Contents lists available at SciVerse ScienceDirect

### **Chemical Geology**



journal homepage: www.elsevier.com/locate/chemgeo

#### Research paper

# Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic

Fabien Deschamps <sup>a,b,\*</sup>, Marguerite Godard <sup>b</sup>, Stéphane Guillot <sup>a</sup>, Catherine Chauvel <sup>a</sup>, Muriel Andreani <sup>c</sup>, Kéiko Hattori <sup>d</sup>, Bernd Wunder <sup>e</sup>, Lydéric France <sup>f</sup>

<sup>a</sup> ISTerre, CNRS, Université Grenoble I, 1381 rue de la Piscine, 38400 Grenoble Cedex 09, France

<sup>b</sup> Géosciences Montpellier (UMR 5243), CNRS, Université Montpellier 2, cc 060, Place E. Bataillon, 34095 Montpellier, France

<sup>c</sup> Laboratoire de Sciences de la Terre (UMR 5570), CNRS, Université Claude Bernard Lyon I, 2 rue Raphaël Dubois, 69622 Villeurbanne, France

<sup>d</sup> Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

<sup>e</sup> Deutsches GeoForschungsZentrum, Section 3.3, Telegrafenberg, 14473 Potsdam, Germany

<sup>f</sup> CRPG, Nancy-Université, CNRS, 15 rue Notre Dame des Pauvres, 54501 Vandoeuvre lès Nancy Cedex, France

#### ARTICLE INFO

Article history: Received 24 February 2011 Received in revised form 29 March 2012 Accepted 11 April 2012 Available online 20 April 2012

Editor: L. Reisberg

Keywords: Serpentinites Subduction zones Mantle wedge Abyssal peridotites Fluid-mobile elements

#### ABSTRACT

Serpentinites from subduction environments represent an important sink for fluid-mobile elements. In order to constrain geochemical behavior of fluid-mobile elements hosted by serpentine phases during subduction processes, we carried out a geochemical study (trace elements and Pb isotopes) of a series of serpentinites and cumulates from the accretionary wedge of Greater Caribbean (Cuba and Dominican Republic). The trace element compositions of the primary and alteration-related phases were analyzed in situ using LA–HR-ICP-MS techniques. The studied samples represent parts of the subducted proto-Atlantic oceanic lithosphere, which has experienced low to high grade metamorphism (greenschist to eclogite facies), before being exhumed; a subset of these samples were derived from the mantle wedge. This sampling provides the opportunity to trace the chemical mobility of fluid-mobile elements during prograde metamorphism along a cold geotherm in an oceanic subduction setting.

Serpentinites display strong enrichment in fluid-mobile elements indicating extensive fluid-rock interaction. In situ analyses allow distinction of three types of serpentines related to the nature of primary minerals (olivine, ortho- or clinopyroxene). Compositions of subducted samples, especially in fluid-mobile elements, are relatively close to those of abyssal peridotites without noticeable evidence of mobility for trace elements during subduction-related prograde metamorphism, with the exception of B. This confirms that the observed enrichment results from seawater/peridotite interactions during residence time in the ocean. It also suggests that most mobile elements stored in serpentine minerals are a good sink for mobile elements in subduction zones, until their dehydration. Additionally, Pb isotopes and over-enrichment in As–Sb in high-grade subducted serpentines (antigorite) suggest the contribution of a sedimentary component during a secondary hydration taking place at the lizardite/antigorite transition. We propose that this new serpentinization event, taking place at greater depth, results from mixing between sediments and serpentinites in the subduction channel. Mantle wedge serpentinites present imprints of hydrothermal fluids: they are B-rich but without strong enrich-

ment in As and Sb, and show evidence for moderate contributions of a radiogenic Pb-component. This suggests that the fluids that produced the mantle wedge serpentinites derived from the dehydration of the oceanic crust, with moderate to no contribution of sediments. We posit that mantle wedge serpentinization took place around 20–25 km depth: at such depth and temperature conditions (T>200 °C), the subducted sediments still released their B-rich pore fluids while their structural water incorporated in hydrous minerals (phengite, lawsonite) remained stable. The existence of various potential reservoirs for fluid-mobile elements in subduction zone environments (subducted serpentinites, mantle wedge serpentinites, as well as subducted sediments and altered oceanic crust) that potentially release their fluids at different depths has strong implications for arc lava formation. © 2012 Elsevier B.V. All rights reserved.

#### 1. Introduction

The release of fluids from the downwelling oceanic lithosphere plays an important role during subduction; in particular, it triggers partial melting in the mantle wedge and affects the composition of the arc

<sup>\*</sup> Corresponding author at: Géosciences Montpellier (UMR 5243), CNRS, Université Montpellier 2, cc 060, Place E. Bataillon, 34095 Montpellier, France.

E-mail address: Fabien.Deschamps@gm.univ-montp2.fr (F. Deschamps).

<sup>0009-2541/\$ –</sup> see front matter 0 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.chemgeo.2012.04.009

magmatism and the global geochemical cycles (e.g. Plank and Langmuir, 1998; Stern, 2002; Rüpke et al., 2004; van Keken et al., 2011). Although serpentinized mantle rocks constitute a minor fraction of the downwelling slab, from a few percent (or less) of fast spread lithosphere (Iver et al., 2010) up to 20% of slow spread lithosphere (Cannat et al., 1995; Carlson, 2001; Mével, 2003), they represent a major reservoir for fluid-mobile elements (FME) in subducting lithosphere at mantle depth (e.g. Scambelluri et al., 2001a,b; Barnes and Straub, 2010; Deschamps et al., 2010, 2011; John et al., 2011). Recent studies of serpentinites sampled at present-day and fossil convergent margins have shown that they can incorporate important quantities of FME, such as semi-volatile elements As and Sb (e.g. Hattori and Guillot, 2003, 2007; Deschamps et al., 2010, 2011), light elements B and Li (e.g. Bonatti et al., 1984; Scambelluri et al., 2004a; Tonarini et al., 2007, 2011; Pabst et al., 2011) and Large Ion Lithophile Elements Cs, Rb, Ba, and U (Scambelluri et al., 2001a,b, 2004b; Tenthorey and Hermann, 2004; Garrido et al., 2005; Savov et al., 2005; Agranier et al., 2007). Further studies have demonstrated that these elements are stored in serpentine phases during prograde metamorphism (Scambelluri et al., 2001a,b, 2004a,b; Deschamps et al., 2011; Kodolányi and Pettke, 2011; Vils et al., 2011), until their destabilization at relatively great depths (>150 km, up to 650–700 °C; Ulmer and Trommsdorff, 1995; Wunder and Schrever, 1997; Wunder et al., 2001). Finally, strong FME enrichments were observed in highpressure serpentine minerals (antigorite) sampling the hydrated mantle wedge (e.g. in Himalaya, Hattori and Guillot, 2003, 2007; Deschamps et al., 2010; Mariana forearc, Savov et al., 2005). However, the mechanisms driving the chemical mass transfers from the downwelling slab to the mantle wedge and the sequence of mineralogical reactions controlling the dehydration-hydration processes at depth are still poorly constrained. In addition, little is known about the acquisition of the FME signature during the hydration of mantle wedge and the formation of serpentinites during subduction (e.g. Savov et al., 2005, 2007; Deschamps et al., 2010).

To better understand these processes, we studied a series of serpentinites from Cuba and the Dominican Republic, which sample parts of the accretionary wedge of the Greater Caribbean volcanic arc. These serpentinites are parts of the subducted proto-Atlantic oceanic lithosphere (highly serpentinized peridotites and hydrothermally altered cumulates), and of the hydrated mantle wedge (Hattori and Guillot, 2007; Guillot et al., 2009; Saumur et al., 2010). The subducted and mantle wedge serpentinites are associated in the field, and represent an extinct paleo-serpentinite subduction channel. The slab preserves evidence of low- to high-grade metamorphism (greenschist to eclogite facies). The close association in the field of serpentinites from the mantle wedge and from the subducted oceanic lithosphere provides a unique opportunity to understand the chemical mobility of FME associated with fluid loss during prograde metamorphism along the subduction zone and to characterize geochemical transfers from the slab to the overlying mantle wedge peridotite.

In order to constrain the behavior of the fluid-mobile elements hosted by serpentine minerals during subduction, we carried out in situ trace element analyses on serpentine phases and associated minerals from subducted and mantle wedge serpentinites as well as measurements of Pb isotope compositions for Cuban samples. These data are used to characterize the nature of the protolith and of hydrating fluid(s) in the slab and in the mantle wedge and to discuss the role of serpentinization and dehydration in the cycling of FME during prograde metamorphism associated with intra-oceanic subduction processes.

#### 2. Geological setting and sampling

The Dominican Republic and Cuba are part of the extinct Greater Caribbean volcanic arc, which marks the northern margin of the Caribbean plate (Fig. 1a). The Greater Caribbean arc results from the eastward subduction of the Farallon plate at the southern margin of the North American plate during Cretaceous (Pindell et al., 2005). By mid-Cretaceous, the polarity of subduction changed and caused the migration of the arc from the Pacific to the Atlantic side and the divergence between North and South America, which was accommodated by rifting of the proto-Caribbean ridge (Pindell et al., 1988; Meschede and Frisch, 1998).

Well preserved ophiolitic terranes outcrop in the northern part of Cuba (Escambray massif and Zaza zone; Fig. 1b) and in the Dominican Republic (Rio San Juan complex; Fig. 1c). They are characterized by abundant serpentinites associated with metamorphic rocks, making these massifs particularly interesting for studying serpentinites in convergent settings, as the metamorphic conditions experienced by the selected samples could be deduced from the associated metamorphic rocks. For this geochemical study, we selected 15 samples from serpentinite series that had already been well characterized in terms of geodynamic setting, petrography and bulk-rock geochemistry (Cuba: Auzende et al., 2002; Hattori and Guillot, 2007; Dominican Republic: Saumur et al., 2010).

#### 2.1. Cuba

The island of Cuba is composed of a series of accreted terranes of continental and oceanic origins, all younger than Jurassic (Iturralde-Vinent, 1994). The Zaza zone and Escambray massif belong to the central Cuba unit (Meyerhoff and Hatten, 1968; Fig. 1b). The Zaza zone is an allochtonous oceanic unit located north of a thick sequence comprising Cretaceous volcanic arc and sedimentary rocks (noted Cretaceous arc on Fig. 1b). It consists of a mélange of lenses of eclogitic basalts and gabbros associated with strongly deformed serpentinites (Piotrowska, 1993). They represent the relics of an accretionary prism developed during the southward subduction of the proto-Caribbean oceanic plate (Pindell et al., 1988). Locally, the transition from the Zaza zone to the Cretaceous arc sequence is marked by a highly deformed area, which preserves parts of the mantle wedge. Located to the SW of the Zaza zone and of the Cretaceous arc sequence (Fig. 1b), the Escambray massif is composed mainly of lenses of serpentinites (several hundred meters in length) associated with metasedimentary rocks and metamorphosed basalts (Schneider et al., 2004; Stanek et al., 2006). It is interpreted as an old accretionary prism formed in a forearc setting in the Greater Caribbean Arc (Somin and Millán, 1981; Burke, 1988; Millán, 1997; Iturralde-Vinent, 1998; Pindell et al., 2005; García-Casco et al., 2008). Six serpentinites and two altered ultramafic cumulates were selected for this study; these samples were previously described by Auzende et al. (2002) and Hattori and Guillot (2007) and their main characteristics are summarized below.

Three serpentinites (CU 54, CU 55, CU 56) and one ultramafic cumulate (CU 62) were sampled in the Zaza zone. Samples CU 55, CU 56 and CU 62 are associated in the field with metabasic rocks characterized by a low-pressure amphibolitic assemblage (<0.6 GPa, 400-500 °C; Spear, 1993; Auzende et al., 2002). In contrast, sample CU 54 is associated with basalts metamorphosed under higher temperature conditions in the amphibolite/eclogite metamorphic facies (>0.3 GPa, >500 °C; Spear, 1993; Auzende et al., 2002). Serpentinite CU 63 was sampled in the deformation zone set between the Zaza zone and the base of the Cretaceous arc sequence, close to the city of Santa Clara. It is associated with greenish gabbros (<0.6 GPa, 300-400 °C; Auzende et al., 2002). It is interpreted as sampling the hydrated mantle wedge (Hattori and Guillot, 2007). Finally, two serpentinites (CU 24 and CU 65) and one altered ultramafic cumulates (CU 69) were sampled in the Escambray massif. Serpentinites CU 24 and CU 65 are associated with high pressure rocks which have experienced metamorphic conditions in the zoisiteeclogitic facies (1.5-1.6 GPa, 600-650 °C; Schneider et al., 2004; Stanek et al., 2006; Garciá-Casco et al., 2006) and sample CU 69 comes from the greenschist facies nappe (0.7–0.8 GPa, <500 °C; Schneider et al., 2004).

The Cuban serpentinites comprise either antigorite (CU 24, CU 54 and CU 65) or an assemblage of fine-grained lizardite and chrysotile



Fig. 1. a) General map of the northeastern Caribbean area showing the main inliers of subduction complex with outcrop of serpentinites (black zone) in Cuba and Dominican Republic (redraw after Dolan et al., 1998; Saumur et al., 2010).b) Geological map of the central part of Cuba with location of studied serpentinites (redraw after Millan, 1993; Auzende et al., 2002).c) Geological map of the Rio San Juan complex in Dominican Republic (Hispaniola Island) with location of studied serpentinites (map was modified from Lewis et al., 1990; Mann et al., 1991; Pindell and Draper, 1991; Draper and Nagle, 1991; Abbott et al., 2006; Saumur et al., 2010).Gray and white circles represent the serpentinites and cumulate, respectively, sampling the subducted oceanic lithosphere, and the solid circles represent serpentinites from the mantle wedge.

(CU 55, CU 56 and CU 63) as distinguished by X-ray diffraction and previous work (Raman spectroscopy, Hattori and Guillot, 2007), plus minor disseminated magnetite, talc, edenite (CU 65), and chlorite (clinochlore in CU 54 and CU 56; Table 1). Lizardite-bearing samples CU 56 and CU 63 are characterized by pseudomorphic hourglass textures (preserving the shape of the primary grains). Antigorite-bearing samples CU 54 and CU 65 have non-pseudomorphic textures dominated by penetrative blades of antigorite. The two ultramafic cumulates CU 62 and CU 69 are composed mostly of tremolite, edenite, chlorite and talc.

#### 2.2. Dominican Republic

Dominican serpentinites come from the Rio San Juan Complex (RSJC), located in the northern part of the Dominican Republic (NE margin of Hispaniola; Fig. 1c). This complex is mostly covered by sedimentary rocks from Miocene to Quaternary (Draper and Nagle, 1991). It is subdivided into three parts: the Gaspar Hernandez serpentinites in the north, metamorphic terranes mainly composed of retrogressed blueschists and eclogites in the central part, and the Cuaba Gneiss and the Rio Boba Gabbro in the South. The central part of RSJC is intruded by two serpentinite mélanges, the Jagua Clara mélange and the Arroyo Sabana mélange. They represent tectonic mélanges containing meter-scale blocks of blueschists (peak metamorphism at 1.7-1.8 GPa/340-380 °C), eclogites (2.3 GPa/750 °C; Krebs et al., 2008), metamorphosed felsic rocks and serpentinites from subducted slab. Finally, massive boulders of serpentinites outcrop in the southern part of RSJC, near the intersection between the Septentrional Fault Zone and the Bajabonico Fault in Lomá Quita Espuela and Rio Cuevas. These serpentinites represent the remnants of the subducted oceanic lithosphere; they are associated with garnet peridotites and eclogite boulders. Locally, mantle wedge serpentinites occur along major strike–slip fault and are associated with the subducted serpentinites (Saumur et al., 2010). Seven serpentinites were selected for this study among those described by Saumur et al. (2010); their main characteristics are summarized below.

Three serpentinites (RD 8E, RD 94, and RD06 52A) were collected in the high pressure–low temperature Jagua Clara mélange in the central part of the RSJC (Fig. 1c). The four remaining samples come from a large outcrop in the southern part of RSJC near the Septentrional Fault Zone (Fig. 1c). Serpentinites RD 34C and RD 36A come from the Lomá Quita Espuela area and represent relics of the hydrated mantle wedge. One partially hydrated peridotite (RD 57) and one hydrated cumulate (RD 62) were sampled in Rio Cuevas area and represent part of the ancient subducted lithosphere.

Dominican serpentinites comprise mainly antigorite (RD 8E and RD06 52A) or an assemblage of lizardite/chrysotile (RD 34C, RD 36A and RD 94), with minor magnetite, chromite, hematite, talc, chlorite (clinochlore), and amphibole (edenite, magnesio-hornblende; Table 1). Several samples contain relics of primary olivines (RD 94) and pyroxenes (RD 36A, RD06 52A and RD 94). One sample, RD 57, is significantly less altered than associated serpentinites; it comprises mainly forsterite-rich olivine and diopside displaying secondary alteration to lizardite, edenite, magnesio-hornblende and clinochlore. This sample is representative of a partially hydrated peridotite (less than 10% of hydrated phases). The hydrated cumulate RD 62 comprises mainly diopside and hornblende.

#### Table 1

Mineralogy and bulk rock major element compositions of samples from Cuba and Dominican Republic. (n.d. = not determined). Major elements are compiled from Hattori and Guillot (2007; Cuba) and Saumur et al. (2010; Dominican Republic) (see footnotes for more details, notably about analytical method).

| Rock <sup>a</sup> Serp.Serp.Hydr. cum.Serp.Serp.Hydr. per.Serp.Serp.Hydr. cum.Serp.Location <sup>b</sup> ZazaZazaEscambrayZazaDef. ZonemelangeSFZ-RCmelangemelangeSFZ-RCSFZ-RCSFZ-RCSFZ-RCSFZ-RCSFZ-RCMantleProtolith <sup>c</sup> OceanicOceanicOceanicMantleOceanicOceanicOceanicOceanicMantle | Serp.<br>SFZ-LQE<br>Mantle<br>Wedge<br>3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Location <sup>b</sup> Zaza Zaza Escambray Zaza Def. Zone melange SFZ-RC melange melange SFZ-RC SFZ-LQE<br>Protolith <sup>c</sup> Oceanic Oceanic Oceanic Mantle Oceanic Oceanic Oceanic Oceanic Oceanic Mantle                                                                                   | SFZ-LQE<br>Mantle<br>Wedge<br>3          |
| Protolith <sup>c</sup> Oceanic Oceanic Oceanic Mantle Oceanic Oceanic Oceanic Oceanic Oceanic Mantle                                                                                                                                                                                             | Mantle<br>Wedge<br>3                     |
|                                                                                                                                                                                                                                                                                                  | Wedge<br>3                               |
| Lithosphere Lithosphere Lithosphere Cumulate Wedge Lithosphere Lithosphere Lithosphere Cumulate Wedge                                                                                                                                                                                            | 3                                        |
| Group <sup>d</sup> 1a 1b 1b 2 3 1a 1a 1b 1b 2 3                                                                                                                                                                                                                                                  |                                          |
| (Hattori and Guillot, 2007) (Saumur et al., 2010)                                                                                                                                                                                                                                                |                                          |
| SiO <sub>2</sub> 38.88 42.21 41.17 43.52 39.71 44.72 41.18 39.3 42.31 43.68 39.84                                                                                                                                                                                                                | 40.84                                    |
| TiO <sub>2</sub> 0.049 0.039 0.018 0.017 0.009 0.047 0.077 0.020 0.108 0.608 0.021                                                                                                                                                                                                               | 0.022                                    |
| Al <sub>2</sub> O <sub>3</sub> 2.15 1.74 3.01 7.68 0.57 2.51 1.63 1.60 1.16 13.36 0.70                                                                                                                                                                                                           | 0.69                                     |
| Fe <sub>2</sub> O <sub>3 (1)</sub> 9.15 8.21 9.74 7.16 8.22 8.14 13.25 10.03 9.89 10.67 8.75                                                                                                                                                                                                     | 8.60                                     |
| MnO 0.096 0.115 0.121 0.094 0.093 0.119 0.189 0.060 0.120 0.182 0.118                                                                                                                                                                                                                            | 0.086                                    |
| MgO 35.43 35.34 34.04 26.83 36.87 34.98 32.89 37.00 33.94 15.95 38.02                                                                                                                                                                                                                            | 37.25                                    |
| CaO 0.10 0.06 0.08 5.60 0.05 0.18 6.51 0.06 3.19 11.97 0.48                                                                                                                                                                                                                                      | 0.39                                     |
| Na <sub>2</sub> O n.d. n.d. n.d. 0.34 n.d. n.d. n.d. n.d. n.d. 0.87 n.d.                                                                                                                                                                                                                         | n.d.                                     |
| K <sub>2</sub> O n.d. n.d. n.d. 0.04 0 n.d. 0.02 n.d. 0 0.33 n.d.                                                                                                                                                                                                                                | 0                                        |
| P <sub>2</sub> O <sub>5</sub> 0.005 0.004 0.004 0.008 0.008 0.020 0.010 0.010 0.010 0.010 0.010                                                                                                                                                                                                  | 0.010                                    |
| L.O.I. 13.7 11.9 12.3 8.1 14.0 10.0 4.6 12.7 9.9 1.5 13.1                                                                                                                                                                                                                                        | 13.6                                     |
| Mg/Si 1.18 1.08 1.07 0.80 1.20 1.01 1.03 1.21 1.03 0.47 1.23                                                                                                                                                                                                                                     | 1.18                                     |
| Al/Si 0.06 0.05 0.08 0.20 0.02 0.06 0.04 0.05 0.03 0.35 0.02                                                                                                                                                                                                                                     | 0.02                                     |
| Mineralogy (determined by petrographical observations and associated microprobe analysis)                                                                                                                                                                                                        |                                          |
| Serpentine: Lz, Ctl Atg Atg – Lz, Ctl Lz, Ctl Lz Atg Atg – Lz, Ctl                                                                                                                                                                                                                               | Lz, Ctl                                  |
| After Ol – $\sqrt{-}$ – $\sqrt{\sqrt{-}}$ – $\sqrt{-}$                                                                                                                                                                                                                                           | $\checkmark$                             |
| After Opx −                                                                                                                                                                                                                                                                                      | $\checkmark$                             |
| After Cpx √ √ √ √ √                                                                                                                                                                                                                                                                              | -                                        |
| Olivine: √ Forsterite                                                                                                                                                                                                                                                                            | -                                        |
| Pyroxene: – – – – – Enstatite Diopside – Augite Diopside –                                                                                                                                                                                                                                       | Enstatite                                |
| Amphibole:         -         Ed         Ed, Tr         -         Ed, Mg-Hbl         Ed, Mg-Hbl         -         -         Hbl         Ed, Mg-Hbl                                                                                                                                                | -                                        |
| Chlorite: Clinochlore Clinochlore – √ – Clinochlore Clinochlore Clinochlore – Clinochlore                                                                                                                                                                                                        | $\checkmark$                             |
| Tale: $ $ $$ $$ $ $ $ $                                                                                                                                                                                                                                                                          | -                                        |
| Iron oxide: Mag – – – Mag Mag, Chr Mag Mag, Chr Hematite – Mag, Chr                                                                                                                                                                                                                              | Mag, Chr                                 |
| Calcite: √ √ √                                                                                                                                                                                                                                                                                   | -                                        |
| P–T cond. <sup>f</sup> < 0.6 GPa > 0.3 GPa 1.5–1.6 GPa < 0.6 GPa < 0.6 GPa 1.6–1.8 GPa – 2.3 GPa 2.3 GPa – Along a                                                                                                                                                                               | Along a                                  |
| ≈450 °C >500 °C >600 °C ≈450 °C 300-400 °C 340-380 °C - 750 °C 750 °C - Fault                                                                                                                                                                                                                    | Fault                                    |

Major element concentrations were previously determined and published by Hattori and Guillot (2007; Cuba) and Saumur et al. (2010; Dominican Republic, except samples RD 57 and RD 62, personnal communication) using a Philips PW 2400 X-ray fluorescent spectrometer at the University of Ottawa.

<sup>a</sup> Rock: Serp = serpentinites; Hydr. cum. = hydrated cumulate; Hydr. per. = hydrated peridotites.

<sup>b</sup> Location: Cuba: Zaza = Zaza zone; Escambray = Escambray massif; Def. Zone = major deformation zone; Dominican Republic: Mélange = HP-LT serpentinites Jagua Clara mélange from central part of Rio San Juan complex; SFZ-LQE = Septentrional fault zone, Loma Quita Espuela; SFZ-RC = Septentrional fault zone, Rio Cuevas (see text for details). <sup>c</sup> Protolith: Oceanic lithosphere = abyssal peridotites; Oceanic cumulate = abyssal cumulative hydrated rocks; Mantle wedge = forearc mantle wedge peridotites.

<sup>d</sup> Group: 1a = Lz-bearing serpentinities and, 1b = Atg-bearing serpentinities of the subducting slab; 2 = Cumulates of the subducting slab; 3 = Atg-bearing mantle wedge serpentinities.

<sup>e</sup> Mineralogy: Atg = antigorite; Lz = lizardite; Ctl = chrysotile; Ed = edenite; Tr = tremolite; Mg-Hbl = magnesio-hornblende; Hbl = hornblende; Mag = magnetite; Chr = chromite (Kretz, 1983).

<sup>f</sup> P–T conditions: Metamorphic conditions experienced by studied serpentinites can be constrained using the associated metamorphic rocks which are well characterized. Cuba: Spear (1993), Auzende et al. (2002), Schneider et al. (2004), Stanek et al. (2006), and Garciá-Casco et al. (2006). Dominican Republic: Krebs et al. (2008). See text for explanations.

#### 2.3. Main petrographic and geochemical characteristics of studied samples

On the basis of the petrographic study and of the mineral and bulk rock major element compositions determined by Hattori and Guillot (2007) and Saumur et al. (2010), we divided the studied samples into four groups (see Table 1):

- (1) Subducted serpentinites: subducted serpentinites sample relics of the subducted oceanic lithosphere. They comprise both lizarditebearing (CU 55, CU 56, RD 94, RD 57: Group 1a) and antigoritebearing (CU 24, CU 54, CU 65, RD 8E, RD06 52A: Group 1b) samples indicating different P-T conditions during their formation. Group 1b serpentinites recorded processes occurring at deeper depths than Group 1a serpentinites. The two groups overlap in composition for bulk and mineral major element contents. Subducted serpentinites are characterized by loss on ignition (LOI) ranging from 9.9 to 13.7 wt.% (except sample RD 57, a serpentinized peridotite with 4.6 wt.% LOI), moderate to high Al<sub>2</sub>O<sub>3</sub> and CaO contents (1.16-3.01 wt.% and 0.06-6.51 wt.%, respectively), and low to moderate Cr# (0.2-0.55) in spinels. These compositions reflect a fertile mantle protolith, with late addition of magmatic components (CaO>PM values (4 wt.%) in sample RD 57). They are comparable to abyssal peridotites (e.g., Bodinier and Godard, 2003 (bulk); Niu, 2004 (bulk); Dick and Bullen, 1984; Dick, 1989 (spinels)).
- (2) Subducted cumulates (CU 62, CU 69, RD 62): these samples represent part of the subducted slab. They are characterized by variable LOI (1.5–8.1 wt.%), high Al<sub>2</sub>O<sub>3</sub> (7.68–13.36 wt.%) and CaO (5.60–11.97 wt.%) contents. They are mainly composed of amphiboles, and minor chlorites and primary pyroxenes.
- (3) Mantle wedge serpentinites (CU 63, RD 34C, RD 36A): the third group is characterized by lizardite-bearing samples, higher LOI (13.1–14 wt%), lower Al<sub>2</sub>O<sub>3</sub> content (0.57–0.70 wt%) and higher Cr# spinels (0.50–0.66; Saumur et al., 2010) compared to subducted serpentinites. These compositions indicate a more refractory mantle protolith compared to the protolith of the subducted serpentinites. Mantle wedge serpentinites overlap in composition with the Mariana forearc peridotites (Ishii et al., 1992). We assume that hanging-plate peridotites comprise exclusively highly refractory peridotites, whereas oceanic lithosphere has generally mildly to moderately refractory compositions.

Associated with serpentine, we note the presence of rare chlorite, talc, and amphiboles (edenite, Mg-hornblende) in all Caribbean samples. This observation is consistent with the interpretation that these samples have experienced medium-grade metamorphism (greens-chist–blueschist to amphibolite facies; Evans, 1977) during their sub-duction. Note that no metamorphic olivine has been observed in the studied samples.

#### 3. Analytical procedure

A fraction of each sample was crushed first into small fragments and then reduced to powder in an agate ring mill. Bulk rock major element compositions were published in Hattori and Guillot (2007; Cuban samples), and in Saumur et al. (2010; Dominican samples) with exception of samples RD 57 and RD 62. Complementary bulk rock trace element data were acquired using the same ICP-MS instrument on which in situ trace element compositions were obtained.

#### 3.1. Bulk rock trace element analyses

Trace element concentrations (Li, Cd, Co, Ni, Cu, As, Rb, Sr, Y, Zr, Nb, Cs, Ba, Rare Earth Elements (REE), Hf, Ta, Pb, Th, U and W) were determined at Géosciences Montpellier (University Montpellier 2, France) using a ThermoFinnigan Element2 High Resolution (HR-) ICP-MS. These analyses were obtained together with those reported by Deschamps et al. (2010); the analytical procedure, the detection limits and procedural blanks as well as the precision and accuracy of the ICP-MS analyses are described in detail in this paper. Most elements were measured in low resolution mode ( $m/\Delta m \sim 400$ ), except Co. Ni, and Cu that were analyzed in medium resolution mode  $(m/\Delta m \sim 4000)$ and As, measured in high resolution mode ( $m/\Delta m \sim 10000$ ). Our results show good agreement between measured values and expected values for the international rock standards (dunite DTS-1, peridotite IP-1 and serpentinite UBN), and reproducibility is generally better than 1% at concentrations  $>1 \mu g/g$ ; it is within 1–5% for concentrations of 0.01–1  $\mu$ g/g, and 5–10% for concentrations less than 0.01  $\mu$ g/g. Results of trace element analyses for Cuban and Dominican serpentinites are reported in Table 2.

#### 3.2. Lead isotopes

The Pb chemistry was done at LGCA (University of Grenoble, France), using the anion resin technique of Manhès et al. (1984), while the isotopic ratios were measured using the MC -ICP-MS national facility at Ecole Normale Supérieure (ENS) of Lyon (France). The method for Pb elution is described in Chauvel et al. (2011). Procedural blank was negligible (<50 pg; n = 2) relative to the amounts of Pb in samples and blank correction was therefore not applied. The NBS 981 standard was run every second sample and Pb isotope ratios were corrected by sample-standard bracketing to the NBS 981 TIMS values (Galer and Abouchami, 1998). Due to fluid circulation during serpentinization, we cannot consider hydrated peridotites as a closed system; so no age corrections were applied to our samples. Results are reported in Table 3.

#### 3.3. Mineral characterization

The mineralogy of bulk samples was characterized using a Siemens D5000 X-ray diffractometer at LGIT (Grenoble, France). A Cameca SX 100 electron microprobe at the Laboratory Magma et Volcans (Clermont Ferrand, France) was used to determine the major element concentrations of minerals. The operating conditions were 15 kV accelerating voltage, sample current of 15 nA and count time of 10 s/ element, except for Ni (20 s). Standards used were albite (Na), forsterite (Mg), orthose (K), wollastonite (Ca and Si), MnTiO<sub>3</sub> (Ti and Mn), Cr<sub>2</sub>O<sub>3</sub> (Cr), fayalite (Fe), olivine (Ni), and synthetic Al<sub>2</sub>O<sub>3</sub> (Al).

In situ trace element compositions were determined at Géosciences Montpellier (University Montpellier 2, France) using a ThermoFinnigan Element 2 HR-ICP-MS using a single collector double-focusing sector field Element XR (eXtended Range) coupled with laser ablation (LA) system, a Geolas (Microlas) automated platform housing a 193 nm Compex 102 laser from LambdaPhysik. Analyses were carried out on 150 µm thick polished sections using the method, settings and calibration techniques described in Deschamps et al. (2010). A spot size of 77 µm was used for sample CU 54, and 122 µm for other samples. A large beam size was used during this study to achieve better accuracy. This resulted in a sensitivity of ~500 cps/ppm for B, of ~2000 cps/ppm for Li, Ni, Ti, Zn, As and Cr, and of ~18,000 cps/ppm for the other analyzed elements based on measurements of the NIST 612 certified reference material. Data were subsequently reduced using the GLITTER software (Van Achterberg et al., 2001) using the linear fit to ratio method. This typically resulted in a 5 to 10% precision (1 sigma) for most analyses evaluated by repeated analyses of reference basalt BIR 1-G (values are reported in Deschamps et al., 2010; preferred values from Jochum et al., 2005; Jochum and Stoll, 2008). Detection limits were below 0.08 µg/g for most elements except Li (average of ~0.8 µg/g), B (~0.6 µg/g), Ti (~5  $\mu$ g/g), Cr (~3  $\mu$ g/g), Ni (~25  $\mu$ g/g), Zn (~2  $\mu$ g/g) and As (~0.3  $\mu$ g/ g). Values within  $2\sigma$  of the detection limit were eliminated using a logical test ((values  $-2\sigma$ )>detection limit). Representative trace element analyses are reported in Table 4; all results are reported in Appendices 1 (serpentine phases) and 2 (amphiboles, chlorites, iron oxides).

To minimize the contribution of other phases, we analyzed homogeneous clear areas with characteristic habitus of lizardite, chrysotile, and antigorite, in the limit of apparatus optical resolution. However, we cannot preclude that some serpentine phases contain dusty inclusions of magnetite and other minor secondary phases (chlorite, calcite, sulfide) which may concentrate certain trace elements (e.g. Ti in magnetite or As and Sb in sulfides). We tried to limit the possible influence of such grains during analysis using GLITTER software, which displays elementary ablation profile, and thus allows elimination of contaminated and/or mixed analyses.

#### 4. Results

#### 4.1. Bulk rock trace element compositions

The subducted serpentinites (Group 1) have moderately depleted compositions with MREE and HREE compositions and ratios close to C1-chondrite values (e.g.  $Yb_N = 0.67-1.28$ ;  $Gd_N/Yb_N = 0.60-1.38$ ;  $_{\rm N}$  = C1-chondrite normalized; Fig. 2a, b). Group 1 serpentinites are LREE depleted relative to MREE and HREE ( $La_N/Sm_N \approx 0.25$ ), except for samples CU 54 and RD 94 which display selective enrichments in LREE  $(La_N/Sm_N = 1.33-2.45)$ . Group 1 serpentinites are characterized by variable Eu anomalies, from slightly positive (RD 57,  $Eu_N/Eu_N^* = 1.23$ ) to none in the Dominican serpentinites  $(0.80 \le Eu_N/Eu_N^* \le 1.00)$  to negative  $(0.60 \le Eu_N/Eu_N^* \le 0.79)$  in the Cuban serpentinites and Dominican serpentinites RD 8E. Except for the Eu anomalies, the REE composition of Group 1 serpentinites is comparable to that of the lherzolites sampled in the Western Alps ophiolites (see review in Bodinier and Godard, 2003) for the LREE depleted samples. Group 1 serpentinites plot in the field defined by Paulick et al. (2006) for the impregnated abyssal peridotites (Fig. 2c).

Cumulate CU 62 (Group 2) has higher REE contents compared to serpentinites (e.g., Yb<sub>N</sub> ~3; Fig. 2a). It is characterized by a convexupward REE pattern with a strong depletion in LREE (La<sub>N</sub>/Sm<sub>N</sub> = 0.11), similar to that of spinel pyroxenites in orogenic massifs (e.g., Bodinier and Godard, 2003). Similar to Group 1 serpentinites, it displays a strong negative Eu anomaly (Eu<sub>N</sub>/Eu<sup>\*</sup><sub>N</sub> = 0.37).

In contrast, mantle wedge serpentinites (Group 3) are characterized by low HREE contents (e.g.,  $Yb_N = 0.19-0.29$ ) and by enrichment in LREE relative to MREE and even HREE in sample RD 34C (Gd<sub>N</sub>/ Yb<sub>N</sub> = 0.31-0.98; La<sub>N</sub>/Yb<sub>N</sub> = 0.62-2.34; Fig. 2a, b). These selective LREE enrichment are commonly interpreted as the result of progressive melt/ rock reequilibration associated with the percolation of LREE-rich melts infiltrating a depleted mantle (e.g. Navon and Stolper, 1987; Bodinier et al., 1990; Bodinier and Godard, 2003). Group 3 samples display no to slight Eu anomalies (Eu<sub>N</sub>/Eu<sup>\*</sup><sub>N</sub> = 1.06-1.19). Their composition is typical of forearc serpentinites (Savov et al., 2005, 2007; Deschamps et al., 2010; Fig. 2c).

#### Table 2

Bulk rock trace element (HR-ICP-MS) concentrations (in µg/g) for Cuban and Dominican serpentinites. (n.d. = not determined). Errors are given at the 2 $\sigma$  level (in µg/g).

| Sample                                                                                                                                                                                                                                                                                      | CU 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                         | CU 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CU 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CU 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CU 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group                                                                                                                                                                                                                                                                                       | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (µg/g)                                                                                                                                                                                                                                                                                                                                                       |
| Li (µg/g)                                                                                                                                                                                                                                                                                   | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001                                                                                                                                                                                                                                                                                                                                                       |
| Co                                                                                                                                                                                                                                                                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                  | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0061                                                                                                                                                                                                                                                                                                                                                       |
| NI<br>Cu                                                                                                                                                                                                                                                                                    | 1570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0900                                                                                                                                                                                                                                                                                                                                                                                                                  | 2358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0449                                                                                                                                                                                                                                                                                                                                                       |
| As                                                                                                                                                                                                                                                                                          | 3 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0003                                                                                                                                                                                                                                                                                                                                                       |
| Rb                                                                                                                                                                                                                                                                                          | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0096                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0062                                                                                                                                                                                                                                                                                                                                                       |
| Sr                                                                                                                                                                                                                                                                                          | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1010                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0189                                                                                                                                                                                                                                                                                                                                                       |
| Y                                                                                                                                                                                                                                                                                           | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0268                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0028                                                                                                                                                                                                                                                                                                                                                       |
| Zr                                                                                                                                                                                                                                                                                          | 0.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0052                                                                                                                                                                                                                                                                                                                                                       |
| Nb                                                                                                                                                                                                                                                                                          | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0081                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0014                                                                                                                                                                                                                                                                                                                                                       |
| Ca                                                                                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                       |
| Ba                                                                                                                                                                                                                                                                                          | 29.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1395                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0791                                                                                                                                                                                                                                                                                                                                                       |
| La                                                                                                                                                                                                                                                                                          | 0.3382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0043                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0019                                                                                                                                                                                                                                                                                                                                                       |
| Ce                                                                                                                                                                                                                                                                                          | 0.9326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0213                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0012                                                                                                                                                                                                                                                                                                                                                       |
| Pr                                                                                                                                                                                                                                                                                          | 0.1309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0012                                                                                                                                                                                                                                                                                                                                                       |
| Nd                                                                                                                                                                                                                                                                                          | 0.5850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0237                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0038                                                                                                                                                                                                                                                                                                                                                       |
| Sm                                                                                                                                                                                                                                                                                          | 0.1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0109                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0024                                                                                                                                                                                                                                                                                                                                                       |
| Gd                                                                                                                                                                                                                                                                                          | 0.0340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0004                                                                                                                                                                                                                                                                                                                                                       |
| Tb                                                                                                                                                                                                                                                                                          | 0.0280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0002                                                                                                                                                                                                                                                                                                                                                       |
| Dy                                                                                                                                                                                                                                                                                          | 0.1808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0114                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0040                                                                                                                                                                                                                                                                                                                                                       |
| Но                                                                                                                                                                                                                                                                                          | 0.0349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0004                                                                                                                                                                                                                                                                                                                                                       |
| Er                                                                                                                                                                                                                                                                                          | 0.1053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0020                                                                                                                                                                                                                                                                                                                                                       |
| Tm<br>Vh                                                                                                                                                                                                                                                                                    | 0.0165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0002                                                                                                                                                                                                                                                                                                                                                       |
| YD<br>Lu                                                                                                                                                                                                                                                                                    | 0.1091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0070                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0040                                                                                                                                                                                                                                                                                                                                                       |
| Hf                                                                                                                                                                                                                                                                                          | 0.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0022                                                                                                                                                                                                                                                                                                                                                       |
| Та                                                                                                                                                                                                                                                                                          | 0.0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                       |
| W                                                                                                                                                                                                                                                                                           | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                       |
| Pb                                                                                                                                                                                                                                                                                          | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0048                                                                                                                                                                                                                                                                                                                                                       |
| Th                                                                                                                                                                                                                                                                                          | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0088                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0016                                                                                                                                                                                                                                                                                                                                                       |
| U                                                                                                                                                                                                                                                                                           | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0017                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |
| Sample                                                                                                                                                                                                                                                                                      | RD 8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                         | RD 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2σ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD06 52A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RD 34C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                              |
| Sample<br>Group                                                                                                                                                                                                                                                                             | RD 8E<br>1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                         | RD 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2σ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD06 52A<br>1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RD 34C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2\sigma$ error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error                                                                                                                                                                                                                                                                                                                                                     |
| Sample<br>Group                                                                                                                                                                                                                                                                             | RD 8E<br>1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2σ error<br>(µg/g)                                                                                                                                                                                                                                                                                                                                                                                                      | RD 94<br>1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD06 52A<br>1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2σ error<br>(µg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 34C<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 57<br>1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(µg/g)                                                                                                                                                                                                                                                                                                                                           |
| Sample<br>Group<br>Li (µg/g)                                                                                                                                                                                                                                                                | RD 8E<br>1b<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2σ error<br>(µg/g)<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                              | RD 94<br>1a<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(µg/g)<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD06 52A<br>1b<br>1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2σ error<br>(μg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 34C<br>3<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(µg/g)<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RD 57<br>1a<br>2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(µg/g)<br>0.0001                                                                                                                                                                                                                                                                                                                                 |
| Sample<br>Group<br>Li (µg/g)<br>Co                                                                                                                                                                                                                                                          | RD 8E<br>1b<br>n.d.<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(µg/g)<br>n.d.<br>0.0069                                                                                                                                                                                                                                                                                                                                                                                    | RD 94<br>1a<br>n.d.<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2σ error<br>(µg/g)<br>n.d.<br>0.0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD06 52A<br>1b<br>1.92<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>0.0002<br>0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 34C<br>3<br>n.d.<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2σ error<br>(µg/g)<br>n.d.<br>0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 57<br>1a<br>2.01<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>2σ error</u><br>(μg/g)<br>0.0001<br>0.0148                                                                                                                                                                                                                                                                                                                |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni                                                                                                                                                                                                                                                    | RD 8E<br>1b<br>n.d.<br>109<br>2108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338                                                                                                                                                                                                                                                                                                                                                                          | RD 94<br>1a<br>n.d.<br>105<br>2132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD06 52A<br>1b<br>1.92<br>133<br>1399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD 34C<br>3<br>n.d.<br>123<br>2221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD 57<br>1a<br>2.01<br>129<br>516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159                                                                                                                                                                                                                                                                                                             |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu                                                                                                                                                                                                                                              | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009                                                                                                                                                                                                                                                                                                                                                                | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007                                                                                                                                                                                                                                                                                         |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb                                                                                                                                                                                                                                  | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0005                                                                                                                                                                                                                                                                                                                                            | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241                                                                                                                                                                                                                                                                               |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr                                                                                                                                                                                                                            | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315                                                                                                                                                                                                                                                                                                                                  | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.09<br>16.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913                                                                                                                                                                                                                                                                     |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y                                                                                                                                                                                                                       | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386                                                                                                                                                                                                                                                                                                                        | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.09<br>16.46<br>0.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.00056<br>0.3818<br>0.0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206                                                                                                                                                                                                                                                           |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr                                                                                                                                                                                                                 | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138                                                                                                                                                                                                                                                                                                              | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.09<br>16.46<br>0.279<br>0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045                                                                                                                                                                                                                                                 |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb                                                                                                                                                                                                           | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.264                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0200                                                                                                                                                                                                                                                                                            | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029                                                                                                                                                                                                                                                                                                                                                                                                                         | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                   | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008                                                                                                                                                                                                                                       |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cr                                                                                                                                                                                               | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012                                                                                                                                                                                                                                                                                                                                                                                                                           | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0001                                                                                                                                                                                                                                                                                  | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                 | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.098                                                                                                                                                                                                                                                                                                                                                                                                           | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.00056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0000                                                                                                                                                                                                                   |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba                                                                                                                                                                                         | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0001<br>0.0001<br>0.0041<br>0.0572                                                                                                                                                                                                                                                    | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.058<br>16488                                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0010<br>0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.00056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.0002<br>0.0042<br>0.0212                                                                                                                                                                                     |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La                                                                                                                                                                                   | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012<br>0.441<br>0.0188                                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0001<br>0.0041<br>0.0572<br>0.0010                                                                                                                                                                                                                                                    | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706<br>0.0540                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error           (µg/g)           0.0002           0.0044           0.0732           0.0016           0.0024           0.1041           0.0328           0.0257           0.0006           0.0000           0.0010           0.0000           0.0010           0.0500           0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672<br>0.0429                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033                                                                                                                                                                                     |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce                                                                                                                                                                             | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012<br>0.441<br>0.0188<br>0.0932                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043                                                                                                                                                                                                                                                    | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706<br>0.0540<br>0.1472                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672<br>0.0429<br>0.1210                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0035                                                                                                                                                                 |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr                                                                                                                                                                       | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012<br>0.441<br>0.0188<br>0.0932<br>0.0218                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011                                                                                                                                                                                                                                          | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930                                                                                                                                                                                                                                                                                                                                                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0001<br>0.0001<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706<br>0.0540<br>0.1472<br>0.0382                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672<br>0.0429<br>0.1210<br>0.0236                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015                                                                                                                                                                |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd                                                                                                                                                                 | RD 8E<br>1b<br>n.d.<br>109<br>2108<br>9.9<br>1.52<br>0.04<br>15.99<br>0.964<br>0.285<br>n.d.<br>0.01<br>0.012<br>0.441<br>0.0188<br>0.0932<br>0.0218<br>0.0218<br>0.1546<br>0.0718                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042                                                                                                                                                                                                                      | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.4725                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0031<br>0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706<br>0.0540<br>0.1472<br>0.0382<br>0.2808<br>0.1472                                                                                                                                                                                                                                                                                                                                                | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.2158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672<br>0.0429<br>0.1210<br>0.0236<br>0.1667<br>0.667<br>0.667<br>0.667                                                                                                                                                                                                                                                                                                                                                                               | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.0008<br>0.0002<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0020                                                                                                                                    |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu                                                                                                                        | RD 8E           1b           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.011           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.0195                                                                                                                                                                                                                        | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011                                                                                                                                                                              | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.025<br>0.023                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0031<br>0.0128<br>0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 57<br>1a<br>2.01<br>129<br>516<br>7.5<br>0.64<br>0.59<br>16.64<br>1.061<br>0.433<br>0.006<br>0.04<br>0.036<br>11.672<br>0.0429<br>0.1210<br>0.0236<br>0.1667<br>0.0878<br>0.0500                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011                                                                                                                                  |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd                                                                                                                  | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.0195           0.1331                                                                                                                                                                                                        | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033                                                                                                                                                                    | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866                                                                                                                                                                                                                                                                                                                        | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0021<br>0.0026<br>0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD06 52A<br>1b<br>1.92<br>133<br>1399<br>3.3<br>1.70<br>0.04<br>5.73<br>1.683<br>1.600<br>0.010<br>0.08<br>0.008<br>1.706<br>0.0540<br>0.1472<br>0.0382<br>0.2808<br>0.1357<br>0.0580<br>0.2281                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0001<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691                                                                                                                                                                                                                         | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0031                                                                                                                        |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb                                                                                                            | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.218           0.1546           0.0718           0.0195           0.1331           0.0263                                                                                                                                                                                        | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007                                                                                                                                                          | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866<br>0.0259                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.0540           0.1472           0.0382           0.2808           0.1257           0.0580           0.2281           0.0438                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.0087<br>0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303                                                                                                                                                                                                        | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0031<br>0.0010                                                                                                               |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy                                                                                                      | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1331           0.0263           0.1954                                                                                                                                                                                       | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070                                                                                                                                                | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866<br>0.0259<br>0.1631                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.0438           0.3256                                                                                                                                                                       | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0001<br>0.0050<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.0087<br>0.0024<br>0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266                                                                                                                                                                                       | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050                                                                                                               |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho                                                                                                                             | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.195           0.1331           0.0263           0.1954           0.4300                                                                                                                                                      | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0070<br>0.0020                                                                                                                            | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866<br>0.0259<br>0.1631<br>0.0370<br>0.1512                                                                                                                                                                                                                                                                                | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034<br>0.0014<br>0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.0438           0.3256           0.0714                                                                                                                                                      | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.00057<br>0.0024<br>0.0057<br>0.00057<br>0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0004<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474                                                                                                                                                                      | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0051<br>0.0013<br>0.0013<br>0.0013                                                                      |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er                                                                                          | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.01           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.0195           0.1331           0.0263           0.1954           0.0430           0.1252                                                                                                                     | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0072<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0020<br>0.0067<br>0.0014                                                                                                                                      | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866<br>0.0259<br>0.1631<br>0.0370<br>0.1110<br>0.0150                                                                                                                                                                                                                                                                      | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034<br>0.0014<br>0.0014<br>0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.0438           0.3256           0.0714           0.2022                                                                                                                                     | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.00057<br>0.0024<br>0.0057<br>0.0009<br>0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0339<br>0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474           0.1388                                                                                                                                                     | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.0007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.0025                                                                      |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tm<br>Yb                                                                                                     | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.195           0.1331           0.0263           0.1954           0.0430           0.1252           0.0198           0.1284                                                                                                   | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0070<br>0.0070<br>0.0070<br>0.0014<br>0.0034                                                                                              | RD 94<br>1a<br>n.d.<br>105<br>2132<br>5.2<br>0.31<br>0.08<br>3.84<br>1.680<br>0.591<br>0.029<br>0.05<br>0.088<br>16.488<br>0.4027<br>0.1608<br>0.0930<br>0.4725<br>0.1025<br>0.0373<br>0.1866<br>0.0259<br>0.1631<br>0.0370<br>0.1110<br>0.0160<br>0.1090                                                                                                                                                                                                                                                            | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034<br>0.0014<br>0.0014<br>0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.0438           0.3256           0.0714           0.2044           0.0309           0.274                                                                    | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.00057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0009<br>0.0036<br>0.0004<br>0.00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0039<br>0.0056<br>0.0461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0018<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474           0.1388           0.0185           0.1167                                                                                                                   | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.0015<br>0.0013<br>0.0015<br>0.0001<br>0.0014                                         |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tm<br>Yb<br>Lu                                                                                               | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1954           0.1954           0.0430           0.1252           0.0198           0.1284           0.0228                                                                                                                   | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.00572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0070<br>0.0020<br>0.0067<br>0.0014<br>0.0034<br>0.0015                                                                                   | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.9330           0.4725           0.1025           0.0373           0.1631           0.0370           0.1110           0.0160           0.0242                                                                                                 | 2σ error<br>(µg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0014<br>0.0014<br>0.0040<br>0.0008<br>0.0046<br>0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.0438           0.3256           0.0714           0.2044           0.0309           0.2074           0.0338                                                  | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.00057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0002<br>0.0016<br>0.00024<br>0.0016<br>0.0002<br>0.0016<br>0.0002<br>0.0016<br>0.0002<br>0.0016<br>0.0002<br>0.0016<br>0.0002<br>0.0016<br>0.0002<br>0.0011<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0002<br>0.0001<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.00010<br>0.0000<br>0.00010<br>0.0000<br>0.00010<br>0.0000<br>0.00010<br>0.0000<br>0.00010<br>0.00000<br>0.00010<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000 | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0039<br>0.0056<br>0.0461<br>0.0096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0018<br>0.0003<br>0.0010<br>0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474           0.1338           0.0185           0.1167           0.0201                                                                                                  | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.007<br>0.0241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0008<br>0.00042<br>0.2122<br>0.0033<br>0.0035<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.0014<br>0.0015                                                                       |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tm<br>Yb<br>Lu<br>Hf                                                                                         | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1954           0.1954           0.0430           0.1252           0.0198           0.1284           0.0228           0.0244                                                                                                  | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.00572<br>0.0011<br>0.0069<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0020<br>0.0020<br>0.0014<br>0.0015<br>0.0023                                                                                   | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.9330           0.4725           0.1025           0.0373           0.1631           0.0370           0.1110           0.0160           0.0242           0.0214                                                                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0006<br>0.0040<br>0.0040<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0014<br>0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.438           0.3256           0.0714           0.2044           0.0309           0.2074           0.0338           0.0757                                  | 2σ error<br>(μg/g)<br>0.0002<br>0.0044<br>0.0732<br>0.0001<br>0.0016<br>0.0024<br>0.1041<br>0.0328<br>0.0257<br>0.0006<br>0.0000<br>0.0010<br>0.0500<br>0.0011<br>0.0500<br>0.0011<br>0.0068<br>0.0022<br>0.0051<br>0.0120<br>0.0016<br>0.00057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0024<br>0.0057<br>0.0009<br>0.0036<br>0.0004<br>0.0013<br>0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0039<br>0.0056<br>0.0461<br>0.0096<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0056<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0018<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.303           0.2266           0.0474           0.1338           0.0185           0.1167           0.0201                                                                                                   | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.00241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0005<br>0.0015<br>0.0040<br>0.0050<br>0.0015<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.0015<br>0.0016<br>0.0014<br>0.0015<br>0.0029                                                            |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Cc<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Dy<br>Ho<br>Er<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta                                                     | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1954           0.1954           0.0430           0.1222           0.0198           0.1284           0.0224           n.d.                                                                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0041<br>0.0072<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0007<br>0.0070<br>0.0070<br>0.0070<br>0.0070<br>0.0070<br>0.0020<br>0.0015<br>0.0023<br>n.d.                                                                  | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.930           0.4725           0.1025           0.0373           0.1866           0.0259           0.1631           0.0370           0.1110           0.0160           0.0242           0.0214                                               | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0007<br>0.0006<br>0.0040<br>0.0040<br>0.0024<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.438           0.3256           0.0714           0.2044           0.0338           0.0757           0.0009                                                   | 2σ error           (µg/g)           0.0002           0.0044           0.0732           0.0016           0.0024           0.1041           0.0328           0.0257           0.0006           0.0010           0.0500           0.0011           0.0068           0.0022           0.0051           0.0120           0.0057           0.00036           0.0004           0.0013           0.0004           0.0013           0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RD 34C           3           n.d.           123           2221           1.4           0.22           0.09           16.46           0.279           0.239           n.d.           0.01           0.077           22.112           0.1590           0.3994           0.0508           0.2158           0.0478           0.0181           0.0557           0.0080           0.0473           0.0099           0.0339           0.0056           0.0461           0.0096           0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0005<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0005<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.303           0.2266           0.0474           0.1338           0.0185           0.1167           0.0201           0.0204                                                                                  | 2σ error<br>(μg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.00241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0005<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0054<br>0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015                                                                                          |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Sm<br>Eu<br>Gd<br>Dy<br>Ho<br>Er<br>Tb<br>Dy<br>Ho<br>Er<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta<br>W                                          | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1954           0.0430           0.1252           0.0198           0.1284           0.0228           0.0244           n.d.           1.284           0.0244           n.d.                                                    | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0020<br>0.0020<br>0.0015<br>0.0023<br>n.d.<br>n.d.<br>0.0023<br>n.d.<br>n.d.                                                              | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.930           0.4725           0.1025           0.0373           0.1866           0.0259           0.1631           0.0370           0.1110           0.0160           0.0214           0.0014           n.d.                                | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0040<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0012<br>0.0015<br>0.0015<br>0.0024<br>0.0015<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.05 | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.0382           0.2808           0.1357           0.0580           0.2281           0.438           0.3256           0.0714           0.2044           0.0309           0.2074           0.0338           0.0757           0.0009           0.025 | 2σ error           (µg/g)           0.0002           0.0044           0.0732           0.0016           0.0024           0.1041           0.0328           0.0257           0.0006           0.0010           0.0500           0.0011           0.0068           0.0021           0.0016           0.0057           0.0027           0.0024           0.0057           0.0024           0.0057           0.0024           0.0013           0.0004           0.0013           0.0004           0.0044           0.0007           0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0339<br>0.0056<br>0.0461<br>0.0096<br>0.0051<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>n.d.<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.0030<br>0.003 | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0005<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0001<br>0.0029<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0001<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002    | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.3033           0.2266           0.0474           0.1338           0.0185           0.1167           0.0204           0.0002           n.d.                                                                  | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.00241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0005<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.0015<br>0.0014<br>0.0015<br>0.0029<br>0.0001<br>n.d.                                                              |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Sm<br>Eu<br>Gd<br>Tb<br>Dy<br>Ho<br>Er<br>Tm<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta<br>W<br>Pb<br>Tb                                    | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1955           0.1331           0.0263           0.1954           0.0430           0.1252           0.0198           0.1284           0.0228           0.0244           n.d.           1.360           0.002                 | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0070<br>0.0020<br>0.0020<br>0.0023<br>n.d.<br>n.d.<br>0.0034<br>0.0023<br>n.d.<br>n.d.<br>0.00378<br>0.0020 | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.930           0.4725           0.1025           0.0373           0.1866           0.0259           0.1631           0.0370           0.1110           0.014           n.d.           0.331           0.011                                   | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0040<br>0.0031<br>0.0128<br>0.0026<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0025<br>0.0025<br>0.0025<br>0.0011<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0011<br>0.0012<br>0.0012<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.05   | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.382           0.2808           0.1357           0.0580           0.2281           0.438           0.3256           0.0714           0.2044           0.338           0.0757           0.0009           0.025           0.063                     | 2σ error           (µg/g)           0.0002           0.0044           0.0732           0.0016           0.0024           0.1041           0.0328           0.0006           0.0006           0.00010           0.0057           0.0068           0.0021           0.0051           0.0120           0.0057           0.0024           0.0057           0.0024           0.0057           0.00036           0.0013           0.0004           0.0013           0.0004           0.0013           0.0004           0.0013           0.0004           0.0013           0.0004           0.0013           0.0004           0.0013           0.0004           0.0038           0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD 34C           3           n.d.           123           2221           1.4           0.22           0.09           16.46           0.279           0.239           n.d.           0.01           0.077           22.112           0.1590           0.3994           0.0508           0.2158           0.0478           0.0181           0.0557           0.0080           0.0473           0.0099           0.0339           0.0056           0.0461           0.0096           0.0051           0.0030           n.d.           0.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0005<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0011<br>0.0002<br>0.0014<br>0.0002<br>0.0018<br>0.0002<br>0.0011<br>0.0003<br>0.0010<br>0.0003<br>0.0005<br>0.0002<br>n.d.<br>0.0003<br>0.0010<br>0.0003<br>0.0001<br>0.0005<br>0.0002<br>0.0011<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0001<br>0.0002<br>0.0011<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0002<br>0.0003<br>0.0001<br>0.0003<br>0.0002<br>0.0003<br>0.0002<br>0.0003<br>0.0002<br>0.0002<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0003<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0 | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474           0.1338           0.0185           0.1167           0.0204           0.0002                                                                                 | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.00241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0005<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0054<br>0.0013<br>0.0015<br>0.00054<br>0.0015<br>0.0006<br>0.0014<br>0.0015<br>0.0029<br>0.0001<br>n.d.<br>0.0206<br>0.0029 |
| Sample<br>Group<br>Li (µg/g)<br>Co<br>Ni<br>Cu<br>As<br>Rb<br>Sr<br>Y<br>Zr<br>Zr<br>Nb<br>Cd<br>Cd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Cs<br>Ba<br>La<br>Ce<br>Pr<br>Nd<br>Sm<br>Eu<br>Gd<br>Dy<br>Ho<br>Er<br>Tm<br>Tm<br>Yb<br>Lu<br>Hf<br>Ta<br>W<br>Pb<br>Th<br>U | RD 8E           1b           n.d.           109           2108           9.9           1.52           0.04           15.99           0.964           0.285           n.d.           0.012           0.441           0.0188           0.0932           0.0218           0.1546           0.0718           0.1955           0.1331           0.0263           0.1954           0.0430           0.1252           0.0198           0.1284           0.0228           0.0244           n.d.           1.360           0.002           0.019 | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.1338<br>0.0009<br>0.0005<br>0.0040<br>0.8315<br>0.0386<br>0.0138<br>n.d.<br>0.0000<br>0.0041<br>0.0572<br>0.0010<br>0.0043<br>0.0011<br>0.0069<br>0.0043<br>0.0011<br>0.0069<br>0.0042<br>0.0011<br>0.0033<br>0.0007<br>0.0070<br>0.0020<br>0.0020<br>0.0020<br>0.0023<br>n.d.<br>n.d.<br>0.0034<br>0.0015<br>0.0023<br>n.d.<br>n.d.<br>0.0378<br>0.0002<br>0.0002<br>0.0002  | RD 94           1a           n.d.           105           2132           5.2           0.31           0.08           3.84           1.680           0.591           0.029           0.05           0.088           16.488           0.4027           0.1608           0.930           0.4725           0.1025           0.0373           0.1866           0.0259           0.1631           0.0370           0.1110           0.0214           0.0014           n.d.           0.331           0.011           0.009 | 2σ error<br>(μg/g)<br>n.d.<br>0.0069<br>0.0523<br>0.0005<br>0.0004<br>0.0034<br>0.1279<br>0.0330<br>0.0177<br>0.0012<br>0.0000<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0049<br>0.4368<br>0.0067<br>0.0006<br>0.0040<br>0.0031<br>0.0128<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0034<br>0.0015<br>0.0005<br>n.d.<br>0.0012<br>0.0005<br>n.d.<br>0.0012<br>0.0005<br>n.d.<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0005<br>0.0012<br>0.0012<br>0.0005<br>0.0012<br>0.0005<br>0.0012<br>0.0005<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0024<br>0.0015<br>0.0025<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0005<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0011<br>0.0012<br>0.0012<br>0.0011<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0012<br>0.0       | RD06 52A           1b           1.92           133           1399           3.3           1.70           0.04           5.73           1.683           1.600           0.010           0.08           0.008           1.706           0.0540           0.1472           0.382           0.2808           0.1357           0.0580           0.2281           0.438           0.3256           0.0714           0.2044           0.338           0.0757           0.0009           0.025           0.063           0.002     | 2σ error           (µg/g)           0.0002           0.0044           0.0732           0.0016           0.0024           0.1041           0.0328           0.0006           0.0006           0.0001           0.0057           0.0068           0.0021           0.0051           0.0120           0.0057           0.0002           0.0036           0.0024           0.0057           0.0008           0.0013           0.0008           0.0044           0.0007           0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RD 34C<br>3<br>n.d.<br>123<br>2221<br>1.4<br>0.22<br>0.09<br>16.46<br>0.279<br>0.239<br>n.d.<br>0.01<br>0.077<br>22.112<br>0.1590<br>0.3994<br>0.0508<br>0.2158<br>0.0478<br>0.0181<br>0.0557<br>0.0080<br>0.0473<br>0.0099<br>0.0339<br>0.0056<br>0.0461<br>0.0096<br>0.0051<br>0.0030<br>n.d.<br>0.0051<br>0.0030<br>n.d.<br>0.010<br>0.061<br>0.0041<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2σ error<br>(μg/g)<br>n.d.<br>0.0023<br>0.0601<br>0.0001<br>0.0001<br>0.0005<br>0.3818<br>0.0130<br>0.0017<br>n.d.<br>0.0000<br>0.0018<br>0.5986<br>0.0049<br>0.0013<br>0.0011<br>0.0059<br>0.0044<br>0.0007<br>0.0029<br>0.0011<br>0.0002<br>0.0018<br>0.0002<br>0.0011<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0010<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0001<br>0.0003<br>0.0001<br>0.0003<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0011<br>0.0011<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014    | RD 57           1a           2.01           129           516           7.5           0.64           0.59           16.64           1.061           0.433           0.006           0.04           0.036           11.672           0.0429           0.1210           0.0236           0.1667           0.0878           0.0500           0.1691           0.0303           0.2266           0.0474           0.1338           0.0185           0.1167           0.0201           0.0204           0.0002           n.d.           0.884           0.002           0.008 | 2σ error<br>(µg/g)<br>0.0001<br>0.0148<br>0.0159<br>0.0004<br>0.00241<br>0.1913<br>0.0206<br>0.0045<br>0.0008<br>0.0000<br>0.0042<br>0.2122<br>0.0033<br>0.0005<br>0.0015<br>0.0040<br>0.0050<br>0.0011<br>0.0050<br>0.0011<br>0.0010<br>0.0054<br>0.0013<br>0.0015<br>0.0015<br>0.0014<br>0.0015<br>0.00029<br>0.0001<br>n.d.<br>0.0206<br>0.0009<br>0.0008 |

| Та | ble | e 3 |
|----|-----|-----|
|    |     |     |

Pb isotopic compositions for Cuban serpentinites. Errors are given at the 2 $\sigma$  level. Bis are for duplicate dissolution and Rep for duplicate run.

| Sample                        |            | <sup>206</sup> Pb/ <sup>204</sup> Pb | $\pm 2\sigma$ | <sup>207</sup> Pb/ <sup>204</sup> Pb | $\pm 2\sigma$ | <sup>208</sup> Pb/ <sup>204</sup> Pb | $\pm 2\sigma$ |
|-------------------------------|------------|--------------------------------------|---------------|--------------------------------------|---------------|--------------------------------------|---------------|
| CU 24                         | (Group 1b) | 18.7524                              | $\pm 15$      | 15.6599                              | ±13           | 38.3040                              | ±33           |
| CU 55                         | (Group 1a) | 17.8845                              | $\pm 08$      | 15.5800                              | $\pm 09$      | 37.5710                              | $\pm 24$      |
| CU 62                         | (Group 2)  | 18.5567                              | $\pm 13$      | 15.6461                              | $\pm 14$      | 38.2301                              | $\pm 34$      |
| CU 62 (Bis)                   | (Group 1b) | 18.5595                              | $\pm 10$      | 15.6471                              | $\pm 08$      | 38.2358                              | $\pm 24$      |
| CU 63                         | (Group 3)  | 18.1494                              | $\pm 15$      | 15.6179                              | $\pm 15$      | 38.0464                              | $\pm 39$      |
| CU 65                         | (Group 1b) | 19.0177                              | $\pm 28$      | 15.6718                              | $\pm 22$      | 38.4549                              | $\pm 56$      |
| CU 69                         | (Group 2)  | 18.6606                              | $\pm 12$      | 15.6532                              | $\pm 10$      | 38.5552                              | $\pm 28$      |
| CU 69 (Rep)                   | (Group 2)  | 18.6595                              | $\pm 17$      | 15.6534                              | $\pm 14$      | 38.5677                              | $\pm 53$      |
| MC–ICP-MS standard<br>NBS 981 | ds         |                                      |               |                                      |               |                                      |               |
| Galer and Aboucham            | ni (1998)  | 16.94                                | $\pm 15$      | 15.5                                 | $\pm 16$      | 36.72                                | $\pm 44$      |
| Average $(n = 11)$            |            | 16.9395                              | $\pm 330$     | 15.4892                              | $\pm 174$     | 36.6968                              | $\pm 224$     |
| Biais (µg/g)                  |            | 60                                   |               | 459                                  |               | 683                                  |               |

As shown in Fig. 2d and e, the serpentinite trace element compositions normalized to Primitive Mantle (PM, McDonough and Sun, 1995) show spiked U-shaped patterns characterized by variable enrichments in the most incompatible elements relative to LREE (e.g., Th/La= $0.22-7.31 \times PM$ ), a strong enrichment in U and Pb relative to neighboring elements (U/Th~ $28 \times PM - Pb/Ce \sim 58 \times PM$ ), a systematic depletion in Nb, Ta, Zr and Hf relative to neighboring elements (e.g., Nb/La~ $0.47 \times PM$ ; Zr/Sm~ $0.25 \times PM$ ). Mantle wedge serpentinites are characterized by higher Zr/Hf (Zr/Hf= $0.95-1.27 \times PM$ ) compared to subducted serpentinites (Zr/Hf= $0.31-0.75 \times PM$ ).

The analyzed serpentinites display variable Sr anomalies (Fig. 2d, e); the absence of correlation between  $Eu_N/Eu_N^*$  (0.37–1.23) and Sr concentration pleads for Eu variation due to interaction with hydrothermal fluids during serpentinization and a only minimal effect of plagioclase (Paulick et al., 2006; Godard et al., 2009).

All studied samples are enriched in highly incompatible and fluidmobile elements compared to PM values (e.g. As, Pb, U). These enrichments are attributed to extensive hydration with high fluid/rock ratios. Although substantial, the enrichments observed in the studied serpentinites are not as high as those observed in the Tso Morari mantle wedge serpentinites (Hattori and Guillot, 2003, 2007; Deschamps et al., 2010).

#### 4.2. Lead isotopic compositions

Isotopic ratios for Pb for Cuban samples are reported in Table 3. <sup>206</sup>Pb/<sup>204</sup>Pb varies from 17.88 to 19.02, <sup>207</sup>Pb/<sup>204</sup>Pb from 15.58 to 15.67, and <sup>208</sup>Pb/<sup>204</sup>Pb from 37.57 to 38.57. Samples are plotted in Fig. 3 and define a linear trend at the high <sup>207</sup>Pb/<sup>204</sup>Pb edge of the field defined by Atlantic MORB along the Mid-Atlantic Ridge between 30°N and 30°S (compiled from PETDB, http://www.petdb.org) (Fig. 3a, c). Overall, serpentinite samples have more radiogenic <sup>207</sup>Pb/<sup>204</sup>Pb compositions than Atlantic MORB and igneous rocks from Cuba (Blein et al., 2003; Marchesi et al., 2007; Fig. 3a, c) and define a trend parallel to, but much higher in <sup>207</sup>Pb/<sup>204</sup>Pb than, the NHRL. Studied samples fall in an area typical of crustal materials such as data reported for the SW Amazon craton (Tohver et al., 2004) or data reported for sediments coming from the South American continent (Carpentier et al., 2008).

#### 4.3. Mineral trace element compositions

Trace element compositions for serpentine phases, amphiboles, chlorites and iron oxides are reported in Table 4 (representative analyses) and Appendices 1 and 2.

#### 4.3.1. Serpentine phases

Combining petrological and textural observations in the least altered samples and in situ analyses allows us to distinguish three types of serpentine related to the primary minerals from which they derive (olivine, orthopyroxene and clinopyroxene). Each serpentine type is characterized by its composition, in particular for REE and compatible trace elements, as illustrated in Figs. 4–6.

Serpentine minerals derived from olivine (serp-ol) are the most depleted in minor and trace elements (e.g., Sc: 2.7-12.3 µg/g, Ti: 5.2–114.8 µg/g, Yb<0.068 µg/g, Y: 0.1–0.3 µg/g, Fig. 4). They are characterized by relatively flat C1-chondrite normalized REE patterns (Fig. 5a, b) although, in detail, we observe differences in REE fractionation between Dominican and Cuban samples: serp-ol from Cuba are LREE depleted with a strong variability in LREE/HREE ( $0.08 < La_N$ / Yb<sub>N</sub><2.77; Figs. 4a, 5a) while most Dominican serp-ol are LREE enriched compared to MREE and HREE (La<sub>N</sub>/Yb<sub>N</sub> up to 8.15; Figs. 4a, 5b). Serp-ol REE patterns are similar to those of olivine separates in ultramafic nodules from southeastern British Columbia (Sun and Kerrich, 1995) and serpentinized olivine from Tso Morari serpentinites (Deschamps et al., 2010; Fig. 5c). These compositions are however enriched, especially in LREE, when compared to the olivines from the mantle wedge xenoliths sampled by the andesitic Avacha volcano (Kamchatka, Ionov, 2010; Fig. 5c).

Serpentine minerals after orthopyroxene (serp-opx; Figs. 4a and 5d, e) are characterized by higher REE (e.g. Yb~0.03-0.24 µg/g; Fig. 4), Y (0.2–1.5 µg/g), Sc (5.8–49.3 µg/g) and Ti (38.1–468.6 µg/g) contents compared to serp-ol. Except for sample RD 94, a subducted serpentinite, serp-opx REE patterns are relatively flat (Sm<sub>N</sub>/Yb<sub>N</sub>~1.28) with slight LREE enrichments (Fig. 5e), in particular in the Dominican Republic serpentinites ( $La_N/Yb_N \sim 3.77$ ). These samples overlap in composition with the orthopyroxenes analyzed by Sun and Kerrich (1995) (Fig. 5f). Sample RD 94 is distinguished by its LREE depleted composition and plots in the field defined by serpentine after orthopyroxene from the Tso Morari serpentinite series (Deschamps et al., 2010). The REE heterogeneity of serp-opx is interpreted as evidence that the primary orthopyroxene REE content was (at least in part) preserved during serpentinization. Nevertheless, similar to serp-ol, the analyzed serp-opx compositions are enriched compared to the Avacha xenolith series (lonov, 2010), suggesting a different mantle protolith.

Finally, serpentine formed after clinopyroxene (serp-cpx) presents strongly LREE depleted patterns (Fig. 5 g, h) with higher contents in moderately incompatible elements such as Sc, Y, Ti, Co, and V compared to serp-ol and serp-opx (Fig. 4). This group presents characteristics close to those of clinopyroxene analyzed in abyssal peridotites (Johnson et al., 1990; Dick and Natland, 1996; Hellebrand et al., 2002; Fig. 5i), suggesting a low mobility of REE, at least for HREE, and of moderately incompatible elements during serpentinization of primary phases (Andreani et al., 2009; Deschamps et al., 2010). It should be noted however that such depleted LREE patterns were not observed in the Tso Morari mantle wedge serpentinites (Deschamps et al., 2010). Serp-cpx patterns from Cuba display negative Eu anomaly (0.40 < Eu<sub>N</sub>/Eu<sup>\*</sup><sub>N</sub> < 0.85), whereas the latter is not really marked in Dominican serpentines derived from pyroxene (average of Eu\_N/  $Eu_{\,N}^{*}\!=\!0.95;$  Fig. 5 g, h).

On PM-normalized spidergrams (Fig. 6), nearly all serpentine patterns normalized to Primitive Mantle present enrichments in U, Pb and Cs (U/Th~22.9×PM; Pb/Ce~37.6×PM; Cs/Rb~14.18×PM). All Cuban serpentines (serp-ol, serp-opx and serp-cpx) are characterized by a higher content in Hf than Zr ( $0.08 \times PM < Zr/Hf < 0.61 \times PM$ , except two

analyses at  $1.11 \times PM$  and  $3.25 \times PM$ ). Both elements are depleted compared to neighboring elements (Zr/Sm~0.33  $\times$  PM), whereas no particular behavior is discernable for these elements concerning Dominican serpentines ( $0.05 \times PM < Zr/Hf < 19.35 \times PM$ , average of  $2.08 \times PM$ ; Zr/Sm~1.73  $\times$  PM). A systematic depletion in Nb compared to Ta is observed in each types of serpentines for both locations ( $0.11 \times PM < Nb/Ta < 0.91 \times PM$ ). Note that serpentine after orthopyroxene from

#### Table 4

Representative trace element analyses (LA–HR-ICP-MS) of serpentine minerals after olivine or pyroxene, amphiboles, chlorites and iron oxides from Cuban and Dominican serpentinites. All elements are in µg/g, except Si in wt.% (n.d. = not determined; b.d.l. = below detection limit). All analyses are reported in Appendixes 1 and 2.

| Sample                         | CU 54      | CU 54      | CU 63      | CU 63      | CU 54      | CU 63      |
|--------------------------------|------------|------------|------------|------------|------------|------------|
|                                | Abyssal    | Abyssal    | Wedge      | Wedge      | Abyssal    | Wedge      |
|                                | #1         | #6         | #10        | #13        | #17        | #19        |
| Spot size                      | 77 μ       | 77 μ       | 122 μ      | 122 μ      | 77 μ       | 122 μ      |
| Minerals                       | Serpentine | Serpentine | Serpentine | Serpentine | Serpentine | Serpentine |
| Group                          | 1b         | 1b         | 3          | 3          | 1b         | 3          |
| Primary mineral                | Olivine    | Olivine    | Olivine    | Olivine    | Орх        | Орх        |
| All elements in %              |            |            |            |            |            |            |
| SiO <sub>2</sub>               | 40.35      | 43.14      | 40.38      | 38.66      | 40.35      | 37.71      |
| TiO <sub>2</sub>               | b.d.l.     | b.d.l.     | 0.01       | 0.02       | b.d.l.     | 0.01       |
| Al <sub>2</sub> O <sub>3</sub> | 1.28       | 1.16       | 0.39       | 0.27       | 1.28       | 0.09       |
| $Cr_2O_3$                      | 0.29       | 0.24       | 0.04       | 0.02       | 0.29       | b.d.l.     |
| MgO                            | 37.34      | 32.80      | 35.49      | 33.78      | 37.34      | 37.29      |
| FeO                            | 6.51       | 5.92       | 4.37       | 2.77       | 6.51       | 2.39       |
| MnO                            | 0.11       | 0.06       | 0.07       | 3.52       | 0.11       | 0.06       |
| NiO                            | 0.07       | 0.10       | 0.78       | 1.48       | 0.07       | 0.30       |
| CaO                            | 0.01       | b.d.l.     | 0.06       | 0.14       | 0.01       | b.d.l.     |
| Na <sub>2</sub> O              | 0.02       | 0.01       | 0.02       | 0.01       | 0.02       | b.d.l.     |
| K <sub>2</sub> O               | b.d.l.     | b.d.l.     | 0.01       | 0.02       | b.d.l.     | b.d.l.     |
| Total                          | 85.98      | 83.43      | 81.62      | 80.71      | 85.98      | 77.84      |
| All elements in µg/g           |            |            |            |            |            |            |
| Li                             | 0.68       | 3.67       | 0.37       | 0.46       | 1.76       | 0.23       |
| В                              | 6.6        | 15.7       | 94.8       | 39.5       | 16.2       | 27.5       |
| Ca                             | 188        | 279        | 636        | 317        | 169        | 223        |
| Sc                             | 2.7        | 8.6        | 7.8        | 4.3        | 8.7        | 49.3       |
| Ti                             | 31.7       | 69.3       | 17.4       | 6.5        | 86.9       | 208.9      |
| V                              | 14.9       | 47.7       | 10.6       | 6.9        | 47.6       | 142.6      |
| Cr                             | 2077       | 2722       | 173        | 109        | 4746       | 6225       |
| Со                             | 21.7       | 71.9       | 98.6       | 51.0       | 62.5       | 46.9       |
| Ni                             | 581        | 1708       | 11934      | 6653       | 1767       | 2430       |
| Cu                             | 2.3        | 16.7       | 3.7        | 1.0        | 9.8        | 0.8        |
| Zn                             | 15         | 58         | 36         | 13         | 44         | 14         |
| As                             | 0.74       | 1.66       | 0.31       | 0.23       | 2.37       | 0.18       |
| Rb                             | 0.053      | 0.270      | 0.094      | b.d.l.     | 0.060      | b.d.l.     |
| Sr                             | 0.372      | 1.583      | 5.050      | 1.701      | 1.392      | 1.127      |
| Y                              | 0.195      | 0.343      | 0.252      | 0.083      | 0.792      | 0.450      |
| Zr                             | 0.073      | b.d.l.     | 0.140      | 0.050      | 0.166      | 0.172      |
| Nb                             | 0.010      | 0.035      | n.d.       | n.d.       | 0.026      | 0.004      |
| Sb                             | 0.04       | 0.07       | 0.03       | 0.02       | 0.09       | 0.07       |
| Cs                             | 0.032      | 0.027      | n.d.       | n.d.       | 0.009      | b.d.l.     |
| Ba                             | 1.087      | 2.176      | 0.765      | 0.368      | 3.280      | 0.244      |
| La                             | 0.0226     | 0.0439     | 0.0124     | 0.0057     | 0.1004     | 0.0290     |
| Ce                             | 0.0468     | 0.0657     | 0.0106     | b.d.l.     | 0.2510     | 0.0874     |
| Pr                             | n.d.       | 0.0243     | 0.0016     | 0.0017     | 0.0401     | 0.0193     |
| Nd                             | 0.0453     | 0.1000     | 0.0337     | b.d.l.     | 0.2380     | 0.0462     |
| Sm                             | 0.0397     | 0.0301     | b.d.l.     | b.d.l.     | 0.0951     | 0.0271     |
| Eu                             | 0.0062     | b.d.l.     | 0.0112     | n.d.       | 0.0249     | b.d.l.     |
| Gd                             | 0.0283     | 0.0423     | 0.0245     | 0.0098     | 0.1000     | 0.0304     |
| Tb                             | 0.0051     | 0.0103     | 0.0071     | n.d.       | 0.0172     | 0.0091     |
| Dy                             | 0.0326     | 0.0591     | 0.0249     | 0.0110     | 0.1481     | 0.0776     |
| Но                             | 0.0072     | 0.0118     | 0.0101     | 0.0036     | 0.0348     | 0.0165     |
| Er                             | 0.0229     | 0.0423     | 0.0307     | 0.0098     | 0.1036     | 0.1035     |
| Tm                             | 0.0039     | 0.0038     | 0.0066     | 0.0032     | 0.0197     | 0.0119     |
| Yb                             | 0.0228     | 0.0586     | 0.0331     | 0.0200     | 0.1300     | 0.0776     |
| Lu                             | 0.0046     | 0.0103     | 0.0092     | 0.0058     | 0.0194     | 0.0216     |
| Hf                             | 0.0064     | 0.0114     | 0.0241     | 0.0100     | 0.0578     | 0.0159     |
| Ta                             | n.d.       | 0.0025     | b.d.l.     | n.d.       | n.d.       | n.d.       |
| Pb                             | 0.050      | 0.125      | 0.034      | 0.016      | 0.348      | 0.009      |
| Th                             | 0.006      | 0.026      | 0.005      | b.d.l.     | 0.026      | 0.002      |
| U                              | 0.007      | 0.027      | 0.004      | 0.001      | 0.339      | 0.009      |

#### Table 4 (continued)

| Sample                         | CU 56      | CU 65      | RD 94      | RD 34C     | RD 36A     | RD 94      |
|--------------------------------|------------|------------|------------|------------|------------|------------|
|                                | Abyssal    | Abyssal    | Abyssal    | Wedge      | Wedge      | Abyssal    |
|                                | #22        | #31        | #40        | #44        | #48        | #54        |
| Spot size                      | 122 u      |
| Minerals                       | Serpentine | Serpentine | Serpentine | Serpentine | Serpentine | Serpentine |
| Group                          | <br>1a     | 1b         | 1a         | 3          | 3          | 1a         |
| Primary mineral                | Срх        | Срх        | Olivine    | Olivine    | Olivine    | Opx gr.1   |
| All elements in %              | *          | Å          |            |            |            | 1 0        |
| SiO <sub>2</sub>               | 42.01      | 41.98      | 40.82      | 43.54      | 42.77      | 41.22      |
| TiO <sub>2</sub>               | 0.05       | b.d.l.     | 0.01       | 0.01       | 0.03       | 0.05       |
| Al <sub>2</sub> O <sub>3</sub> | 1.68       | 2.88       | b.d.l.     | 0.02       | 0.06       | 1.38       |
| Cr <sub>2</sub> O <sub>3</sub> | 0.06       | 0.36       | b.d.l.     | b.d.l.     | b.d.l.     | 0.14       |
| MgO                            | 39.46      | 33.20      | 36.64      | 36.37      | 39.19      | 34.24      |
| FeO                            | 3.14       | 8.08       | 6.24       | 4.59       | 3.64       | 7.05       |
| MnO                            | 0.07       | 0.13       | 0.02       | 0.05       | 0.00       | 0.12       |
| NiO                            | 0.07       | 0.25       | 0.36       | 0.41       | 0.24       | 0.10       |
| CaO                            | 0.03       | 0.04       | 0.02       | 0.04       | 0.02       | 0.03       |
| Na <sub>2</sub> O              | 0.02       | b.d.l.     | 0.01       | 0.02       | 0.01       | b.d.l.     |
| K <sub>2</sub> O               | b.d.l.     | b.d.l.     | b.d.l.     | b.d.l.     | 0.03       | b.d.l.     |
| Total                          | 86.58      | 86.93      | 84.11      | 85.06      | 85.99      | 84.34      |
| All elements in µg/g           |            |            |            |            |            |            |
| Li                             | 0.43       | 0.79       | 0.63       | 0.25       | 0.53       | 3.20       |
| В                              | 48.0       | 8.1        | 17.2       | 23.2       | 33.5       | 32.2       |
| Ca                             | 326        | 163        | 76         | 206        | 149        | 330        |
| Sc                             | 20.5       | 14.3       | 12.3       | 4.2        | 3.8        | 15.9       |
| Ti                             | 351.6      | 69.3       | 114.8      | 11.3       | 14.4       | 277.9      |
| V                              | 70.6       | 173.4      | 82.8       | 8.2        | 3.4        | 46.5       |
| Cr                             | 2931       | 2879       | 3309       | 616        | 47         | 704        |
| Со                             | 77.4       | 102.5      | 61.8       | 74.3       | 181.1      | 42.6       |
| Ni                             | b.d.l.     | 2244       | 2795       | 3079       | b.d.l.     | 619        |
| Cu                             | 7.7        | 64.3       | 0.9        | 2.7        | 2.8        | 6.6        |
| Zn                             | 22         | 73         | 16         | 50         | 15         | 17         |
| As                             | b.d.l.     | 0.83       | 0.13       | 0.27       | 0.13       | 0.13       |
| Rb                             | 0.409      | 0.107      | 0.576      | 0.073      | n.d.       | 0.059      |
| Sr                             | 0.594      | 1.458      | 0.470      | 1.149      | 0.999      | 3.190      |
| Ŷ                              | 1.306      | 3.090      | 0.145      | 0.200      | 0.255      | 0.200      |
| Zr                             | 0.441      | 0.283      | 0.083      | 0.110      | 0.225      | 0.387      |
| ND                             | 0.005      | 0.087      | 0.005      | 0.014      | 0.071      | 0.006      |
| SD                             | D.d.I.     | 0.13       | 0.16       | 0.01       | 0.04       | 0.02       |
| CS<br>Po                       | 0.069      | 0.038      | 0.302      | 0.019      | 0.170      | 0.020      |
| Da                             | 0.397      | 0.451      | 0.1029     | 2.700      | 4.050      | 2.010      |
| La                             | 0.0102     | 0.0625     | 0.1026     | 0.0565     | 0.0605     | 0.0134     |
| Dr.                            | 0.0061     | 0.0730     | 0.1113     | 0.0858     | 0.2287     | 0.0290     |
| Nd                             | 0.0749     | 0.5520     | 0.0775     | 0.0236     | 0.0715     | 0.0003     |
| Sm                             | 0.0552     | 0.3320     | 0.0152     | 0.0103     | 0.0528     | b.d.1      |
| Eu                             | 0.0221     | 0.0623     | 0.0067     | 0.0090     | 0.0269     | 0.0022     |
| Gd                             | 0.1186     | 0.3600     | 0.0286     | 0.0276     | 0.0735     | 0.0198     |
| Th                             | 0.0266     | 0.0761     | 0.0022     | 0.0036     | 0.0115     | 0.0032     |
| Dy                             | 0 2070     | 0 5630     | 0.0246     | 0.0314     | 0.0587     | 0.0226     |
| Но                             | 0.0453     | 0.1209     | 0.0052     | 0.0062     | 0.0155     | 0.0066     |
| Er                             | 0.1592     | 0.3830     | 0.0152     | 0.0157     | 0.0340     | 0.0380     |
| Tm                             | 0.0250     | 0.0631     | 0.0025     | 0.0038     | 0.0082     | 0.0085     |
| Yb                             | 0.1760     | 0.4270     | 0.0238     | 0.0291     | 0.0405     | 0.0790     |
| Lu                             | 0.0293     | 0.0752     | 0.0045     | 0.0072     | 0.0093     | 0.0187     |
| Hf                             | 0.0403     | 0.0168     | 0.0086     | 0.0030     | 0.1184     | 0.0144     |
| Та                             | n.d.       | 0.0100     | n.d.       | n.d.       | 0.0168     | 0.0013     |
| РЬ                             | 0.039      | 0.090      | 0.073      | 0.354      | 0.627      | 0.183      |
| Th                             | b.d.l.     | 0.041      | 0.007      | 0.023      | 0.197      | 0.014      |
| U                              | 0.006      | 0.003      | 0.015      | 0.041      | 0.057      | 0.005      |
|                                |            |            |            |            |            |            |

(continued on next page)

#### F. Deschamps et al. / Chemical Geology 312–313 (2012) 93–117

 Table 4 (continued)

| Sample                         | RD 36A       | RD 36A        | RD 8E         | RD 8E         |
|--------------------------------|--------------|---------------|---------------|---------------|
|                                | Wedge        | Wedge         | Abyssal       | Abyssal       |
|                                | #62          | #64           | #67           | #69           |
| Spot size                      | 122 μ        | 122 μ         | 122 μ         | 122 μ         |
| Minerals                       | Serpentine   | Serpentine    | Serpentine    | Serpentine    |
| Group                          | 3            | 3             | 1b            | 1b            |
| Primary mineral                | Onx gr.2     | Opx gr.2      | Cpx           | Срх           |
| All elements in %              | - F          | - F.: 0       | -F            |               |
| SiO <sub>2</sub>               | 42.57        | 42.22         | 45.75         | 43.40         |
| TiO <sub>2</sub>               | b.d.l.       | b.d.l.        | 0.03          | 0.06          |
| Al <sub>2</sub> O <sub>3</sub> | 0.07         | 0.03          | 1.23          | 1.01          |
| $Cr_2O_3$                      | 0.05         | b.d.l.        | 0.16          | 0.09          |
| MgO                            | 38.02        | 39.57         | 35.32         | 36.55         |
| FeO                            | 4.49         | 3.07          | 6.04          | 6.26          |
| MnO                            | 0.06         | 0.05          | 0.04          | 0.03          |
| NiO                            | 0.36         | 0.33          | 0.30          | 0.27          |
| CaO                            | 0.01         | 0.01          | 0.01          | bdl           |
| Na-O                           | bdl          | b.d1          | bdl           | b.d.l         |
| Nd <sub>2</sub> O              | b.d.         | b.d.i.        | b.d.          | 0.02          |
| K <sub>2</sub> U               | D.d.i.       | D.d.l.        | D.d.i.        | 0.02          |
| Iotal                          | 85.62        | 85.28         | 88.90         | 87.69         |
| All elements in µg/g           |              |               |               |               |
| Li                             | 1.29         | 0.43          | 0.47          | 2.04          |
| В                              | 80.8         | 27.8          | 19.8          | 16.7          |
| Ca                             | 424          | 2714          | 135           | 314           |
| Sc                             | 29.3         | 13.6          | 12.4          | 16.6          |
| Ti                             | 128.8        | 38.1          | 92.1          | 141 9         |
| V                              | 100.0        | 25.2          | 41.4          | 92.2          |
| Cr.                            | 3107         | b d l         | 610           | 5338          |
|                                | 67.0         | 67.0          | 97.0          | 05.0          |
| CO NI                          | 07.0<br>b.d. | 07.0<br>b.d.l | 67.0<br>b.d.l | 55.5<br>b.d.l |
| NI<br>Cit                      | 1.0          | D.u.i.        | 0.4           | D.u.i.        |
| Cu                             | 1.0          | 2.2           | 0.4           | 85.0          |
| Zn                             | 107          | 26            | 44            | 44            |
| As                             | 0.28         | 0.22          | 1.27          | 1.24          |
| Rb                             | 0.282        | 0.069         | 0.066         | 0.090         |
| Sr                             | 1.914        | 2.223         | 0.385         | 0.695         |
| Y                              | 0.624        | 0.775         | 0.934         | 1.237         |
| Zr                             | 0.742        | 0.503         | 1.159         | 2.820         |
| Nb                             | 0.223        | 0.184         | 0.021         | 0.017         |
| Sb                             | 0.04         | 0.09          | 0.14          | 0.20          |
| Cs                             | 0.186        | 0.022         | 0.025         | 0.040         |
| Ba                             | 8.170        | 3.890         | 0.117         | 0.133         |
| La                             | 0.1825       | 0.2229        | 0.0109        | 0.0441        |
| Ce                             | 0.7110       | 0.9880        | 0.0753        | 0.1637        |
| Pr                             | 0.0891       | 0.1641        | 0.0286        | 0.0416        |
| Nd                             | 0.4290       | 0.7000        | 0.1213        | 0.2410        |
| Sm                             | 0 1523       | 0.2340        | 0.0767        | 0.0889        |
| Eu                             | 0.0584       | 0.0546        | 0.0307        | 0.0378        |
| Gd                             | 0 1337       | 0 1690        | 0 1196        | 0.1780        |
| Th                             | 0.0358       | 0.0340        | 0.0295        | 0.0364        |
| Du                             | 0.1411       | 0.1050        | 0.1947        | 0.0304        |
| Dy                             | 0.0240       | 0.1350        | 0.0429        | 0.2403        |
| 110<br>E.                      | 0.0349       | 0.000         | 0.1152        | 0.0098        |
| EI<br>Tur                      | 0.1007       | 0.108/        | 0.1103        | 0.1482        |
| IM                             | 0.0259       | 0.0184        | 0.0219        | 0.0292        |
| YD                             | 0.1888       | 0.1341        | 0.1293        | 0.1798        |
| Lu                             | 0.0326       | 0.0183        | 0.0284        | 0.0293        |
| Hf                             | 0.1106       | 0.0306        | 0.0374        | 0.0487        |
| Ta                             | 0.0478       | 0.0164        | 0.0043        | 0.0039        |
| Pb                             | 1.375        | 0.541         | 0.151         | 0.702         |
| Th                             | 0.578        | 0.104         | 0.009         | 0.054         |
| U                              | 0.228        | 0.066         | 0.123         | 0.043         |

(continued on next page)

| Table 4 (continued)  |            |           |          |            |           |          |
|----------------------|------------|-----------|----------|------------|-----------|----------|
| Sample               | CU 56      | CU 62     | CU 62    | RD 36A     | RD 62     | RD 34C   |
|                      | #76        | #85       | #86      | #93        | #105      | #108     |
| Spot size            | 122 µ      | 122 µ     | 122 μ    | 122 μ      | 122 µ     | 122 μ    |
| Minerals             | Iron oxide | Amphibole | Chlorite | Iron oxide | Amphibole | Chlorite |
|                      | Magnetite  | Tremolite |          | Magnetite  | Mg-Hbl    | Bastite  |
| Group                | 1a         | 2         | 2        | 3          | 2         | 3        |
| All elements in %    |            |           |          |            |           |          |
| SiO <sub>2</sub>     | 0.22       | 57.87     | 31.49    | 0.04       | 45.51     | 32.73    |
| TiO <sub>2</sub>     | 0.21       | 0.03      | 0.03     | 0.63       | 0.23      | 0.04     |
| $Al_2O_3$            | 0.40       | 0.53      | 13.38    | 15.75      | 12.90     | 16.18    |
| $Cr_2O_3$            | 9.82       | 0.04      | 0.15     | 37.87      | 0.08      | 1.80     |
| MgO                  | 0.63       | 22.68     | 28.80    | 6.61       | 15.48     | 31.06    |
| FeO                  | 79.81      | 4.57      | 6.11     | 34.64      | 7.43      | 2.78     |
| MnO                  | 0.47       | 0.13      | 0.04     | 0.42       | 0.07      | 0.02     |
| NiO                  | 0.06       | 0.10      | 0.19     | 0.22       | 0.04      | 0.21     |
| CaO                  | 0.04       | 11.41     | 0.04     | b.d.l.     | 12.64     | b.d.l.   |
| Na <sub>2</sub> O    | b.d.l.     | 1.02      | 0.02     | 0.02       | 1.08      | b.d.l.   |
| K <sub>2</sub> O     | b.d.l.     | 0.09      | b.d.l.   | b.d.l.     | 0.70      | b.d.l.   |
| Total                | 91.67      | 98.48     | 80.26    | 96.20      | 96.16     | 84.82    |
| All elements in ug/s | σ          |           |          |            |           |          |
| Li                   | 0.04       | 0.32      | 1.77     | 0.07       | 2.36      | 1.53     |
| B                    | 0.3        | 9.0       | 3.4      | 0.1        | 5.4       | 31.3     |
| Ca                   | 12         | 93104     | 5756     | 8          | 104089    | 7563     |
| Sc                   | 0.1        | 35.0      | 7.6      | b d l      | 43.7      | 20.8     |
| Ti                   | 89.2       | 168.2     | 65.5     | 16.5       | 1587.0    | 133.6    |
| V                    | 24.2       | 63.6      | 108.3    | 17.8       | 201.6     | 51.1     |
| Cr                   | 3830       | 321       | 2371     | 1743       | 427       | 2251     |
| Co                   | 23.7       | 43.9      | 847      | 40         | 49.8      | 873      |
| Ni                   | bdl        | bdl       | bdl      | hdl        | h d l     | 1266     |
| Cu                   | 211.8      | 0.2       | 15       | 0.1        | 0.6       | 24       |
| Zn                   | 118        | 29        | 58       | 33         | 8         | 49       |
| As                   | bdl        | 0.15      | 0.19     | 0.02       | 0.47      | 0.29     |
| Rh                   | 0.013      | 0.194     | 0.277    | 0.030      | 6.010     | 0.137    |
| Sr                   | 0.014      | 57 340    | 3,950    | 0.023      | 133 410   | 5 120    |
| V                    | 0.007      | 12 880    | 0.492    | 0.001      | 6 370     | 0.595    |
| 7r                   | 0.008      | 1 402     | 0.432    | 0.119      | 8 620     | 30 140   |
| Nb                   | 0.003      | 0.051     | 0.078    | 0.004      | 0.306     | 0 1 1 9  |
| Sh                   | b.005      | 0.06      | 0.02     | 0.01       | 0.09      | 0.02     |
| Cs.                  | 0.001      | 0.015     | 0.270    | 0.003      | 0.028     | 0.02     |
| Ba                   | 0.029      | 0.256     | 0.826    | 0.106      | 104 130   | 5 100    |
| la                   | 0,0060     | 0.0937    | 0.0901   | 0.0109     | 0.8630    | 0.4700   |
| Ce                   | 0.0748     | 1 1170    | 0 1479   | 0.0313     | 2 8340    | 1 4350   |
| Pr                   | 0.0098     | 0.2440    | 0.0230   | 0.0084     | 0.4610    | 0 1970   |
| Nd                   | 0.0027     | 1 8630    | 0.4210   | 0.0229     | 2 2890    | 0.8260   |
| Sm                   | 0.0010     | 1 0850    | 0.0637   | 0.0014     | 0,9000    | 0 1210   |
| Eu                   | 0.0026     | 0.2103    | 0.0313   | 0.0012     | 0 3000    | 0.0609   |
| Gd                   | 0.0026     | 1 8660    | 0.0803   | 0.0009     | 1 3010    | 0 1210   |
| Th                   | 0.0007     | 0.3610    | 0.0290   | 0.0004     | 0.1969    | 0.0152   |
| Dv                   | 0.0019     | 2 7300    | 0.1064   | 0.0006     | 1 3480    | 0.0132   |
| Но                   | 0.0003     | 0.5520    | 0.0304   | 0.0004     | 0.2587    | 0.0273   |
| Er                   | 0.0012     | 1 5250    | 0.0837   | 0.0003     | 0.6460    | 0.0275   |
| Tm                   | 0.0010     | 0 1988    | 0.0197   | 0.0003     | 0.0835    | 0.0114   |
| Yh                   | 0.0012     | 1 1800    | 0.0712   | 0.0004     | 0.4700    | 0.0114   |
| In                   | 0.0003     | 0.1506    | 0.0149   | 0.0007     | 0.0640    | 0.1000   |
| Hf                   | 0.0024     | 0.1558    | 0.0488   | 0.0025     | 0.3660    | 0.0202   |
| Та                   | 0.0024     | 0.0167    | 0.0100   | 0.0023     | 0.0154    | 0.0118   |
| Ph                   | 0.029      | 0.980     | 0.181    | 0.017      | 0.964     | 0.386    |
| Th                   | b.d.l      | 0.255     | 0.047    | 0.008      | 0.071     | 0.145    |
| U                    | 0.027      | 0.046     | 0.367    | 0.003      | 0.045     | 0.145    |
| 5                    | 0.027      | 0.000     | 0.507    | 0.000      | U.U.J     | 0.002    |

Dominican Republic display two types of patterns as already observed with REE patterns: LREE-depleted patterns (sample RD 94) are also less enriched in all elements but remain U–Pb rich.

and, to a lesser extent, in Sb compared to the mixture of lizardite/ chrysotile in low-grade subducted samples (Group 1a) and in mantle wedge serpentinites (Group 3). We note the particular case of Li  $(0.1-4.6 \,\mu\text{g/g})$  which is on average depleted compared to PM values.

Some fluid-mobile elements, such as B (2–120  $\mu$ g/g), As (0.1–2.4  $\mu$ g/g), and Sb (0.01–0.6  $\mu$ g/g) are moderately to highly enriched compared to Primitive Mantle values (from 2 up to 400 times PM values; McDonough and Sun, 1995) in all groups and for both locations (Fig. 7). Nevertheless, it appears in this context that antigorite from high-grade subducted samples (Group 1b) are slightly enriched in As,

#### 4.3.2. Amphiboles–pyroxenes

Amphiboles were analyzed in the two cumulates (Group 2; Fig. 8): CU 62 which is mainly composed of tremolite and RD 62 which is dominated by magnesio-hornblende. Trace elements are discriminating



**Fig. 2.** a) and b) Chondrite-normalized bulk rock REE patterns for serpentinites from Cuba and Dominican Republic. d) and e) Primitive Mantle-normalized spidergrams. All samples are enriched in Cs, U and Pb, even sample RD 57, a serpentinized peridotites which preserves relics of primary minerals. Symbols in inset. Abbreviation: MW = Mantle wedge; S. = Subducted (oceanic lithosphere).c) and f) Reference plots. In both diagrams, patterns from abyssal mantle peridotites (gray field; Godard et al., 2008), impregnated abyssal mantle peridotites (gray patterns; Paulick et al., 2006), and serpentinites from hydrated mantle wedge (dark field: Tso Morari, Himalaya, Deschamps et al., 2010; dotted field: Mariana forearc, Savov et al., 2005) are shown for comparison. Chondrite and Primitive Mantle normalizing values were taken from McDonough and Sun (1995).

between the two groups: tremolites are LREE depleted  $(0.065 < La_N/Yb_N < 0.134)$  whereas Mg-hornblendes are HREE depleted  $(1.4 < La_N/Yb_N < 4.8;$  Fig. 8 a, b). Cumulate RD 62 in which the Mg-hornblendes were analyzed was sampled next to garnet peridotites, although the structural relationships between these rock types were difficult to establish in the field (Hattori et al., 2010). Nevertheless, the strong HREE depletion could point to a formation or re-equilibration of these amphiboles in the garnet stability field.

Tremolite are characterized by a strong Eu ( $0.38 < Eu_N/Eu_N^* < 0.56$ ), Ba, Nb and Zr depletion, a slight enrichment in MREE, Pb, Th, Cs and strong enrichment in U. The bulk rock geochemistry of sample CU 62 (Fig. 2a) is similar and appears mainly inherited from tremolite (which represents ~60% of the sample volume). Mg-hornblendes from RD 62 are HFSE depleted and present relative enrichment in Rb, Ba, U, Pb and Sr. Their compositions plot in the depleted part of the field defined on the REE diagrams by amphiboles from ODP Site 920-MARK zone (Gillis and Meyer, 2001) and present similarities with amphiboles from talc-tremolite schists drilled in Atlantis Massif (Expedition IODP 304-305; Andreani, pers. com.).

Both amphiboles present enrichments in As  $(0.05-1.40 \ \mu g/g)$  and Sb  $(0.01-0.84 \ \mu g/g)$  close to those observed for serpentine phases. Li is enriched in amphibole  $(0.32-2.74 \ \mu g/g)$  compared to serpentine phase whereas B  $(3.93-9.33 \ \mu g/g)$  is less concentrated, but still higher than Primitive Mantle value. Magnesio-hornblende from sample RD 62 are enriched in Li  $(1.38-2.74 \ \mu g/g)$ , B  $(5.3-9.3 \ \mu g/g)$ , As  $(0.41-1.40 \ \mu g/g)$  and Sb  $(0.05-0.33 \ \mu g/g)$  compared to tremolite from sample CU 62 (Li,  $0.32-1.52 \ \mu g/g$ ; B,  $3.9-9.2 \ \mu g/g$ ; As,  $0.05-0.15 \ \mu g/g$ ; Sb,  $0.01-0.07 \ \mu g/g$ , one analysis at  $0.84 \ \mu g/g$ ).

Two analyses of orthopyroxene with enstatite composition are also reported (Fig. 8 a, b). They present U-shape REE patterns but remain relatively close to the chondritic values, with slight enrichments in Ba, Th and U. Note the convergent characteristics between these orthopyroxenes and serpentine minerals derived from primary orthopyroxenes (Figs. 4c, d and 5d, e). Unfortunately, it was not possible during this study to analyze systematically the associated primary phases in serpentinite samples due to the strong alteration experienced by our samples and the size of relict phases, too small compared to the spot size.

#### 4.3.3. Chlorites

Chlorites (clinochlore) were also analyzed in two samples (cumulate CU 62 and serpentine RD 34C). REE patterns are relatively homogeneous in term of MREE and HREE (from Sm to Lu), but differ strongly for LREE:  $0.08 < La_N/Sm_N < 0.9$  for sample CU 62 and  $2.4 < La_N/Sm_N < 4.8$  for sample RD 34C. Both extended patterns are dominated by Cs, Th, U, and Pb positive anomalies. Chlorite is enriched in As ( $0.07-0.73 \mu g/g$ ), Sb ( $0.02-0.06 \mu g/g$ ), and B ( $2.5-31.26 \mu g/g$ ) compared to Primitive Mantle values (McDonough and Sun, 1995).

#### 4.3.4. Iron oxides

Iron oxides (magnetites) are characterized by very low REE concentrations and for most elements, but show relative enrichments in U and Pb (from 0.1 PM to PM values). Concentrations in FME for iron oxides are lower than observed values for serpentine phases. The concentrations of B ( $0.007-0.43 \ \mu g/g$ ), Li (up to  $1.12 \ \mu g/g$ ), U, Pb, Cs, and Ba are lower than the PM values, while As (up to  $0.22 \ \mu g/g$ ) and Sb (up to  $0.084 \ \mu g/g$ ) range from 0.1 to 10 times PM; note that one analysis (#89; Appendix 2) shows a concentration in As of 7.69  $\mu g/g$  which might be due to a mixed analysis between an iron oxide and an arsenide grain similar to that observed by Hattori et al. (2005).

#### 5. Discussion

The Cuban and Dominican serpentinites can be divided in two types. The first type (Group 1a and 1b) comprises the less depleted serpentinites; it is characterized by high bulk rock Al/Si ratio and low to moderate Cr# in chromite (Table 1) and it overlaps in composition



**Fig. 3.** <sup>207</sup>Pb/<sup>204</sup>Pb (a) and <sup>208</sup>Pb/<sup>204</sup>Pb (b) vs. <sup>206</sup>Pb/<sup>204</sup>Pb diagrams for Cuban serpentinites (no age correction due to the open system; 2σ errors are smaller than the size point). Solid circle is for sample representing hydrated mantle wedge (CU 63), gray circles are for subducted serpentinites (CU 24, 55, 65), and open circles represent subducted hydrated cumulative rocks (CU 62, 69). Note that sample CU 55 is lizardite-bearing serpentinites (Group 1a; see text for definition) whereas samples CU 24 and CU 65 are antigorite-bearing serpentinites (Group 1b); CU 62 and CU 69 are hydrated cumulative rocks (Group 2) and CU 63 is lizardite-bearing serpentinite from mantle wedge (Group 3; see text for discussion). Isotopic field for Atlantic MORB along the mid-Atlantic ridge between 30°N and 30°S (little gray circles; compiled from PETDB, http://www.petdb.org/science.jsp) and Northern Hemisphere Reference Line (Hart, 1984) are reported for comparison. Average composition of global subducting sediments (GLOSS; Plank and Langmuir, 1998) is shown with a white star, whereas average composition of depleted mantle (Rehkämper and Hofmann, 1997) is shown with a black star. Isotopic compositions of cretaceous arc rocks coming from the Mabujina Complex in Central Cuba (gray squares; Blein et al., 2003) and cretaceous igneous rocks from the Eastern part of Cuba (gray diamonds; Marchesi et al., 2007) are shown for comparison. In figure c (<sup>20</sup>Pb/<sup>204</sup>Pb vs. <sup>206</sup>Pb/<sup>204</sup>Pb vs. <sup>206</sup>Pb/<sup>204</sup>Pb vs. <sup>206</sup>Pb/<sup>204</sup>Pb), different isotopic fields are reported; plutonic rocks from the Northern Appalachian Mountains (North America; dotted area; Ayuso and Bevier, 1991), fields for SW Amazon craton are from Tohver et al. (2004), and isotopic field (dark gray) for sed-iments close to the trench of Lesser Antilles Arc (Carpentier et al., 2008). See text for explanations.



Fig. 4. Plots of La/Yb ratios and immobile trace elements (Sc, Y, and Ti) against Yb for serpentine phases. As shown by Deschamps et al. (2010), compatible elements and HREE allow distinguishing primary minerals. Three groups are recognized: serpentine after olivine (serp-ol; solid points and black field), serpentine after orthopyroxene (serp-opx; dark gray points and field) and serpentine after clinopyroxene (serp-cpx; open points and light gray field). Circles are Cuban samples and diamonds are Dominican samples. Samples coming from the mantle wedge (noted wedge in inset) are distinguished from samples from the subducted slab (noted subducted in inset) by a cross inside the symbol.



**Fig. 5.** Chondrite-normalized REE compositions of serpentines after olivine (a, b; black dot), after orthopyroxene (d, e; gray dot), and after clinopyroxene (g, h; open dot) in the serpentinites from Cuba and Dominican Republic (this study), compared to date from literature (c, f, i). Note the LREE-depleted composition of serpentine after orthopyroxene in sample RD 94. Symbols (in inset) for the Cuba and the Dominican Republic samples are the same as in Fig. 4. In Fig. 5c, light gray field represent olivine separates of ultramafic nodules from southeastern British Columbia, Canada (Sun and Kerrich, 1995), dotted field are for olivine from mantle wedge xenoliths from the andesitic Avacha volcano (Kam-chatka; lonov, 2010), and dark gray field represent serpentinized olivine from hydrated mantle wedge serpentinites in Tso Morari, Himalaya (Deschamps et al., 2010). In Fig. 5f, light gray (orthopyroxene) and dark gray (serpentinized orthopyroxene) fields are from Sun and Kerrich (1995) and Deschamps et al. (2010) respectively. Dotted field are for orthopyroxene from mantle wedge xenoliths from the andesitic Avacha volcano (Kamchatka; lonov, 2010). In Fig. 5i, light gray field represent compiled values for clinopyroxene ford mantle wedge xenoliths from the andesitic Avacha volcano (Kamchatka; lonov, 2010). In Fig. 5i, light gray field represent compiled values for clinopyroxene from abyssal peridotites (Johnson et al., 1990; Dick and Natland, 1996; Hellebrand et al., 2002). Chondrite normalizing values for all diagrams were taken from McDonough and Sun (1995).

with abyssal peridotites as defined by Niu (2004) and with the variously altered impregnated abyssal peridotites sampled at the Mid-Atlantic Ridge (Paulick et al., 2006) (Fig. 2a, b, c). Together with the ultramafic cumulates (Group 2), they come from structural units interpreted as sampling the relics of the subducted Atlantic oceanic lithosphere. The second type of serpentinites (Group 3) has significantly more refractory compositions with low bulk rock Al/Si ratio (<0.03; Table 1), high Cr# in chromites (>0.50), a strong depletion in moderately incompatible elements (Y, Zr and HREE), and U-shaped REE patterns, similar to those of the mantle wedge serpentinites of Tso Morari (Deschamps et al., 2010; Fig. 2a, b, c). These serpentinites were sampled in structural units interpreted as sampling part of the hydrated mantle wedge of the extinct Greater Caribbean volcanic arc.

In situ analyses of serpentine phases revealed three types of REE patterns, which were correlated with different compositions of compatible minor and trace elements (e.g. Sc, Ti; Figs. 4, 5). Following Deschamps et al. (2010), these three groups are considered as representative of the primary mineralogy of the serpentinites: serpentine after olivine, orthopyroxene, or clinopyroxene. We note that samples

having the most refractory bulk compositions, and interpreted as sampling the hydrated mantle wedge (Group 3) are dominated by serp-ol and serp-opx suggesting an initial mineralogy made of olivine and orthopyroxene. In addition, we never observed evidence of primary or altered clinopyroxenes in these samples. This observation is in agreement with the conclusion of Dick and Bullen (1984), Arai (1994) and Arai and Ishimaru (2008) about the refractory nature of peridotites from the mantle wedge due to high degrees of partial melting. In contrast, all subducted serpentinites are characterized by the occurrence of serpentinized pyroxenes (serp-opx and serp-cpx). Yet, in spite of these differences in modal compositions, the trace element composition of the serpentine minerals doesn't allow distinction of subducted from mantle wedge serpentinites. This suggests that although the geochemistry of the protolith is preserved, to some extent, at the scale of the bulk rock sample, chemical exchanges do occur during hydration but probably at a very local scale. For example, serpentinized olivine (serp-ol) display relatively homogeneous trace element patterns and compositions systematically more enriched than that of depleted olivine in subduction zone environments



**Fig. 6.** Primitive Mantle normalized compositions of serpentine after olivine (a and b), serpentine after orthopyroxene (c and d), and serpentine after clinopyroxene (e and f). Symbols (in inset) for the Cuban and Dominican Republic samples are the same as in Figs. 4 and 5. In Fig. 6d, two groups of orthopyroxene are distinguished in Dominican serpentinites: LREE-enriched with black lines and LREE-depleted with gray lines (Sample RD 94).Normalizing values from McDonough and Sun (1995).

(lonov, 2010; Fig. 5a, b,c), although they show good correlation with the metasomatised olivines analyzed by Sun and Kerrich (1995). Moreover, we note that the LREE content of many of the clinopyroxenes are actually lower than that of olivines. Despite the absence of primary olivine in our samples, we suggest that the LREE compositions of serp-ol could be explained by either a (L)REE-enrichment during serpentinization, or a redistribution and equilibration with the surrounding matrix composed of olivines and pyroxenes which imprint their (L)REE signature during serpentinization. This last option could explain the LREE enrichment of serp-ol to a level close to that of serp-(opx), which pleads in favor of localized homogenization processes.

While the major, minor and moderately incompatible trace element compositions of the analyzed serpentinites and serpentine minerals appear mostly dominated by the composition of their mantle and mineral protoliths, the (re-)distribution of fluid-mobile elements (FME) such as light elements (B, Li), semi volatile and chalcophile elements (As, Sb, Pb) and LILE (Sr, Rb, Cs, Ba and U) reflect the different conditions and settings during serpentinization. These elements being enriched in fluids interacting with the rock during alteration, they can be used to trace the sequence of serpentinization processes and the nature of percolating fluids, from the ridge to the subduction zone, during prograde metamorphism in the slab and the mantle wedge hydration.

# 5.1. Distribution of fluid-mobile elements in subducted serpentinites and associated cumulates

#### 5.1.1. A ridge hydrothermal imprint on subducted serpentinites

In contrast to REE and to immobile highly incompatible elements, the FME compositions of serpentine phases in subducted serpentinites



**Fig. 7.** Plots of As (a), Sb (b), Li (c), B (d), Sr (e), and Cs (f) versus Ti (µg/g) for serpentine minerals. Ti is discriminating between serpentine phases coming from mantle wedge serpentinites (low Ti, open symbols) and serpentinites sampling the subducted oceanic lithosphere (solid symbols), especially for serpentinized olivine. Compositions of serpentines from Tso Morari (hydrated mantle wedge, Deschamps et al., 2010) and from ODP Site 920-MARK Zone (Andreani et al., 2009) are also reported. Primitive Mantle values (gray stars) are from McDonough and Sun (1995).

(Group 1) do not depend on the nature of primary minerals (Figs. 7, 9). As, Sb, B and, to a lesser extent, Cs, Li, Pb and U are systematically enriched compared to Primitive Mantle values. Serpentine minerals plot in the field defined for serpentine minerals coming from ODP Site 920-MARK Zone (23°N MAR, Andreani et al., 2009) or from general subduction contexts (Kodolányi et al., 2012; Figs. 7, 9, 10), and present B-Li contents identical to those observed by Vils et al. (2008) in serpentine minerals from serpentinized peridotites from ODP Leg 209 (Holes 1272A and 1274A). On PM-normalized diagrams, As, Sb, B and, to a lesser extent, Cs, Li, Pb and U are enriched compared to all REE and to immobile highly incompatible elements; the distinct behavior of FME precludes a magmatic origin (late melt-rock interaction and refertilization) for the observed enrichments. Except for As and Sb, serpentine minerals display the same patterns as fluids sampled at ultramafic hosted hydrothermal vents along slow spreading ridges (Logatchev, Rainbow, Snake Pit; Schmidt et al., 2007). Fluid/rock interactions, hydrothermal fluxes and serpentinization are controlled by seawater-derived fluids in these environments where mantle rocks are commonly exposed at the seafloor (Escartin and Cannat, 1999; Kuhn et al., 2004). We suggest that most of the observed FME variability and enrichments observed in the subducted serpentinites result from chemical exchanges related to hydrothermal circulations during serpentinization at the ridge, and maybe during the aging of the oceanic lithosphere (Mével, 2003). The higher concentrations in chalcophile elements (As, Sb) compared to hydrothermal fluids (Fig. 9) suggest that subducted serpentinites have undergone a secondary



Fig. 8. a) Chondrite-normalized REE patterns and b) Primitive Mantle normalized compositions of primary pyroxenes (black diamonds) and amphiboles (black circles and gray diamonds) in cumulates form the subducted oceanic lithosphere. Gray field represent REE compositions of oceanic amphiboles in gabbros from ODP Site 920-MARK Zone (Gillis and Meyer, 2001).c) Chondrite-normalized REE patterns and d) Primitive Mantle normalized compositions of chlorite. See text for explanations.Normalizing values for all diagrams were taken from McDonough and Sun (1995).

addition of these elements, maybe during subduction; this point is discussed in Section 5.2.

The content of fluid-mobile elements is 10 to 100 times higher in the serpentine phases than in of seawater-derived hydrothermal fluids (Schmidt et al., 2007). This feature can be explained by high fluid/rock ratios (~20 up to  $10^6$ ) during serpentinization. The Sr isotope study of the Cuban samples indicated also that these samples had undergone high water/rock ratios during serpentinization (1 to 100;  $0.70365 < {}^{87}Sr/{}^{86}Sr_{(120 Ma)} < 0.70776$ ; Hattori and Guillot, 2007). These values are consistent with those typically obtained on abyssal serpentinites (e.g., Delacour et al., 2008), and suggest that serpentinites can be formed in a fluid dominated environment at ridges (Paulick et al., 2006).

No correlation exists between the estimated water content of the analyzed serpentine phases and their FME contents. We propose that, in spite of their complete hydration and the impossibility to incorporate more water, serpentinites are still infiltrated by fluids in chemical disequilibrium and the serpentine minerals continue to equilibrate with these fluids and to incorporate FME until equilibrium is reached. This hypothesis is in agreement with the relative homogeneity of FME compositions in serpentine phases from the different studied locations. In particular, we do not observe any significant difference between subducted (Groups 1a and b) and mantle wedge (Group 3) serpentinites, except for B, As and Sb (see Discussion sections 5.2 and 5.3). Furthermore, we note that FME enrichments appear to occur up to a threshold, probably due to the structure of serpentine minerals. This point is especially valid for boron compositions; we note a maximum uptake of B close to 100 µg/g, which is in agreement with those observed for oceanic serpentines (up to 139 µg/g B; Bonatti et al., 1984; Vils et al., 2008) and for forearc serpentines (up to  $200 \,\mu g/$ g; Deschamps et al., 2010; Pabst et al., 2011; Kodolányi et al., 2012). Thus, due to this maximum storage capacity, boron is enriched by a factor of ~10 in serpentine compared to hydrothermal fluids, whereas As and Sb seem to reach higher values (~100 times).

#### 5.1.2. Incorporation of fluid-mobile elements in serpentines

In spite of concentrations sometimes lower than PM values, U, Pb and, to a lesser extent, Cs are 10 to 100 times enriched in serpentine minerals, especially in those derived from primary pyroxenes, compared to hydrothermal fluids from oceanic environments (Fig. 9). This behavior is similar to that observed for Sb, As, and B, which are significantly enriched in serpentinites and associated serpentine phases compared to PM values (Fig. 9). In contrast, lithium presents, with a few exceptions (up to 2 times PM values), values systematically lower than those of PM for all groups of serpentine minerals (Fig. 10c) indicating a stronger loss in Li than in B and other FME. This behavior is similar to that observed by Vils et al. (2008) in serpentinized abyssal peridotites, where primary minerals (olivine and pyroxene) present higher Li concentrations than serpentine minerals. It is also consistent with the observation made on some hydrothermal fields where measured fluids are selectively enriched in Li, Sr and Rb but depleted in B compared to seawater (Schmidt et al., 2007).

Previous works on major elements have shown preferential loss of Ca during serpentinization (Miyashiro et al., 1969; Coleman and Keith, 1971; Komor et al., 1985; O'Hanley, 1996), favoring the formation of secondary carbonates. Sr has the same behavior as Ca and is preferentially concentrated in fluids. Lithium, which is characterized by a large ionic radius (0.76 Å) will be incorporated partly in the octahedral site and also in chrysotile core (Wunder et al., 2010), but seems to be mainly lost during serpentinization. The same conclusions can be made for Cs and Ba. On the basis of these observations, we suggest that the incorporation of fluid-mobile elements into serpentine



**Fig. 9.** Concentrations of fluid-mobile elements normalized to Primitive Mantle (McDonough and Sun, 1995) in serpentine derived from olivine (a, b; solid dots), orthopyroxene (c, d; gray dots), and clinopyroxene (e, f; open dots). Diagram modified from Hattori and Guillot (2003, 2007). The dark field (Fig. 9a–b) represents serpentinized olivine and the dark gray field (Fig. 9a–b) represents orthopyroxene from Tso Morari serpentinites (Deschamps et al., 2010). The light gray field represents either serpentine after olivine (Fig. 9a–b) or serpentine after pyroxene (Fig. 9c–f) from ODP Site 920-MARK Zone (Andreani et al., 2009), whereas the dashed field represents either mesh (serpentine after olivine; Fig. 9a–b) or basite (serpentine after pyroxene; Fig. 9c–f) from mid-ocean ridge, passive margin and forearc serpentinies (Kodolányi et al., 2012). The composition of hydrothermal fluids (Logatchev; Schmidt et al., 2007) is also reported for comparison (white stars; see text for discussion).

phases is controlled by their ionic potential defined by Railsback (2003) as the ratio charge/radius (i.e. z/r): elements with a low ionic potential (z/r<2, such as Li, Ca, Sr, Rb, Ba and Cs) are preferentially removed from the protolith and relatively enriched in percolating aqueous fluids during serpentinization, while elements with a high ionic potential (z/r>2; e.g. As, Sb, B, Pb) will be more easily incorporated into the crystal network.

# 5.1.3. Trapping of fluid-mobile elements in serpentinites during subduction-related metamorphism

Field evidence and the observed secondary mineral assemblage (chlorite, talc, tremolite) indicate that the subducted serpentinites have experienced blueschist to amphibolite metamorphism. Previous works on FME mobility during prograde metamorphism have demonstrated the mobility of some elements, such as As, Sb, B, Cs, during low grade metamorphism (T<350 °C) associated with subduction for metasedimentary rocks (e.g. Bebout et al., 1999, 2007). Yet we observe the same range of concentrations of these elements in the studied subducted serpentines and in abyssal serpentines sampled

near the mid-ocean ridge (Vils et al., 2008; Andreani et al., 2009) (Figs. 7, 9, 10). Considering that the FME enrichments found in abyssal serpentines sampled at the ridge are due to chemical exchanges during ridge hydrothermalism (Fig. 9), we interpret the similar compositions of abyssal and subducted serpentinites as evidence that once incorporated into serpentine phases, most of the FME stay immobile during subduction down to the lizardite/antigorite transition and probably up to 650–700 °C, temperature of the "antigorite breakdown" (Ulmer and Trommsdorff, 1995; Wunder and Schreyer, 1997; Wunder et al., 2001; Bromiley and Pawley, 2003). The lack of metamorphic olivine in the studied samples indicates that neither dehydration, nor partial dehydration occurred before the final "antigorite breakdown", in contrast to what is observed in the high-pressure serpentinites from the Betic Cordillera (Spain; Scambelluri et al., 2001a) or from the Alps (Scambelluri et al., 2001b).

Similar to Vils et al. (2011), Deschamps et al. (2011) and Kodolányi and Pettke (2011), we note a minor loss of boron during the transition chrysotile/lizardite to antigorite. However, the serpentinites sampled in Cuba and in the Dominican Republic show no evidence of a loss of



**Fig. 10.** Plots of As (a), Sb (b), Li (c), and B (d) versus Sr compositions (µg/g) for serpentine (solid circles and diamonds), chlorites (white hexagon), amphibole (gray hexagon) and iron oxides (black and white square) from Cuban and Dominican serpentinites. Serpentine from mantle wedge samples are marked with a cross inside the symbol. Compositions of serpentine (light gray field) and primary phases (white field) from ODP Site 920-MARK Zone (Andreani et al., 2009) and compositions of serpentine phases from mid-ocean ridge (Mid Atlantic ridge and Hess Deep; Dark gray field) and from passive margin (Iberia abyssal plain and Newfoundland) and forearc contexts (Mariana and Guatemala; Kodolányi et al., 2012) are also reported for comparison. Compositions of Primitive Mantle (black square) are after McDonough and Sun (1995) and depleted mantle (gray square) after Salters and Stracke (2004).

lithium or strontium in contrast to the serpentinites sampled in the Alps (Vils et al., 2011) and in Guatemala (Kodolányi and Pettke, 2011). Pelletier et al. (2008) showed that late stage metasomatism could develop during exhumation of high pressure terranes and induce secondary enrichments in fluid-mobile elements, but only over very short distances from the contact with metasediments (100-150 m). Similarly, a late FME-enrichment process could have affected the studied serpentinites and thus explain the relative enrichments in Li and Sr compared to those studied by Vils et al. (2011) and Kodolányi and Pettke (2011). However, our study was carried out mostly on serpentinites sampled at the center of large and well defined structural units, which led us to eliminate this hypothesis to explain these differences in the observed mobility of B and Li in subducted serpentinites. Alternatively, we propose that these differences may reflect the lithology and composition of the downwelling slabs (crust-dominated fast spread lithosphere vs. mantle-dominated slow spread lithosphere) and the water partial pressure during the lizardite/antigorite transition in these different subduction settings (e.g. Van Keken et al., 2011).

#### 5.2. Evidence for a second stage of serpentinization during subduction

Hattori and Guillot (2007) have shown that the Sr isotopic signature of the studied Cuban serpentinites varies between upper mantle and contemporaneous marine Sr values  $(0.70365 < {}^{87}Sr/{}^{86}Sr_{(120 Ma)} < 0.70776)$ . The highest  ${}^{87}Sr/{}^{86}Sr$  values are higher than Tertiary marine Sr values. Hattori and Guillot (2007) interpreted the occurrence of such radiogenic samples as evidence for a contribution from sediment-derived fluids in the formation of these serpentinites. Our lead isotope data and trace element data support, in part, this interpretation but reveal also a complex pattern of contamination by sediment-derived fluids.

## 5.2.1. Identification of subduction related-metasomatising fluids and geodynamic implications

Cuban serpentinites are characterized by radiogenic compositions, especially in <sup>207</sup>Pb/<sup>204</sup>Pb, typical of island arc environments (Table 3; Fig. 3a). Although the studied serpentinites derive from different protoliths and geological settings (peridotites and cumulates from the proto-Atlantic oceanic lithosphere and parts of the hydrated mantle wedge), all samples plot on a linear trend in <sup>207</sup>Pb/<sup>204</sup>Pb versus <sup>206</sup>Pb/<sup>204</sup>Pb space (Fig. 3a). We tested the possibility that this linear trend could derive from the post-emplacement decay of uranium series nuclides: the calculated age is 1.22 Ga, a value that is clearly not consistent with the Jurassic age of our samples.

When compared with arc volcanic rocks from Cuba (Blein et al., 2003; Marchesi et al., 2007), our samples plot on the same trend on

the <sup>208</sup>Pb/<sup>204</sup>Pb versus <sup>206</sup>Pb/<sup>204</sup>Pb diagram, but differ by their more radiogenic <sup>207</sup>Pb/<sup>204</sup>Pb ratios (Fig. 3a). Mixing between a depleted mantle source and the GLOSS (Global subducting sediments, Plank and Langmuir, 1998) cannot explain the trend observed for Cuban serpentinites (Fig. 3c, d) and a high <sup>207</sup>Pb/<sup>204</sup>Pb component is needed to account for the observed variations.

No preferential enrichment or particular behavior, depending on the initial protolith of serpentinites, is observed, as well as no particular trends and coupling between Pb- and Sr isotopes. We note that lizardite-bearing sample (Group 1a, CU 55) is less radiogenic that antigorite-bearing samples (Group 1b, CU 24 and CU 65) which could be explained by a stronger influence of a sedimentary-rich fluid for the latter.

The proto-Caribbean oceanic crust is inferred to have been formed in the Middle Jurassic/Early Cretaceous during the opening of a narrow oceanic basin between North and South America continents (Ross and Scotese, 1988; Morris et al., 1990; Pindell and Barrett, 1990; Sawyer et al., 1991; Meschede and Frisch, 1998; Mann, 1999). The composition of the sediments entering the subduction zone was influenced by the lithologies coming from both continents (Marchesi et al., 2007). Yet, mixing between mantle composition and an average of plutonic rocks from the Northern Appalachians Mountains representative of the North American craton (Ayuso and Bevier, 1991) or an average of sediments subducting at the level of the Lesser Antilles Arc (Carpentier et al., 2008) does not really explain the radiogenic composition of Cuban serpentinites (Fig. 3c, d).

In contrast, the studied serpentinites Pb-isotopic compositions overlap with those of the sediments from the South American continent. They are perfectly aligned along a trend defined by rocks coming from the SW Amazon craton (Tohver et al., 2004) and the field of sediments close to the trench of the Lesser Antilles Arc (Carpentier et al., 2008). For the latter, it was demonstrated that their compositions (high Pb isotopic ratios) are partially controlled by radiogenic detrital materials from the Brazilian and Guyana cratons (Carpentier et al., 2008). Acquisition of a detrital-rich Pb signature in a forearc context during formation of the Greater Carribean arc is consistent with the conclusions of Marchesi et al. (2007) on Cretaceous magmatic rocks from the Cuban paleo-island arc. We propose that the fluids that contaminated the Cuban serpentinites were enriched in Pb with high <sup>207</sup>Pb/<sup>204</sup>Pb ratios and that these fluids originated from the dehydration of sediments deriving from the South American craton. This process appears to have erased totally the initial Pb isotopic signature of the mantle protolith, especially in <sup>207</sup>Pb/<sup>204</sup>Pb versus <sup>206</sup>Pb/<sup>204</sup>Pb space.

#### 5.2.2. Arsenic and antimony: tracers of sedimentary influence

As and, to a lesser extent, Sb contents are enriched in antigorite from high-grade subducted serpentinites (Group 1b; As:  $0.41-2.37 \mu g/g$  and Sb:  $0.02-0.15 \mu g/g$ ), compared to lizardite/chrysotile from the low-grade subducted serpentinites (Group 1a; As:  $0.10-0.53 \mu g/g$  and Sb:  $0.01-0.16 \mu g/g$ ) and from the mantle wedge (Group 3; 0.13-0.31 and  $0.02-0.07 \mu g/g$  respectively). These elements are also enriched compared to fluids sampled at ultramafic hosted hydrothermal vents at ridges (Logatchev, Rainbow, Snake Pit; Schmidt et al., 2007; Fig. 9).

The trends defined by Ba and Sr vs. B (Fig. 11) for both subducted and mantle wedge serpentines suggest that these elements are equally enriched in hydrating fluids. Such enrichment could be acquired during



**Fig. 11.** Compositions of As (a), Sb (b), Ba (c), and Sr (d) versus B (µg/g) for serpentine minerals from subducted serpentinites (low-grade samples with lizardite/chrysotile: white circles; high-grade samples with antigorite: gray circles) and from mantle wedge serpentinites (solid circles). Serpentine compositions from abyssal (white diamond), passive margin (white square) and forearc (white triangle) contexts are reported for comparison (Kodolányi et al., 2012). Gray field are for serpentine minerals (mostly lizardite) from abyssal serpentinites (ODP Site 920-MARK Zone; Andreani et al., 2009). Dashed lines with arrows represent the chemical evolution of serpentine phases during hydration and associated FME enrichment. We observe clearly different distributions of As, Sb and B in subducted and mantle wedge serpentinites. Such observations indicate different fluid compositions at the origin of these serpentines (see text for explanations; errors are lower than the size point).

seawater interactions, as indicated by the observed compositions close to those observed in subduction-related serpentinites (Kodolányi et al., 2012) or in abyssal serpentinites from ODP Site 920-MARK (Andreani et al., 2009). But two different trends are observed in As vs. B and Sb vs. B diagrams. Fluids which percolate through subducted antigoritebearing-serpentinites (Group 1b) are greatly enriched in As and Sb compared to the fluids at the origin of low-grade subducted serpentinites (Group 1a) and those percolating later mantle wedge (Group 3).

As discussed in the previous section, subducted serpentinites (Group 1) acquired during subduction a lead isotopic composition typical of island arc magmas that is particularly well marked for <sup>206</sup>Pb/<sup>204</sup>Pb and <sup>208</sup>Pb/<sup>204</sup>Pb in antigorite-bearing serpentinites (Group 1b) which were subducted to greater depth. This signature suggests a secondary imprint from sediment-derived fluids. Sediments are characterized by high As and Sb concentrations (Plank and Ludden, 1992; Leeman et al., 1994; Jochum and Verma, 1996; Leeman and Sisson, 1996). The high As and Sb contents measured in antigorite-bearing serpentinites could result from a second stage of serpentinization associated with the circulation of the same sediment-derived Pb-radiogenic fluids.

The As and Sb over-enrichment in antigorite-bearing samples (Group 1b) suggests that sediment-derived fluids (As-, Sb-rich, and radiogenic) percolated through serpentinites at temperatures ranging from 250 to 400 °C corresponding to the lizardite-antigorite transition. Although limited, our data on cumulates are consistent with this scenario. The magnesio-hornblende-bearing cumulate (RD 34C) is likely to have experienced higher P–T conditions than the tremolite-bearing cumulate (CU 62); it is also enriched in As and Sb (but also in B and Li) compared to sample CU 62. It probably interacted with the same As-Sb rich sedimentary-derived fluids during subduction.

#### 5.2.3. How and where is the sedimentary signature acquired?

Different geodynamic scenarios could explain the sedimentary signature observed in the subducted serpentinites (over-enrichment in As and Sb, radiogenic compositions in Pb-isotopes).

First, fluids derived from sedimentary deposits close to the ridge could infiltrate the serpentinized mantle lithosphere during aging of the oceanic lithosphere. This model is compatible with the paleogeographic reconstitution of basin opening at that time (Pindell et al., 2005). Occurrence of sediments close to the ridge could have modified the hydrothermal signature and then the isotopic composition of abyssal peridotites. But the over-enrichment in As and Sb seems to occur at the lizardite/antigorite transition, that is at increasing P–T conditions, which is not characteristic of ridge environments and suggests that this sedimentary signature is acquired in a subduction context.

Second, aqueous fluids released by dehydration of the downwelling altered oceanic mantle, crust and sediments percolate upward through the downwelling slab and the mantle wedge. Rüpke et al. (2004) estimate that half of the 7% of water of GLOSS sediments (Plank and Langmuir, 1998) is released in the first 50 km of subduction. However, this simple model is not consistent with our observations, which indicate that the serpentinites, i.e. the lowermost part of the slab, are contaminated by sediment-derived fluids.

Third, fluids produced in the accretionary prism infiltrate through the bending faults (Fig. 12) formed at the outer rise/trench into the crust and upper mantle of subducting slabs (Savage, 1969; Kirby et al., 1996; Jiao et al., 2000; Peacock, 2001; Ranero et al., 2003, 2005). But, the highest As content is related to antigorite formation at high temperatures: this suggests that contamination by sediment-derived fluids was most efficient at temperatures of about 300 to 400 °C corresponding to the lizardite/antigorite transition.

![](_page_20_Figure_9.jpeg)

**Fig. 12.** Schematic sketch illustrating the geological context during subduction-related serpentinization of the studied samples before their exhumation. Gray point marked with 1a is for low-grade (lizardite/chrysotile) subducted serpentinites which record mainly hydrothermal serpentinization at the ridge in a slow spreading context. Gray circle marked with 1b is for high-grade subducted serpentinites (antigorite) representing also subducted abysal serpentinites but which have undergone higher P–T conditions; they experienced a secondary serpentinization while in the subduction channel, with a strong influence of sediment-derived fluids, probably during the lizardite/antigorite transition, and marked by an over-enrichment in As–Sb. White circle marked 2 represent subducted cumulates. Solid circle marked 3 is for serpentinites (lizardite/chrysotile) deriving from the hydration of the snatte wedge by pore-fluids released from lithologies constitutive of the slab; influence of sediments is very limited. See text for more details.

Fourth, contamination by sediment-derived fluids occurred at depth within the subduction channel where sediments and serpentinites are mechanically mixed and could exchange their geochemical characteristics. Bebout et al. (1999) showed that As and Sb are released from metasediments between 350 and 400 °C at 0.9–1.2 GPa (lawsonite-blueschists to epidote-blueschists transition) during prograde metamorphism. As- and Sb-rich fluids resulting from the dehydration of metasediments are good candidates for the As and Sb overenrichments observed in high-grade serpentinites. Field observations provide no evidence for or against this scenario: serpentinites from Group 1b outcrop either as (i) serpentinites constituting a matrix host-ing mafic + sedimentary rocks like in a channel (Dominican Republic, samples RD 8E and RD06 52A), or as (ii) lenses of serpentinite in a metamorphized sedimentary matrix (Cuba, sample CU 65).

We favor this last scenario for the formation of the Cuban and Dominican serpentinites as it best fits our observations (Fig. 12): pore water and FME, especially As and Sb (Bebout et al., 1999), are expelled from downgoing subducted hydrated sediments and migrate upward and laterally (Bebout and Barton, 1989) in the subduction channel beneath the forearc domain (Guillot et al., 2009 and references therein) which is controlled by mechanical and metasomatic mixing processes.

#### 5.3. Geochemical differences between mantle wedge and subducted serpentines: source and nature of hydrating fluid

As indicated previously, mantle wedge serpentinites are characterized by refractory compositions and strong depletion in moderately incompatible elements. Nevertheless, these samples are also enriched in FME due to serpentinization processes. Undoubtedly, these samples have experienced a complex history within the mantle wedge and the following scenario is proposed.

First, mantle wedge peridotites experienced partial melting triggered by the infiltration of slab-derived fluids which produced their highly refractory and Ti depleted compositions typical of peridotites sampled in subduction zone environments (e.g. Arai and Ishimaru, 2008). The analyzed serpentines have low Ti content similar to those observed in serpentines after olivine from Tso Morari serpentinites (Deschamps et al., 2010; Fig. 7). The same Ti-depletion characterizes also secondary hydrous phases, such as phlogopite and pargasite, in mantle wedge xenoliths (Arai and Ishimaru, 2008). The analyses of primary orthopyroxene (enstatite-RD 36A) and secondary chlorite (RD 34C) from mantle wedge serpentinites are characterized by U-shaped REE patterns with slight enrichment in LREE (Fig. 7a, c). Fluids released from the subducting slab into the mantle wedge are hotter ( $T \approx 300$  °C) than the fluids at the origin of subducted samples, and consequently slightly enriched in LREEs (Gammons et al., 1996) relative to HFSE which remains insoluble (Keppler, 1996). Such fluids could be responsible for the LREE enrichment in chlorite and low Ti contents observed in serpentine phases.

Second, the refractory mantle wedge peridotites are serpentinized. Due to the mantle wedge dynamics, we propose that the refractory peridotites are (1) exhumed or protruded in an upwelling movement (e.g. Saumur et al., 2010), or (2) mechanically incorporated to the subbuction channel, but are still infiltrated by slab-derived fluids. At low temperature (<350 °C) these fluids trigger serpentinization. Thus, serpentine phases (lizardite and chrysotile essentially) in mantle wedge samples (Group 3) present relatively the same range of compositions for mostly of the FME compared to the low-grade (Group 1a) and high-grade (Group 1b) subducted serpentines. However FME do not allow discriminating between the source of contaminating fluids: seawater, hydrothermal fluids or aqueous fluids released from a subducting slab, because all of them are theoretically enriched in these elements (e.g. Pearce, 1983; Tatsumi, 1986; Brenan et al., 1995; Keppler, 1996; Kogiso et al., 1997; Stalder et al., 1998; Li and Lee, 2006; Schmidt et al., 2007). Note that the sedimentary signature of mantle wedge sample CU 63 is consistent with the models of sediment dehydration into subduction zones, but this sedimentary signature is less important than that observed in antigorite-bearing serpentinites from Group 1b (Fig. 3). This suggests that contamination by sediment-derived fluids was probably minor in mantle wedge samples. Another possible scenario would be that the fluid percolates the mantle wedge as focussed fluid flow rather than pervasive fluid flow and that our sampling is not sufficient to catch the dehydration veins having a more radiogenic signature.

We note an interesting feature with B compositions (Figs. 10, 11): it appears that mantle wedge serpentines are enriched in B compared to antigorite-bearing samples and present the same enrichment as observed in lizardite-bearing subducted serpentinites. Bebout et al. (1999) have shown that B is removed from metasedimentary rocks around 200–300 °C at 0.6–0.8 GPa (lawsonite–albite to lawsonite– blueschists transition) and before As and Sb. We propose that these fluids were liberated from the slab at a depth comprised between the isotherm where dehydration of sediments occurs (T<300 °C, depth<50 km; Rüpke et al., 2004) and the isotherms marking the beginning of the stability of antigorite into the mantle wedge (isotherm>250–400 °C; Berman et al., 1986).

#### 6. Conclusions

Using bulk-rock and in situ trace element analyses coupled with Pb isotopic systematics, we distinguished three stages of serpentinization in the series of serpentinites sampled in the Cuban and Dominican Republic, each stage characterized by fluids of different origins and FME content.

- (1) Subducted serpentinites derive from a fertile mantle protolith and are associated in the field with altered ultramafic cumulates mainly composed of amphibole and chlorite. These samples are considered as relics of the subducted then exhumed slabs. In situ analyses of these serpentinites display three types of serpentines in term of REE and compatible elements reflecting primary olivine, clinopyroxene or orthopyroxene. Serpentine minerals (lizardite, chrysotile and antigorite) and hydrated phases in associated cumulate are characterized by strong enrichments in fluid-mobile elements (B, As, Sb, Li, Cs, U, Pb) close to those observed in serpentinites in abyssal environments. The subducted serpentinites are interpreted as being formed at the ridge or during aging of a mantledominated oceanic lithosphere by interaction with seawaterderived hydrothermal fluids. The similarity of the FME enrichment (with the exception of As and Sb for antigorite) observed in the serpentine phases from abyssal serpentinites and from samples coming from the subducted slab suggest that FME stay trapped in these serpentine phases during subduction. Our data suggest that this is true, down to the depth of the "antigorite breakdown" (650-700 °C) (not observed in our sampling). Except for B, no evidence of mobility of FME is observed despite prograde metamorphism.
- (2) Subducted serpentinites are divided in two groups: lizarditebearing samples and antigorite-bearing samples. High-grade serpentinites are distinguished by enriched As and, to a lesser extent, Sb compositions, as well as more radiogenic Pb isotopic ratios. Such enrichments are due to contamination by sedimentderived fluids. The sedimentary input is mainly controlled by sediments coming from South America, specifically from the Amazon craton. We propose that this signature is acquired during serpentinization in the first step of subduction (200 < T < 400 °C) during mixing between metasediments and serpentinites in the subduction channel.
- (3) Mantle wedge serpentinites derive from a highly refractory mantle protolith and serpentine phases were formed essentially from low-Ti olivine and orthopyroxene. The fluids that serpentinized

the mantle wedge present characteristics similar to those of oceanic hydrothermal fluids. We propose that the serpentinization of mantle wedge took place at around 20–25 km, in the stability field of lizardite/chrysotile (T<250–400 °C). At such depth and temperature conditions, the sediments are still releasing their pore fluids (T<200 °C), explaining the relative B-enrichment and the similarity of FME-enrichment with subducted serpentinites, while their structural water incorporated in hydrous mineral (e.g. phengite, lawsonite) remains stable.

Supplementary materials related to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2012.04.009.

#### Acknowledgments

We thank Jean-Luc Devidal (Magmas et Volcans Clermont-Ferrand) for the microprobe analyses and Adeline Besnault (LGCA Grenoble) for the help in the geochemical laboratory. Simone Pourtales and Olivier Bruguier (Géosciences Montpellier) are acknowledged for their help during LA-HR-ICP-MS analyses. We are grateful to Michel Grégoire, Marco Scambelluri and Benoit-Michel Saumur for their constructive scientific discussions. This paper has been greatly improved by L. Reisberg, M. Scambelluri and an anonymous reviewer. The research project was supported by PROCOPE grant and CNRS INSU programs.

#### References

- Abbott Jr., R.N., Draper, G., Broman, B.N., 2006. P–T path for ultrahigh-pressure garnet ultramafic rocks of the Cuaba Gneiss, Rio San Juan Complex, Dominican Republic. International Geology Review 48, 778–790.
- Agranier, A., Lee, C.-T.A., Li, Z.-X.A., Leeman, W.P., 2007. Fluid mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os sotopes in the Feather River Ophiolite, California. Chemical Geology 245, 230–241.
- Andreani, M., Godard, M., Mével, C., 2009. LA-(HR-)ICPMS study of serpentinites from ODP Site 920 (23°N MAR): insights on transfers and trace element distribution during serpentinization. Geophysical Research Abstracts EGU 2009 EGU2009-13248.
- Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191–204.
- Arai, S., Ishimaru, S., 2008. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology 49 (4), 665–695.
- Auzende, A.-L., Devouard, B., Guillot, S., Daniel, I., Baronnet, A., Lardeaux, J.-M., 2002. Serpentinites from Central Cuba: petrology and HRTEM study. European Journal of Mineralogy 14, 905–914.
- Ayuso, R.A., Bevier, M.L., 1991. Regional differences in Pb isotopic compositions of feldspars in plutonic rocks of the Northern Appalachian Mountains, U.S.A., and Canada: a geochemical method of terrane correlation. Tectonics 10 (1), 191–212.
- Barnes, J.D., Straub, S.M., 2010. Chlorine stable isotope variations in Izu-Bonin tephra: implications for serpentinites subduction. Chemical Geology 272, 62–74.
- Bebout, G.E., Barton, M.D., 1989. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology 17, 976–980.
- Bebout, G.E., Ryan, J.G., Leeman, W.P., Bebout, A.E., 1999. Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth and Planetary Science Letters 171, 63–81.
- Bebout, G.E., Bebout, A.E., Graham, C.M., 2007. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology 239, 284–304.
- Berman, R.G., Engi, M., Greenwood, H.J., Brown, T.H., 1986. Derivation of internallyconsistent thermodynamic data by the technique of mathematical programming: a review with application to the system MgO–SiO<sub>2</sub>–H<sub>2</sub>O. Journal of Petrology 27, 1331–1364.
- Blein, O., Guillot, S., Lapierre, H., Mercier de Lépinay, B., Lardeaux, J.-M., Millan Trujillo, G., Campos, M., Garcia, A., 2003. Geochemistry of the Mabujina Complex, Central Cuba: implications on the Cuban cretaceous arc rocks. Journal of Geology 111, 89–101.
- Bodinier, J.-L., Godard, M., 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Carlson, R.W. (Ed.), Treatise on Geochemistry. : Treatise on Geochemistry, vol. 2: Mantle and Core. Elsevier Science Ltd., pp. 103–170.
- Bodinier, J.-L, Vasseur, G., Vernières, J., Dupuy, C., Fabriès, J., 1990. Mechanism of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology 31, 597–628.
- Bonatti, E., Lawrence, J.R., Morandi, N., 1984. Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron content. Earth and Planetary Science Letters 70, 88–94.
- Brenan, J.M., Shaw, H.F., Ryerson, F.J., 1995. Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature 378, 54–56.

- Bromiley, G.D., Pawley, A.R., 2003. The stability in the systems MgO–SiO<sub>2</sub>–H<sub>2</sub>O (MSH) and MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O (MASH): the effects of Al<sup>3+</sup> substitution on highpressure stability. American Mineralogist 88, 99–108.
- Burke, K., 1988. Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences 16, 201–230.
- Cannat, M., Mével, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P., Belarouchi, A., Dubuisson, G., Humler, E., Reynolds, J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the the Mid-Atlantic Ridge (22°–24°N). Geology 23, 49–52.
- Carlson, R.L., 2001. The abundance of ultramafic rocks in Atlantic Ocean crust. Geophysical Journal International 144, 37–48.
- Carpentier, M., Chauvel, C., Mattielli, N., 2008. Pb–Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth and Planetary Science Letters 272, 199–211.
- Chauvel, C., Bureau, S., Poggi, C., 2011. Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostandards and Geoanalytical Research 35, 125–143.
- Coleman, R.G., Keith, T.E., 1971. A chemical study of serpentinization—Burro Mountain, California. Journal of Petrology 12 (2), 311–328.
- Delacour, A., Früh-Green, G.L., Frank, M., Gutjahr, M., Kelley, D.S., 2008. Sr- and Ndisotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chemical Geology 254, 19–35.
- Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., Hattori, K.H., 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology 269, 262–277.
- Deschamps, F., Guillot, S., Godard, M., Andreani, M., Hattori, K.H., 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23, 171–178.
- Dick, H.J.B., 1989. Abyssal peridotites, very-slow spreading ridges and ocean ridge magmatism. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society of London Special Publications, 42, pp. 71–105.
- Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54–76.
- Dick, H.J.B., Natland, J.H., 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mével, C., Gillis, K.M., Meyers, P.S. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 147, pp. 103–134.
- Dolan, J.F., Mullins, H.T., Wald, D.J., 1998. Active tectonics of the north-central Caribbean; oblique collision, strain partitioning, and opposing subducted slabs. In: Dolan, J.F., Mann, P. (Eds.), Active Strike–Slip and Collisional Tectonics of the Northern Caribbean: Geological Society of America Special Paper, 326, pp. 1–61.
- Draper, G., Nagle, F., 1991. Geology, structure, and tectonic development of the Rio San Juan Complex, northern Dominican Republic. Geological Society of America Special Paper 262, 77–95.
- Escartin, J., Cannat, M., 1999. Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zone (Mid-Atlantic Ridge, 14°–16.5°N). Earth and Planetary Science Letters 171, 411–424.
- Evans, B.W., 1977. Metamorphism of Alpine peridotite and serpentinite. Annual Review of Earth and Planetary Sciences 5, 397–447.
- Galer, S.J.G., Abouchami, W., 1998. Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineralogical Magazine 62A, 491–492.
- Gammons, C.H., Wood, S.A., Williams, A.E., 1996. The aqueous geochemistry of rare earth elements and yttrium: VI. Stability of neodymium chloride complexes from 25 to 300 degrees C. Geochimica et Cosmochimica Acta 60, 4615–4630.
- Garciá-Casco, A., Torres-Roldán, R.L., Iturralde-Vinent, M.A., Millán, G., Nunez Cambra, K., Lázaro, C., Rodriguez Vega, A., 2006. High pressure metamorphism of ophiolites in Cuba. Geologica Acta 4, 63–88.
- García-Casco, A., Iturralde-Vinent, M.A., Pindell, J., 2008. Latest Cretaceous collision/ accretion between the Caribbean Plate and Caribeana: origin of metamorphic terranes in the Greater Antilles. International Geology Review 50, 781–809.
- Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Trommsdorff, V., Alard, O., Bodinier, J.-L., Godard, M., 2005. Enrichment of HFSE in chlorite–harzburgite produced by high-pressure dehydration of antigorite–serpentinite: implications for subduction magmatism. Geochemistry, Geophysics, Geosystems 6 (1), http:// dx.doi.org/10.1029/2004GC000791.
- Gillis, K.M., Meyer, P.S., 2001. Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles. Geochemistry, Geophysics, Geosystems 2000GC000087.
- Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., 2008. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth and Planetary Science Letters 267, 410–425.
- Godard, M., Awaji, S., Hansen, H., Hellebrand, E., Brunelli, D., Johnson, K., Yamasaki, T., Maeda, J., Abratis, M., Christie, D., Kato, Y., Mariet, C., Rosner, M., 2009. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters 279 (110), 122.
- Guillot, S., Hattori, K., Agard, P., Schwartz, S., Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts: a review. Special Volume, Subduction Zone Geodynamics, Frontiers in Earth Sciences, pp. 175–205.
- Hart, S.R., 1984. A large-scale isotopic anomaly in the Southern Hemisphere mantle. Nature 309, 753–757.
- Hattori, K.H., Guillot, S., 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31 (6), 525–528.

- Hattori, K.H., Guillot, S., 2007. Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems 8 (9), http://dx.doi.org/10.1029/2007GC001594.
- Hattori, K., Takahashi, Y., Guillot, S., Johanson, B., 2005. Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta 69 (23), 5585–5596.
- Hattori, K.H., Guillot, S., Saumur, B.-M., Tubrett, M.N., Vidal, O., Morfin, S., 2010. Corundum-bearing garnet peridotite from northern Dominican Republic: a metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos 114, 437–450.
- Hellebrand, E., Snow, J.E., Hoppe, P., Hofmann, A., 2002. Garnet-field and late-stage refertilization in 'residual' abyssal peridotites from the Central Indian Ridge. Journal of Petrology 43 (12), 2305–2338.
- Ionov, D.A., 2010. Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. Journal of Petrology 51, 327–361.
- Ishii, T., Robinson, P.T., Maekawa, H., Fiske, R., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc, Leg 125. In: Fryer, P., Pearce, J.A., Stokking, L.B., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station,TX: Ocean Drilling Program, 125, pp. 445–485.
- Iturralde-Vinent, M.A., 1994. Circum-caribbean tectonic and igneous activity and the evolution of Caribbean plate: discussion. Geological Society of America Bulletin 85, 1961–1962.
- Iturralde-Vinent, M.A., 1998. Sinopsis de la constitución geológica de Cuba. Acta Geologica Hispaniola 33, 9–56.
- Iyer, K., Rüpke, L.H., Morgan, J.P., 2010. Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers. Earth and Planetary Science Letters 296, 34–44.
- Jiao, W., Silver, P.G., Fei, Y., Prewitt, C.T., 2000. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. Journal of Geophysical Research 105, 28,125–28,138.
- Jochum, K.P., Stoll, B., 2008. Reference materials for elemental and isotopic analyses by LA-(MC)–ICP-MS: successes and outstanding needs. In: Sylvester, P. (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association Canada, pp. 147–168.
- Jochum, K.P., Verma, S.P., 1996. Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chemical Geology 130, 289–299.
- Jochum, K.P., Willbold, M., Raczek, I., Stoll, B., Herwig, K., 2005. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID–ICPMS and LA–ICPMS. Geostandards and Geoanalytical Research 29 (3), 285–302.
- John, T., Scambelluri, M., Frische, M., Barnes, J.D., Bach, W., 2011. Dehydration of subducting serpentinites: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth and Planetary Science Letters, http://dx.doi.org/ 10.1016/j.epsl.2011.05.038.
- Johnson, K.T.M., Dick, H.J.B., Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95 (B3), 2661–2678.
- Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–240.
- Kirby, S.H., Engdahl, E.R., Denlinger, R., 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout, G.E., et al. (Ed.), Subduction: Top to Bottom: Geophysical Monograph Series AGU, Washington, D.C., 96, pp. 195–214.
- Kodolányi, J., Pettke, T., 2011. Loss of trace elements from serpentinites during fluidassisted transformation of chrysotile to antigorite—an example from Guatemala. Chemical Geology 284, 351–362.
- Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S., Gméling, K., 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology 53, 235–270.
- Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters 148, 193–205.
- Komor, S.C., Elthon, D., Casey, J.F., 1985. Serpentinization of cumulate ultramafic rocks from the North Arm Mountain massif of the Bay of Islands ophiolite. Geochimica et Cosmochimica Acta 49, 2331–2338.
- Krebs, M., Maresch, W.V., Schertl, H.-P., Münker, C., Baumann, A., Draper, G., Idleman, B., Trapp, E., 2008. The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103, 106–137.
- Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279.
- Kuhn, et al., 2004. The hydrothermal field-revisited: preliminary results of the R/V Meteor cruise hydromar I (M60/3). Interridge News 13, 1–4.
- Leeman, W.P., Sisson, V.B., 1996. In: Grew, E.S., Anovitz, L.M. (Eds.), Boron: Mineralogy, Petrology and Geochemistry. Mineralogical Society of America, Washington, D.C., pp. 645–707.
- Leeman, W.P., Carr, M.J., Morris, J.D., 1994. Boron geochemistry of the Central American Volcanic Arc: constraints on the genesis of subduction-related magmas. Geochimica et Cosmochimica Acta 58, 149–168.
- Lewis, J.F., Draper, G., Bourdon, C., Bowin, C., Mattson, P.O., Maurrasse, F., Nagle, F., Pardo, G., 1990. Geology and tectonic evolution of the northern Caribbean margin. In: Dengo, G., Case, J.E. (Eds.), The Caribbean Region: Boulder, Colorado, Geological Society of America, The Geology of North America H, pp. 77–140.

- Li, Z.-X.A., Lee, C.-T.A., 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology 235, 161–185.
- Manhès, G., Allègre, C.J., Provost, A., 1984. U–Th–Pb systematics of the eucrite "Juvinas": precise age determination and evidence for exotic lead. Geochimica et Cosmochimica Acta 48, 2247–2264.
- Mann, P., 1999. Caribbean sedimentary basins: classification and tectonic setting. In: Mann, P. (Ed.), Caribbean Basins, Sedimentary Basins of the World, 4. Elsevier Science B.V., pp. 3–31.
- Mann, P., Draper, G., Lewis, J.F., 1991. An overview of the geologic and tectonic development of Hispaniola. In: Mann, P., Draper, G., Lewis, J.F. (Eds.), Geological and Tectonic Development of the North American–Caribbean Plate Boundary Zone in Hispaniola: Geological Society of America Special Paper, 262, pp. 1–28.
- Marchesi, C., Garrido, C.J., Bosch, D., Proenza, J.A., Gervilla, F., Monié, P., Rodriguez-Vega, A., 2007. Geochemistry of cretaceous magmatism in eastern Cuba: recycling of North American continental sediments and implications for subduction polarity in the Greater Antilles paleo-arc. Journal of Petrology 48 (9), 1813–1840.
- McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223–253.
- Meschede, M., Frisch, W., 1998. A plate-tectonic model for the Mesozoic and early Cenozoic history of the Caribbean plate. Tectonophysics 296, 269–291.
- Mével, C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience 335, 825–852.
- Meyerhoff, A.M., Hatten, C.W., 1968. Diapiric structures in Central Cuba. Memoir– American Association of Petroleum Geologists 8, 315–357.
- Millan, G., 1993. Evolucion de la estructura del macizo de Escambray, sur de Cuba central. Evolution of the structure of the Escambray Massif, south-central Cuba. Ciencias de la Tierra y del Espacio 21–22, 26–45.
- Millán, G., 1997. Geología del macizo metamórfico del Escambray. In: Furrazola Bermúdez, G.F., Núñez Cambra, K.E. (Eds.), Estudios sobre geología de Cuba. Centro Nacional de Información Geológica, La Habana, Cuba, pp. 271–288.
- Miyashiro, A., Shido, F., Ewing, M., 1969. Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24 and 30°N. Contributions to Mineralogy and Petrology 23, 117–127.
- Morris, A.E.L., Taner, I., Meyerhoff, H.A., Meyerhoff, A.A., 1990. Tectonic evolution of the Caribbean region; Alternative hypothesis. In: Dengo, G., Case, J. (Eds.), The Geology of North America, vol. H, The Caribbean Region, Geological Society of America, pp. 433–457.
- Navon, O., Stolper, E., 1987. Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. Journal of Geology 95, 285–307.
- Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean ridges. Journal of Petrology 45 (12), 2423–2458.
- O'Hanley, D.S., 1996. Serpentinites, records of tectonic and petrological history. Oxford Monographs on Geology and Geophysics, 34, p. 277.
- Pabst, S., Zack, T., Savov, I.P., Ludwig, T., Rost, D., Vicenzi, E., 2011. Evidence for boron incorporation into the serpentine crystal structure. American Mineralogist 96, 1112–1119.
- Paulick, H., Bach, W., Godard, M., Hoog, C.J., Suhr, G., Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology 234, 179–210.
- Peacock, S., 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 299–302.
- Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva, pp. 230–249.
- Pelletier, L., Müntener, O., Kalt, A., Vennemann, T.W., Belgya, T., 2008. Emplacement of ultramafic rocks into the continental crust monitored by light and other trace elements: an example from the Geisspfad body (Swiss-Italian Alps). Chemical Geology 255, 143–159.
- Pindell, J.L., Barrett, S.F., 1990. Geological evolution of the Caribbean Region; a plate tectonic perspective. In: Dengo, G., Case, J. (Eds.), The Geology of North America, vol. H, The Caribbean Region, Geological Society of America, pp. 405–432.
- Pindell, J.L., Draper, G., 1991. Stratigraphy and geological history of the Puerto Plata area, northern Dominican Republic. Geological and Tectonic Development of the North American–Caribbean plate boundary zone in Hispaniola: Geological Society of America Special Paper, 262, pp. 97–114.
- Pindell, J.L., Cande, S.C., Pitman III, W.C., Rowley, D.B., Dewey, J.F., LaBrecque, J.L., Haxby, W.F., 1988. A plate-kinematic framework for models of Caribbean evolution. In: Scotese, C.R., Sager, W.W. (Eds.), Tectonophysics, 155, pp. 121–138.
- Pindell, J.L., Kennan, L., Maresch, W.V., Stanek, K.P., Draper, G., Higgs, R., 2005. Platekinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonics controls on basin development in Proto-Caribbean margins. In: Avé Lallemant, H.G., Sisson, V.B. (Eds.), Caribbean-South American Plate Interactions, Venezuela, Boulder, Geological Society of America Special Paper, 394, pp. 7–52.
- Piotrowska, K., 1993. Interrelationship of the terranes in western and central Cuba. Tectonophysics 220, 273–282.
- Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediments and its consequences for the crust and mantle. Chemical Geology 145, 325–394.
- Plank, T., Ludden, J.N., 1992. Geochemistry of sediments in the Argo abyssal plain at Site 765: a continental margin reference section for sediment recycling in subduction zones. In: Gradstein, F.M., et al. (Ed.), Proceedings of the Ocean Drilling Program, Scientific results, College Station, Texas, 123, pp. 167–189.
- Railsback, L.B., 2003. An earth scientist's periodic table of the elements and their ions. Geology 31 (9), 737–740.

- Ranero, C., Morgan, J.P., McIntosh, K., Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373.
- Ranero, C., Villaseñor, A., Morgan, J.P., Weinrebe, W., 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems 6, http://dx.doi.org/10.1029/2005GC000997.
- Rehkämper, M., Hofmann, A.W., 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters 147, 93–106.
- Ross, M., Scotese, C.R., 1988. A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics 155, 139–168.
- Rüpke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., 2004. Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters 223, 17–34.
- Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5 (5), http://dx.doi.org/10.1029/2003GC000597.
- Saumur, B.-M., Hattori, K.H., Guillot, S., 2010. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic. GSA Bulletin, The Geological Society of America 122, 292–304.
- Savage, J.C., 1969. The mechanics of deep-focus faulting. Tectonophysics 8, 115–127.
- Savov, I.P., Ryan, J.G., D'Antonio, M., Kelley, K., Mattie, P., 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6 (4), http://dx.doi.org/10.1029/2004GC000777.
- Savov, I.P., Ryan, J.G., D'Antonio, M., Fryer, P., 2007. Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research 112, http://dx.doi.org/10.1029/2006JB004749.
- Sawyer, D.S., Buffler, R.T., Pilger, R.H., 1991. The crust under the Gulf of Mexico basin in Salvador. In: Salvador, A. (Ed.), The Gulf of Mexico basin, the Geology of North America. Geological Society of America, pp. 53–72. vol. J.
- Scambelluri, M., Rampone, E., Piccardo, G.B., 2001a. Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro-Tobbio high pressure ultramafites (Western Alps, NW Italy). Journal of Petrology 42 (1), 55–67.
- Scambelluri, M., Bottazzi, P., Trommsdorff, V., Vannucci, R., Hermann, J., Gômez-Pugnaire, M.T., Lôpez-Sànchez Vizcaìno, V., 2001b. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters 192, 457–470.
- Scambelluri, M., Müntener, O., Ottolini, L., Pettke, T.T., Vannucci, R., 2004a. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters 222, 217–234.
- Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., Pettke, T., 2004b. Serpentinite subduction: implications for fluid processes and trace-element recycling. International Geology Review 46 (7), 595–613.
- Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., Carvalho (de), L.M., Seifert, R., 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chemical Geology 242, 1–21.
- Schneider, J., Bosch, D., Monie, P., Guillot, S., Garcia-Casco, A., Lardeaux, J.-M., Torres-Roldan, R.L., Trujillo, G.M., 2004. Origin and evolution of the Escambray Massif (central Cuba): an example of HP/LT rocks exhumed during intraoceanic subduction. Journal of Metamorphic Geology 22, 227–247.
- Somin, M.L., Millán, G., 1981. Geology of the Metamorphic Complexes of Cuba: Moscow, USSR. Nauka Press. 218 pp. (in Russian).
- Spear, F.S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America, Monograph Series, 799.

- Stalder, R., Foley, S.F., Brey, G.P., Horn, I., 1998. Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta 62, 781–801.
- Stanek, K.P., Maresch, W.V., Grafe, F., Grevel, C., Baumann, A., 2006. Structure, tectonics and metamorphic development of the Sancti Spiritus Dome (Eastern Escambray massif. Central Cuba). Geologica Acta 4, 151–170.
- Stern, R.J., 2002. Subduction zones. Reviews of Geophysics 40 (4), 1012, http:// dx.doi.org/10.1029/2001RG000108.
- Sun, M., Kerrich, R., 1995. Rare earth element and high field strength element characteristics of whole rocks and mineral separates of ultramafic nodules in Cenozoic volcanic vents of southeastern British Columbia, Canada. Geochimica et Cosmochimica Acta 59 (23), 4863–4879.
- Tatsumi, Y., 1986. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94 (4), 4697–4707.
- Tenthorey, E., Hermann, J., 2004. Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility + supplementary data. Geology 32 (10), 865–868.
- Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B., Payolla, B.L., 2004. Terrane transfer during the Greenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters 228, 161–176.
- Tonarini, S., Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., 2007. Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas. Geochemistry, Geophysics, Geosystems 8 (9), http://dx.doi.org/ 10.1029/2006GC001508.
- Tonarini, S., Leeman, W.P., Leat, P.T., 2011. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth and Planetary Science Letters 301, 275–284.
- Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268 (5212), 858–861.
- Van Achterberg, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA–ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation ICP-MS in the Earth Science. Mineralogical Association of Canada, pp. 239–243.
- Van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., 2011. Subduction factory: 4. Depth-dependent flux of H<sub>2</sub>O from subducting slabs worldwide. Journal of Geophysical Research 116, http://dx.doi.org/10.1029/2010JB007922.
- Vils, F., Pelletier, L., Kalt, A., Müntener, O., Ludwig, T., 2008. The lithium, boron and beryllium content of serpentinized peridotites from ODP Leg 209 (sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochimica et Cosmochimica Acta 72, 5475–5504.
- Vils, F., Müntener, O., Kalt, A., Ludwig, T., 2011. Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochimica et Cosmochimica Acta 75, 1249–1271.
- Wunder, B., Schreyer, W., 1997. Antigorite: high-pressure stability in the system MgO-SiO<sub>2</sub>-H<sub>2</sub>O (MSH). Lithos 41, 213–227.
- Wunder, B., Wirth, R., Gottschalk, M., 2001. Antigorite: pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy 13, 485–495.
- Wunder, B., Deschamps, F., Watenphul, A., Guillot, S., Meixner, A., Romer, R.L., Wirth, R., 2010. The effect of chrysotile-nanotubes on the serpentine-fluid Li-isotopic fractionation. Contributions to Mineralogy and Petrology 158, 781–790.