district, modi�ed after S. Canchaya, J. Paredes and R. Tosdal 
(1996), cited by Gustafson et al (2004). Letters in brackets correspond to panel #3. •Gustafson, L. B., Vidal, C. E., Pinto, R., & Noble, D. C. (2004). Porphyry-epithermal transition, Cajamarca region, northern 
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Igneous activity in the district was 
previously considered to have 
started in the Paleocene. Our U-Pb 
zircon ages indicate nearly 
continuous magmatism from 14.8 
to 9.7 Ma with a hiatus between 11 
and 10 Ma.

Intrusions in the eastern and 
northern part of the district formed 
between 15 and 13.5 Ma. Some are 
associated with mineralization (e.g., 
Cerro Corona, e in Fig. 2) whereas 
others appear to be barren (e.g., 
Coymolache, b in Fig. 2). 

Magmatism from 13.5 to 11 Ma was 
focused in the Tantahuatay and 
AntaKori areas, consisting of 
porphyritic intrusions and volcanic 
rocks (largely Calipuy Formation). 
The Cerro Hualgayoc rhyodacite 
dome (Fig. 2, a) at 9.7 Ma appears 
to represent the �nal magmatic 
activity in the area.

All intrusions have a nearly �at pattern from 
middle to heavy REEs, with [Dy]cn/[Yb]cn
ranging from 1.4 to 1.1 (Figs. 5a, b), 
suggesting similar magma source containing 
amphibole.

Younger rocks show higher La/Yb (Fig. 5c) and 
lower [Dy]cn/[Yb]cn, suggesting amphibole 
fractionation.

Weak Eu anomalies (0.8-1.1) for all rocks 
re�ect essentially no Pl fractionation. 

High Sr/Y ratios (40-90) and low Y (5-16ppm) 
(Fig. 5d) re�ect high water contents in 
parental magmas, which suppressed Pl 
crystallization (Sisson and Grove, 1993). 
Phenocrysts of Bt and Hbl support this 
interpretation.

A similar REE  pattern for zircon re�ects a 
similar parental magma composition. 

In 13.5-11 Ma magmas, Hbl and Mag 
crystallized with zircon (Fig. 6c, d), whereas 
Hbl and Mag crystallized before zircon in 
15-13.5 Ma magmas.

Most zircons compositions indicate weak 
negative Eu anomalies (Eu/Eu*=0.4-0.8) and 
moderate to very high Ce anomalies 
(Ce/Ce*=50-600), re�ecting oxidized 
parental magmas (Fig. 6e).

The oxygen fugacity of barren 
Coymolache sill and barren San Nicolas
intrusion were calculated following the 
method of Ridol� et al. (2010). The 
results indicate oxidized values (FMQ 
+1.6 to +2.9) (Fig. 8). These values are 
similar of those from Yanacocha, 
calculated using the amphibole 
compositions presented by Longo 

Fig. 3: Representative photographs of hand samples from several intrusions.

Fig. 4: Average and 2σ values of U-Pb zircon ages.

Fig. 8: [Top] Unaltered amphibole from 
the San Nicolas (left) and Coymolache 
(right) intrusions. Red circles are areas for 
the analylsis. [Bottom] Calculated 
crystallization temperature (°C) vs. 
magmatic oxygen fugacity.

• Parental magmas in the district were hydrous, moderately to 
highly oxidized and originated from garnet-free, 
amphibole-bearing subcontinental lithospheric mantle or lower 
crust. Amphibole fractionation was the major cause for the 
compositional variation.

 • Mineralized and barren intrusions are similar in composition and 
contemporaneous, suggesting similar magma sources and 
evolution. 

• The mineralization requires other factors, including geometry of 
the intrusion and the depth of emplacement.

Dominant rocks are hornblende (Hbl) ± Biotite (Bt) porphyritic diorite with magnetite 
(Mag) micro-phenocrysts, suggesting relatively oxidized parental magmas. Volcanic 
rocks include rhyodacite domes north of Cerro Corona, and the andesitic to rhyolitic 
Calipuy formation which hosts part of the Tantahuatay and AntaKori deposits.

Alteration includes K feldspar (Kfs) + Bt + Mag at Cerro Corona (e in Fig. 2), and locally 
in the San Jose intrusion (d in Fig. 2), weak to moderate chlorite (Chl) ± epidote (Ep) 
alteration in San Miguel (c in Fig. 2) and Cerro Quijote intrusions (j in Fig. 2); intense 
WM alteration in the San Jose and Cerro Jesus intrusions (h in Fig. 2); and pyrophyllite 
(Prl) ± alunite (Aln) at Cerro Cienaga (f in Fig. 2) and Tantahuatay plus AntaKori (g in 
Fig. 2) deposits. 

Fig. 5: Bulk rock geochemistry (cn: chondrite-normalized).

Fig. 6: zircon trace-elements geochemistry.


