
INTRODUCTION
Various processes have been proposed to ex-

plain the exhumation of blueschist and eclogitic
rocks (Platt, 1993), and the upward flow of rocks
in an accretionary wedge is most commonly ad-
vocated (Cloos and Shreve, 1988; Allemand and
Lardeaux, 1997). However, this process requires
lubricating layers in exhumation zones. Hydrated
sediments in accretionary wedges may act as a
lubricant for the exhumation of high-pressure

(P <20 kbar; <500 °C) rocks (Cloos and Shreve,
1988). At greater depths, sediments are less abun-
dant and would not play the role as a lubricant for
the exhumation of ultrahigh-P (>20 kbar,
>500 °C) rocks. Serpentinites and partially
hydrated peridotites are spatially associated with
many ultrahigh-P rocks (Table 1), suggesting the
possible role of serpentinites in the exhumation
of ultrahigh-P rocks. To evaluate this possibility,
we collected serpentinites intimately associated
with the ultrahigh-P Tso Morari unit in eastern
Ladakh in the northwest Himalaya. For compari-
son, we also collected serpentinites from differ-
ent units of the Indus suture zone.

Petrogenetic studies of serpentinites are diffi-
cult because their primary minerals are com-
monly obliterated. They also contain very low
concentrations of incompatible elements, which
are useful for petrogenetic studies, and their com-
positions can easily be modified during their
hydration. Serpentinites, however, contain high
concentrations of platinum group elements
(PGEs). We report the concentration of PGEs and
the composition of chromite to evaluate the ori-

gin of serpentinites and to assess their possible
role in the exhumation of eclogites. Our findings
may have relevance to many orogenic meta-
morphic belts where serpentinites are commonly
associated with ultrahigh-P rocks.

GEOLOGIC SETTING
The Ladakh area is considered to be a subduc-

tion complex that was active from the middle
Cretaceous to the late Paleocene (Honegger et al.,
1982). The Ladakh calc-alkaline batholith, the
Indus suture zone, and the Tso Morari unit are
exposed from north to south (Fig. 1). The suture
zone consists of the Tertiary Indus clastic sedi-
mentary rocks, the Nidar arc complex, and a tec-
tonic melange, the latter containing continental
sedimentary rocks and volcanic rocks of oceanic
island origin (the Drakkarpo and Ribil units;
de Sigoyer, 1998). The suture zone is separated
from the eclogitic Tso Morari unit by the Zildat
normal fault, along which serpentinite layers
~100 m thick are boudinaged to discontinuous
lenses, 100 × 1000 m in size. The Tso Morari unit
is a 100 × 50 km block of ultrahigh-P rocks
formed from Indian continental margin during its
subduction in  the late Paleocene (de Sigoyer,
1998). The serpentinites on the northern margin
of the Tso Morari unit are intensely deformed,
and the style of deformation, including top-to-
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ABSTRACT
In eastern Ladakh, northwest Himalaya, serpentinite layers occur in close association with

eclogites. The occurrence of metamorphic olivine and talc in serpentinites suggests that the ser-
pentinization and eclogitization took place under similar conditions (600 °C, 20 kbar). The
serpentinites and eclogites show similar deformation, including the direction of normal shear-
ing. The highly refractory nature of the serpentinite protolith, as shown by the composition of
bulk rocks and chromite and the concentrations of Re and platinum group elements, indicates
their derivation from mantle wedge. We propose that the serpentinites formed by hydration of
the mantle wedge as a result of dewatering of the subducted slab. The serpentinites then facili-
tated exhumation of the subducted rocks by acting as a lubricant. At shallow depths, sediments
are generally considered to be the lubricant for the exhumation, but serpentinites may com-
monly take over this role at greater depths. Under sediment-poor conditions, serpentinites may
contribute to the exhumation even at shallower depths. This may explain the close spatial asso-
ciation of serpentinites and partially hydrated peridotites with many well-known high-pressure
to ultrahigh-pressure metamorphic belts worldwide.
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Figure 1. Geologic map of eastern Ladakh,
northwest Himalaya, showing occurrence of
ultrahigh-pressure Tso Morari unit and serpen-
tinites. Sample locations are shown with
arrows. Inset key corresponds to Himalaya-
Karakoram belt. Serpentinite layers occur dis-
continuously along northern boundary of Tso
Morari unit. Intense shearing resulted in boudi-
nage of serpentinites. Samples were collected
from thickened portions of serpentinite layers.
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the-northeast normal shearing, is identical to that
in the Tso Morari unit (Fig. 1).

SAMPLING AND ANALYTICAL
METHODS

The samples TS18c and CH35a come from the
lower part of the Nidar ophiolite (Fig. 1). Sample
CH52C is from the Drakkarpo unit. Samples
CH98a, CH98b, CH146, and CH187 are from the
Zildat normal fault, which is in contact with the
Tso Morari eclogites. Major and minor element
concentrations were determined using Philips PW
2400 X-ray fluorescent spectrometer and are avail-
able from the GSA Data Repository.1 Rhenium
and PGEs were determined by the isotopic dilu-
tion technique using spikes of 185Re and a mixed
spike of 105Pd,190Os,191Ir, and 194Pt. Rhenium
was separated using anion resin after digestion of
samples in HF-HNO3. PGEs with spikes were
concentrated into a Ni bead and dissolved in con-
centrated HNO3. The analytical procedures are
similar to those by Ravizza and Pyle (1997). Mass
ratios were determined using an Elan 6000
ICP-MS from Perkin-Elmer Sciex. Typical blanks
were 0.04–0.1 ng Re, 0.002–0.007 ng Ir/g flux,
0.002–0.006 ng Os/g flux, 0.07–16 ng Pt/g flux,
and 0.03–0.9 ng Pd/g flux. The blanks are negligi-
ble compared to the amounts in the samples; thus
blank corrections were not applied to the results.
Mineral compositions were determined using a
Cameca CAMEBAX SX100 microprobe with a
counting time of 10 s/element, 20 kV accelerating
potential, and 20 nA sample current. Standards
used were albite (Si), MgO (Mg), Al2O3 (Al),
Cr2O3(Cr), Fe2O3(Fe),TiMnO3(Ti, Mn), vanadi-
nite (V), NiO (Ni), and Co metal (Co).

PETROGRAPHY AND GEOCHEMISTRY
OF THE SERPENTINITES

All samples are intensely sheared and consist
predominantly of antigorite and Cr spinel ±
chrysotile. Sample CH52C is particularly rich in
carbonates and chlorite. Two stages of serpen-
tinization are recognized; the earlier is character-
ized by the crystallization of antigorite ± magnetite
± Mg-Ca carbonates and minor olivine and talc,
and the later alteration formed chrysotile, chlorite,
and carbonate veinlets at low temperatures. Spinel
crystals in the Nidar and Zildat samples are
100–200 µm in diameter and are commonly
rimmed by secondary magnetite (~50 µm wide).
Chromite has relatively high Cr2O3(48 to 58 wt%),
with variable XCr (atomic ratio of Cr/[Cr + Al])
ranging from 0.56 to 0.84 (Fig. 2) and low TiO2
(<0.2 wt%) and Fe2O3(3–10 wt%). The Cr spinels
from the Nidar ophiolite have the lowest XCr
(~0.6), whereas those from the Zildat samples
have higher XCr of ~0.8 due to lower Al2O3,

<19.2 wt% (Fig. 2). The XMg values (atomic ratio
Mg/[Mg+Fe2+]) are similar (0.33–0.41) in all
samples. A plot of XCr vs. XMg shows that the
samples are similar to those of arc cumulates
(Kepezhinskas et al., 1993; Arai, 1992), including
those from southeast Alaskan complex (Bird and
Clark, 1976) and the Jijal complex in Pakistan
(Niida et al., 1998; Fig. 2). The chromite in our
samples has a composition distinctly different
from those in abyssal peridotites (shown as the
oceanic mantle field in Fig. 2; Dick and Bullen,
1984). One of the Zildat samples (CH98b) con-
tains olivine (~Fo96) and talc in serpentine. The
Mg content is higher than that of mantle olivines
that are <Fo94 (e.g., Bonatti and Michael, 1989).
Moreover, this olivine is not in equilibrium with
the associated chromite (Arai, 1992). Considering
the apparent equilibrium texture between the
olivine and surrounding serpentine, we conclude
that this olivine is a metamorphic product.

Bulk Chemical Composition
Most of our samples (Zildat samples and

CH35a) contain high Cr (>2000 ppm), Ni (>2000
ppm), and MgO (>41 wt%), and low Al2O3
(<1.0 wt%) and CaO (<1.0 wt%). The composi-
tions are consistent with the original rocks being
dunite or harzburgite from mantle residue (Ishii
et al., 1992). In contrast, samples CH52C and
TS18C contain low Ni and MgO, and high Al2O3
(9.4–19 wt%) and CaO (3.6–5.1 wt%), consis-
tent with the occurrence of chlorite and relict
plagioclase. Because Ca and Al are incompatible
during partial melting, the data suggest their ori-
gin as crustal cumulates. Sample CH52C con-
tains high Y (34 ppm) and Zr (81 ppm), values
that are eight times those of primitive mantle. The
data are consistent with the oceanic island origin
of the Drakkarpo basalts (de Sigoyer, 1998).

Rhenium and PGEs
The contents of PGEs and Re show two pat-

terns, samples with low Os and Ir (CH52C and
TS18C) and the rest with overall high PGEs. The
latter group shows flat, primitive mantle-normal-
ized patterns with a depletion of Re and enrich-
ment of Pd (Fig. 3). The moderate enrichment of
Pd may be attributed to serpentinization because
Pd is relatively mobile in saline fluids. The con-
centrations of PGEs and ratios of Pd/Ir and Pt/Ir
are all similar to those of mantle nodules (e.g.,
Chou et al., 1983) and ultramafic massifs, such as
Baldissero and Finero in the Ivrea zone and
Ronda and Beni Bousera (Gueddari et al., 1996;
Garuti et al., 1996). The PGE data therefore sup-
port a refractory mantle origin for the samples.
Rhenium is incompatible during partial melting
(e.g., Roy-Barman and Allegre, 1994), and the
concentration of Re in melts is high even for those
derived from a depleted mantle (Roy-Barman and
Allegre, 1994). Thus the low Re suggests that
these samples represent a mantle residue. The
samples have high Os and Ir and low Al contents,
and plot in the field of mantle residue (Fig. 4).

Samples TS18C and CH52 have low Os and Ir
and high Pd and Pt (Fig. 3). Incompatible Re, Pt,
and Pd may be enriched in magmas, whereas
compatible Os and Ir remain in the mantle. There-
fore, crustal rocks and even cumulates are gener-
ally low in Os and Ir. Examples include ultramafic
cumulates of boninites at Heazelwoodite (Peck
et al., 1992), dunite and wherlite of the Talkeetna
arc in Alaska (Hattori and Hart, 1997), and the
Kohistan arc in Pakistan (Hattori and Shirahase,
1997). Highly fractionated PGE patterns from
TS18C and CH52C are consistent with a crustal
cumulate origin for these two samples.

DISCUSSION
Origin of the Ladakh Serpentines

The mineral compositions, bulk compositions,
and PGE concentrations of samples CH52C and
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Figure 2. Composition of cores of chromian
spinel; X Cr = atomic ratio of Cr/(Cr + Al), X Mg=
atomic ratio of Mg/(Mg + Fe 2+). Note that
spinel compositions are in field of those
from subduction zones (forearc Kohistan
arc, Cascadia samples in diagram) and that
they are distinctly different from those from
oceanic mantle. Data sources: oceanic man-
tle, Dick and Bullen (1984); Mariana forearc
seamounts, Ishii et al. (1992); Cascadia zone,
Bird and Clark (1976); Kohistan arc complex,
Jan and Windley (1990).

Figure 3. Primitive mantle-normalized plot of
Ni, platinum group elements (PGE), and Re
contents in serpentinites. Primitive mantle val-
ues are 1960 ppm for Ni and 0.28 ppb for Re
(McDonough and Sun, 1995). Values for PGEs
in primitive mantle are 0.00725 times of chon-
drite values of McDonough and Sun (1995):
3.55 ppb Os, 3.30 ppb Ir, 7.32 ppb Pt, and 3.99
ppb Pd.They are similar to measured concen-
tration of mantle rocks by Chou et al. (1983)
and Morgan (1986).

1GSA Data Repository item 200022, Table A, Bulk
Chemical Composition of Serpentine Samples, and Table
B, Olivine and Chromite Compositions, is available on
request from Documents Secretary, GSA, P.O. Box 9140,
Boulder, CO 80301-9140, editing@geosociety.org, or
at www. geosociety.org/pubs/drpint.htm.



TS18C suggest that they are crustal cumulates. In
contrast, the other serpentinite samples show
strongly refractory characteristics in bulk compo-
sition, chromite chemistry, and PGE content.
Chromite of similar composition may occur in
cumulates of magmas, but the low Re and high Ir
and Os contents rule out this possibility because
ultramafic cumulates of arc magmas generally
contain very little Os and Ir (Hattori and Hart,
1997; Hattori and Shirahase, 1997). Therefore,
we conclude that the serpentinites represent sam-
ples from a hydrated mantle wedge. Low Al and
Ca contents suggest at least 25%–35% previous
melting (Ishiwatari, 1985).

The occurrence of metamorphic olivine in the
Zildat samples suggests that serpentinization
occurred at a relatively high temperature. The co-
existing forsterite, talc, and antigorite without
diopside and anthophyllite indicate metamorphic
temperatures ranging from 500 to 650 °C (Mysen
et al., 1998). In subduction zones, such tempera-
tures are typically attained at depths between 50
and 70 km (Peacock, 1993). Therefore, serpen-
tinization occurred under conditions similar to
eclogitization (20 ± 2 kbar; 580 ± 50 °C) for the
Tso Morari unit (Guillot et al., 1997). The transi-
tion from mafic blueschist to eclogite can occur at
about 500 °C when the pressure exceeds 15 kbar
in a subduction zone (Hacker, 1996). Such eclogi-
tization is accompanied by the release of large
amounts of water, which may cause hydration of
the overlying mantle wedge (Peacock, 1993;
Bebout and Barton, 1993). Focused fluid flow over
a 40 km width would have lasted more than 10 m.y.
at a subduction rate of 10 cm/yr (Peacock, 1993).

In the Himalaya, the Tethyan ocean crust of
>4000 km length subducted until collision and
underthrusting of the Indian continental margin

occurred (Honegger et al., 1982). The overlying
mantle wedge was probably serpentinized by de-
hydration of this oceanic crust and subsequent
underthrusting of continental crust.

Evidence for Hydrated Mantle
In a subduction zone, it is expected that mantle

peridotites are serpentinized due to dewatering of
metasediments at depths of 5–20 km. These ser-
pentinites may remain stable to depths of 200 km
(Ulmer and Trommsdorf, 1995). The occurrence
of hydrated mantle has been suggested from low
seismic velocities in mantle wedges and reduced
frictional stress along the subducting surface
down to 70 km depth (Furukawa, 1993). This is
further supported by high electrical conductivity
along the tops of slabs (Wang et al., 1995).

Role of Serpentinite in the Exhumation of
Ultrahigh- P and High-P rocks

The exhumation of metamorphic rocks re-
quires a mechanically weak zone at the interface
between the subduction plane and the rigid mantle
wedge (Allemand and Lardeaux, 1997). At shal-
low depths, <40–50 km, hydrated sediments
have a viscosity <1017Pa·s–1 (Cloos and Shreve,
1988) and can easily lubricate the interface be-
tween the two plates to facilitate exhumation of
blocks of high-P rocks greater than hundreds of
meters in size, as documented in the Franciscan
Complex (Cloos and Schreve, 1988). At greater
depths, >50 km, accretionary wedges pinch out,
and sediment abundances decrease significantly.
Serpentinites may replace the role of hydrated

sediments at these greater depths and act as the
lubricant for the exhumation of ultrahigh-P
rocks. In addition, the geometry of accretionary
wedges varies, and in some subduction zones,
sediments may thin out at depths shallower than
50 km; in these situations, serpentinites may even
contribute to the exhumation of high-P rocks.

Deformation experiments demonstrate that the
strength of serpentinites decreases at temperatures
between 400 and 600 °C at various pressures
(Murrell and Ismail, 1976) and that the ductility in-
creases as pressure increases above 400 MPa at
room temperatures (Escartin et al., 1997). More-
over, hydration of peridotites reduces the shear
stress at high pressures equivalent to >40 km depth
(Strating and Vissers, 1991). This also causes a
decrease in the viscosity, from 1026Pa·s–1 to 1020

Pa·s–1 at 550 °C (Carter and Tsenn, 1987), and
would assist upward movement of eclogites.
Furthermore, the entire block composed of high-
density eclogite (3200 kg·m–3) and low-density
serpentinite (2600 kg·m–3) is buoyant compared
to the surrounding dry peridotite (3200 kg·m–3)
and is likely to facilitate exhumation. Therefore,
for these physical reasons, soft serpentinites
between the subducting plate and the rigid mantle
wedge at depths >40 km may commonly fulfill the
role that sediments do at shallower depths (Fig. 5).

Our proposed model is consistent with the
close association of ultrahigh-P rocks with ser-
pentinites and hydrated peridotites in many active
and former subduction zones (Table 1). Moreover,
serpentinite likely played an important role in the
exhumation of high-P rocks, considering their
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Figure 4. (Ir + Os) vs. Al 2O3 of serpentinites
(solid diamonds) compared to ultramafic
cumulates of Jijal Complex in Pakistan and
Talkeetna arc in Alaska (shaded area) and
rocks of abyssal peridotite, Ronda and Beni
Bousera massifs (shaded area). PM, primitive
mantle data sources: Jijal complex, Hattori
and Shirahase (1997); Talkeetna complex,
Hattori and Hart (1997); Ronda and Beni
Bosera massifs, Garuti et al. (1996); abyssal
peridotites, Snow and Schmidt (1998). Serpen-
tinite samples are plotted in field of refractory
mantle residue, whereas data from samples
TS18C and CH52C are similar to those of
crustal cumulates.

Figure 5. Schematic cross section of underplated Indian continental margin immediately prior
to exhumation of Tso Morari eclogite unit at 50–55 Ma. Subduction of Tethyan oceanic crust
was followed by underplating of Indian continental margin at 55 Ma. Earlier eclogitization in
upper crust may cause upper crust to become stronger than lower crust, and may lead to de-
coupling of eclogitized crust and continued subduction of lower crust (Hacker, 1996). Detach-
ment faults with horst-graben structures are common on margin of continent and it is likely
that blocks of metamophosed rocks are isolated from rest of subducting slab. Such rigid
blocks may be enclosed by ductile serpentinites and exhumed along subduction plane.



common occurrences in high-P metamorphic
belts, such as the Catalina schist in California
(Bebout and Barton, 1993), the Caribbean domain
(e.g., Mann and Gordon, 1996), and the Samba-
gawa metamorphic belt (e.g., Kunugiza, 1984).
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