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1 Introduction

The purpose of this paper is to review the techniques used in recent work done
by Naqvi, Sahi, and Sergel [2] to prove the positivity conjecture of interpola-
tion polynomials. The positivity conjecture for Jack polynomials was proved
over 25 years ago; the coefficients of these polynomials with respect to their
monomial expansions have non-negative integer values. Generalizing this re-
sult to interpolation polynomials relies on a reduction technique to analogous
nonsymmetric polynomials. The problem can be reduced to proving bar mono-
mials — the result of playing a combinatorial algorithm called the bar game —
have non-negative integer coefficients. We begin by reviewing some properties
of symmetric polynomials and five well-known bases for this vector space. Next,
we introduce Jack polynomials and see interpolation polynomials as a sum of a
Jack polynomial and lower degree terms. We build up to the proof strategy by
first understanding a few key tools: recursions on nonsymmetric polynomials,
intertwining operators, the dehomogenization operator, and the bar game.

2 Preliminaries

Symmetric polynomials have connections to a wide variety of topics such as
algebra, geometry, topology, graph theory, and combinatorics. This section
reviews the fundamentals of the vector space of symmetric polynomials and five
well-known bases. In particular, we will be expressing interpolation polynomials
as a linear combination of monomial symmetric polynomials and investigating
properties of their coefficients. Throughout this paper we assume the base field
for the coefficients is Q.
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2.1 Symmetric Polynomials

A symmetric polynomial is a polynomial in n variables that can be written as
a sum of terms where each term is a distinct permutation of the indices of the
variables. Applying any permutation in Sn does not change the polynomial, but
may rearrange the order of the terms. We write Λ(Xn) to denote the set of all
symmetric polynomials which forms a vector space over Q for all n ∈ N.

Example 2.1.1 The polynomial f(x1, x2, x3) = x1x2 + x1x3 + x2x3 is a sym-
metric polynomial.

Here we are working in three variables n = 3, so we must apply every per-
mutation in the symmetric group S3 and check that the polynomial remains the
same. Recall S3 = {123, 213, 321, 132, 231, 312}. By applying the permutation
π = 213 to the indices of the variables, we get f(x1, x2, x3) = x2x1+x2x3+x1x3.
By applying π = 321 we get f(x1, x2, x3) = x3x2 + x3x1 + x2x1. Applying any
permutation of S3 to the polynomial returns the same polynomial, and hence
this polynomial is symmetric.

We write π(f) to denote a permutation applied to a polynomial and de-
fine this by the permutations action on the indices of the variables. For some
permutation π ∈ Sn and some polynomial f(x1, x2, ..., xn), we have

π(f) := f(xπ(1), xπ(2), ..., xπ(n))

Example 2.1.2 If f(x1, x2, x3, x4) = 3x3x
2
4 and π = 2413, then by applying

the permutation to the subscripts of the variables we get

π(f) = f(xπ(1), xπ(2), xπ(3), xπ(4))

= 3xπ(3)x
2
π(4)

= 3x1x
2
3

Properties 2.1.3 Suppose f(Xn) and g(Xn) are polynomials in n variables, c
is constant and π, σ ∈ Sn. Then we have the following properties [1]:

(i) π(cf) = cπ(f);

(ii) π(f + g) = π(f) + π(g);

(iii) π(fg) = π(f)π(g);

(iv) (πσ)(f) = π(σ(f)).

Symmetric polynomials occur when π(f) = f for every π ∈ Sn. When
π(f) = f for some π ∈ Sn, we say f is invariant under π. Every permutation
π ∈ Sn has its own set of invariant polynomials, but the symmetric polynomials
are invariant under every permutation.

Notice that no matter how much a term of a polynomial is changed by
permuting the variables, the terms total degree does not change. Looking back
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to Example 2.1.1 we see π(f) and f are both the sum of three terms that each
have degree 2. In Example 2.1.2 we see π(f) and f are both one term of degree
3. When every term of a polynomial is exactly degree k, we say that polynomial
is homogeneous degree k and we write Λk(Xn) to denote the set of all symmetric
polynomials in n variables which are homogeneous degree k.

Example 2.1.4 Consider the symmetric polynomial

f(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3

This polynomial is a sum of three terms where each term has a total degree of
4. Therefore f ∈ Λ4(X3).

Any polynomial can be rewritten as a sum of terms arranged in order of
decreasing degree. Hence we can consider any polynomial as a sum of homoge-
neous degree k polynomials for varying k.

Example 2.1.5 The following nonsymmetric polynomial can be expressed as
a sum of homogeneous polynomials

f(x1, x2, x3, x4) = 7x2x
2
3x4 + 9x2

3x
2
4 + x3

1 + x1x2x4 + x2
2 + 15

The first two terms are degree 4, the next two terms are degree 3, there is one
term degree 2, no terms of degree 1 and one term that is constant (degree 0).
We can write f as a sum of homogeneous degree polynomials since

f = f4 + f3 + f2 + f1 + f0

where

f4 = 7x2x
2
3x4 + 9x2

3x
2
4

f3 = x3
1 + x1x2x4

f2 = x2
2

f1 = 0

f0 = 15

Notice if f is a symmetric polynomial in x1, x2, ..., xn and f = f0 + f1 + ...
is the decomposition of f into its homogeneous parts, then each fj is also a
symmetric polynomial.

2.2 Monomial Symmetric Polynomials

One way to find symmetric polynomials is to construct them from a monomial.
Given a monomial in n variables, we apply all permutations of Sn to the sub-
scripts of the variables, and take the sum of distinct terms to obtain a symmetric
polynomial.

3



Example 2.2.1 Let us construct a symmetric polynomial given the monomial

f(x1, x2, x3) = x1x
3
2

There are n = 3 variables, so we apply all permutations of the symmetric
group S3 = {123, 213, 321, 132, 231, 312}. Our new symmetric polynomial is a
sum of the distinct terms. We get

f(x1, x2, x3) = x1x
3
2 + x1x

3
3 + x2x

3
3 + x2x

3
1 + x3x

3
1 + x3x

3
2

Recall the following definitions.

Definition 2.2.2 A partition λ is a sequence of non-negative integers in weakly
decreasing order. We say λ partitions an integer k when the entries of the
partition sum to k. We write l(λ) to denote the length of a partition, the
numbers of entries in the sequence.

Definition 2.2.3 A composition η is a sequence of non-negative integers with-
out order.

We write mλ(Xn) to denote the monomial symmetric polynomial indexed
by a partition λ. Throughout this paper, entries of λ and η correspond the the
exponents of a term.

Example 2.2.4 If λ = (2, 1) and n = 3, then the monomial symmetric poly-
nomial indexed by λ is given by

m2,1(x1, x2, x3) = x1x
2
2 + x1x

2
3 + x2x

2
3 + x2x

2
1 + x3x

2
1 + x3x

2
2

Example 2.2.5 If λ = (3, 3, 1, 1) and n = 4, then the monomial symmetric
polynomial indexed by λ is given by

m3,3,1,1(x1, x2, x3, x4) = x3
1x

3
2x3x4 + x1x

3
2x

3
3x4 + x1x

3
2x3x

3
4

+ x3
1x2x

3
3x4 + x3

1x2x3x
3
4 + x1x2x

3
3x

3
4

Definition 2.2.6 A monomial symmetric polynomial is the sum of the mono-

mial
∏l(λ)

j=1 x
λj

j and all of its distinct images under the elements Sn, where l(λ)
is the length of the partition.

Note that mλ(Xn) = 0 by convention when the length of the partition ex-
ceeds the number of variables. This makes sense because, for example, if we
try to write the monomial m3,3,1,1(X3) we have x3

1x
3
2x

1
3x

1
∗ + .... We do not have

enough variables to complete the term since l(λ) = 4 > 3 = n.

The proof of the next theorem can be found in [1].
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Theorem 2.2.7 The following statements hold.

(i) If λ is a partition of k, then the monomial symmetric polynomial mλ(Xn)
is homogeneous degree k, and hence mλ(Xn) ∈ Λk(Xn).

(ii) If n ≥ k, then for all λ partitions of k, mλ(Xn) is a basis for Λk(Xn) and
dimΛk(Xn) = p(k), the number of partitions of k.

(iii) If n ≥ k, then the algebraic properties of Λk(Xn) does not depend on how
many variables we have. The dimension of Λk(Xn) is independent of n.

(iv) There is exactly one monomial symmetric polynomial in Λk(Xn) for each
partition of k.

2.3 Elementary Symmetric Polynomials

The elementary symmetric polynomials form our second basis for Λ(Xn). To
understand these polynomials, we first consider a monic function f(t) whose
roots are x1, x2, ..., xn. Then we can express f as a product of its roots

f(t) = (t− x1)(t− x2)...(t− xn)

If we multiply and expand, we get the following expression

f(t) = (1)tn

+ (x1 + x2 + ...+ xn)t
n−1

+ (x1x2 + x1x3 + ...+ x1xn + x2x3 + x2x4 + ...+ x2xn + ...+ xn−1xn)t
n−2

+ ...+ (−1)n(x1x2...xn)t
0

The elementary symmetric polynomials are those polynomials attached to
each distinct tk. The above equation can be written as

f(t) = e0t
n + e1t

n−1 + ...+ ent
0

Each ei is the sum of all products of exactly k distinct xj ’s. Note that
(−1)kek is the coefficient of tn−k.

Equivalently, we have that the ordinary generating function for the sequence
of elementary symmetric functions is given by

∞∑
n=0

ent
n =

∞∏
j=1

(1 + xjt)

We can see that the vector space Λk(Xn) contains ek. For example the set
of all homogeneous symmetric polynomials of degree 3 contains the elementary
symmetric polynomial

e3 = x1x2x3 + x1x2x4 + ...+ x1x2xn + x2x3x4 + ...+ xn−2xn−1xn
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but Λ3(Xn) does not contain e2 = x1x2+x1x3+...+x2x3+x2x4+...+xn−1xn.
We want to find a set of elementary symmetric polynomials that form a basis
for Λk(Xn). To do this, we need to define a symmetric function eλ for every
partition λ of k. If λ partitions k, then eλ ∈ Λk(Xn) and we have that Λk(Xn)
contains exactly p(k) elementary symmetric functions. For some partition λ =
(λ1, λ2, ..., λm), we have

eλ = eλ1
· eλ2

· · · eλm

Recall the monomial symmetric functions span Λk(Xn), and so any ele-
mentary symmetric polynomial ek can be written as a linear combination of
monomial symmetric polynomials mµ, where µ is also a partition of k. Now we
want to write eλ elementary symmetric polynomials partitioned by λ as a linear
combination of monomials.

Example 2.3.1 Suppose λ = (2, 1) and n = 3, then

eλ(X3) = e2,1

= e2e1

= (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

= x2
1x2 + x2

1x3 + x1x
2
2 + x1x

2
3 + x2

2x3 + x2
3x2 + 3x1x2x3

= m2,1(X3) + 3m1,1,1(X3)

Note that k = 3, and so for any n ≥ 3, the coefficients do not change. When
k is large enough, the coefficients do not depend on n as we see below:

e2,1(X4) = m2,1(X4) + 3m1,1,1(X4)

e2,1(X5) = m2,1(X5) + 3m1,1,1(X5)

e2,1(X6) = m2,1(X6) + 3m1,1,1(X6)

e2,1(Xn) = m2,1(Xn) + 3m1,1,1(Xn)

Note that if λ partitions k and λ = (k, 0, ..., 0), then we have

eλ = ek = m1k = m1,1,...,1

Recall that a Ferrer Diagram is obtained from a partition λ = (λ1, λ2, ..., λn)
by putting down a row of squares equal in number to the first entry λ1, then
immediately below it a row of squares equal in number to the next entry λ2, and
the nth row having the same number of squares as the nth term in the partition.

The following statements [1] are equivalent ways of determining the coeffi-
cients of mµ in the linear combination for some eλ, where |λ| = |µ| = k:

(i) The coefficient of mµ is the number of fillings of the Ferrer Diagram of
λ with positive integers for which the entries in each row are strictly
increasing from left to right, and each integer j appears exactly µj times.

(ii) The coefficient of mµ is the number of k×k matrices in which every entry
is 0 or 1, the sum of the entries in row m is µm for all m, and the sum of
the entries in column j is λj for all j.
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2.4 Complete Homogeneous Symmetric Polynomials

The complete homogeneous symmetric polynomials form another basis for Λ(Xn).
As the name implies, each term of a complete homogeneous symmetric polyno-
mial will be degree k and it is the sum of all possible products of xi resulting
in degree k.

Example 2.4.1 The complete homogeneous symmetric polynomials h1 and h2

in n variables are given by
h1(Xn) = x1 + x2 + ...+ xn

h2(Xn) = x2
1 + x2

2 + ...+ x2
n + x1x2 + x1x3 + ...+ x1xn + ...+ xn−1xn

We note that for every partition λ of k, there will exist a term in hk of the

form xλ1
1 xλ2

2 · · · xl(λ)
l(λ) and hence we have

hk =
∑
λ⊢k

mλ

Similar to the elementary symmetric polynomials, the complete homoge-
neous symmetric polynomials hk do not form a basis for Λk(Xn), but the com-
plete homogeneous symmetric polynomials partitioned by λ do form a basis,
where

hλ = hλ1
hλ2

· · · hλm

We can also express hλ as a linear combination of monomial symmetric
polynomials.

Example 2.4.2 Suppose k = 3, λ = (2, 1) and n = 3, then

h2,1(X3) = (x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

= (x3
1 + x3

2 + x3
3) + 2(x2

1x2 + x1x
2
2 + x2

2x3 + x1x
2
3 + x2x

2
3) + 3(x1x2x3)

= m3(X3) + 2m2,1(X3) + 3m1,1,1(X3)

There is a useful relationship between the complete homogeneous symmetric
polynomials and the elementary symmetric polynomials. Recall the generating
function for elementary symmetric polynomials is given by

E(t) =

∞∑
n=0

ent
n =

∞∏
j=1

(1 + xjt)

and the generating function for the homogeneous symmetric polynomials is given
by

H(t) =

∞∑
n=0

hnt
n =

∞∏
j=1

1

(1− xjt)

From these equations we can see thatH(t) and E(−t) are multiplicative inverses.
Proving directly that hλ is a basis for Λk(Xn) is challenging, but since we know
dim(hλ) = p(k) and we can show hλ spans Λk(Xn), we have that hλ is a basis
for Λk(Xn).
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2.5 Power Sum Symmetric Polynomials

If we consider all possible partitions of k, there are two extreme cases. One
in which λ = (1, 1, 1, ..., 1) up to k times, and the other λ = (k, 0, ..., 0). We
have seen how the elementary symmetric polynomials gives the relationship
ek = m1k , and power sum symmetric polynomials are on the other end of the
spectrum where pk = mk. The power sum symmetric polynomials partitioned
by λ form another basis for Λk(Xn), where λ partitions k and

pλ = pλ1
pλ2

· · · pλl(λ)

Example 2.5.1 The power sum symmetric polynomials and p2 and p3,1 in n
variables are given by

p2(Xn) = m2(Xn)

= x2
1 + x2

2 + ...+ x2
n

p3,1(Xn) = p3(Xn)p1(Xn)

= m3(Xn)m1(Xn)

= (x3
1 + x3

2 + ...+ x3
n)(x1 + x2 + ...+ xn)

Similarly to our other bases, if n is large enough, the coefficients of mµ are
independent of n.

2.6 Schur Symmetric Polynomials

Any term in an elementary symmetric polynomial can be represented by the
filling of a Young Tableau with rows strictly increasing from left to right. Any
term in a complete homogeneous symmetric polynomial can be represented by
the filling of a Young Tableau with rows weakly increasing. For example, the
term x2

1x
1
2x

3
4x

1
6 in e3,3,1(X7) is given by either

4
1 4 6
1 2 4 OR

4
1 2 4
1 4 6

Now we consider the filling of a Young Tableau of shape λ where columns
are strictly increasing from bottom to top, and rows are weakly increasing from
left to right. We will find that this corresponds to terms of a Schur symmetric
polynomial. If the partition is at one extreme end where λ = (1, 1, 1, ..., 1), then
this corresponds to the diagram with just one strictly increasing column and we
find that

s1k(Xn) = ek(Xn)

On the other hand, if λ = (k, 0, ..., 0) then this corresponds to one weakly
increasing row and hence

sk(Xn) = hk(Xn)
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For any partition λ, we can write sλ as a linear combination of mono-
mial symmetric polynomials where the coefficients are called Kostka numbers
Kλ,µmµ. In addition to a combinatorial interpretation of Schur polynomials
using Young Diagrams, they can also be represented as ratios of determinants.
Consider the Vandermonde matrix

V =


xn
0 xn

1 xn
2 ... xn

n

... ... ... ... ...
x2
0 x2

1 x2
2 ... x2

n

x1
0 x1

1 x1
2 ... x1

n

x0
0 x0

1 x0
2 ... x0

n

 =


xn
0 xn

1 xn
2 ... xn

n

... ... ... ... ...
x2
0 x2

1 x2
2 ... x2

n

x0 x1 x2 ... xn

1 1 1 ... 1


The determinant of the Vandermonde matrix is

det(V ) = (x1 − x2)(x1 − x3) · · · (xi − xj)

for 1 ≤ i < j ≤ n, and we note that det(V ) ̸= 0 if and only if each xi are distinct.

Before we can establish the relationship between Schur polynomials and
determinants, we need to be able to transform a given partition λ that is weakly
decreasing, into a strictly decreasing sequence. We can do this by simply adding
a strictly decreasing sequence to it. Consider the strictly decreasing sequence
δn = (n − 1, n − 2, ..., 2, 1, 0). We can add this to any partition λ of length n,
and obtain another strictly decreasing sequence.

Example 2.6.1 Take λ = (4, 4, 3, 3, 2, 1) and since l(λ) = 6, we add to it
δ6 = (5, 4, 3, 2, 1, 0) to get λ+δn = (9, 8, 6, 5, 3, 1), a strictly decreasing sequence.

We use this to express Schur polynomials as a ratio of determinants. The
numerator is the determinant of a matrix with entries in xn and exponents that
correspond to the sequences λ+ δn. The denominator is the determinant of the
Vandermonde matrix with exponents that correspond to the sequence δn.This
means we find the following relationship

sλ(Xn) = aλ+δn(Xn)/aδn(Xn)

= det(M)/ det(V )

Example 2.6.2 Suppose λ = (3, 3, 1) and n = 3, then δ3 = (2, 1, 0) and λ+δ3 =
(5, 4, 1). We have aλ+δ3(X3) = det(M) and aδ3(X3) = det(V ) where

M =

 x5
1 x5

2 x5
3

x4
1 x4

2 x4
3

x1 x2 x3

 V =

 x2
1 x2

2 x2
3

x1 x2 x3

1 1 1


Therefore

det(M) = x5
1(x

4
2x3 − x4

3x2)− x5
2(x

4
1x3 − x4

3x1) + x5
3(x

4
1x2 − x4

2x1)

det(V ) = (x1 − x2)(x1 − x3)(x2 − x3)
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After simplifying, we find the Schur symmetric polynomial partitioned by
λ = (3, 3, 1) is given by

s3,3,1(X3) = a(3,3,1)+(2,1,0)(X3)/a(2,1,0)(X3)

= det(M)/ det(V )

= x3
1x

3
2x3 + x3

1x2x
3
3 + x1x

3
2x

3
3

+ x3
1x

2
2x

2
3 + x2

1x
3
2x

2
3 + x2

1x
2
2x

3
3

= m3,3,1(X3) +m3,2,2(X3)

3 Jack Polynomials

In this section we introduce another family of symmetric polynomials that are
closely related to the Schur polynomials. Unlike the Schur polynomials, the
coefficients of Jack polynomials are not integers, but elements of the field Q(α).
Setting α = 1, the Jack polynomials specialize to Schur polynomials. Despite
this close connection, our strategy to define Jack polynomial is quite different
from the one used in Section 2 in the case of Schur polynomials. Rather than
giving a determinantal formula, we characterize Jack polynomials as eigenvec-
tors of a certain differential operator that comes from physics.

3.1 Jack polynomials as eigenfunctions of the CMS oper-
ator

The deformed Calogero–Moser–Sutherland (CMS) operators are given by

Ln,m,α = −(
∂2

∂x2
1

+ ...+
∂2

∂x2
n

)− k(
∂2

∂y21
+ ...+

∂2

∂y2n
)

+

n∑
i<j

2k(k + 1)

sin2(xi − xj)
+

m∑
i<j

2(k−1 + 1)

sin2(yi − yj)
+

n∑
i=1

m∑
j=1

2(k + 1)

sin2(xi − yj)

It is related to the Laplace–Beltrami operator used by Macdonald

L(N)
α = 2α□

1
α

N −
N∑
i=1

xi
∂

∂xi
(1)

If α is a non-negative rational number or zero, then for any partition λ where

l(λ) ≤ N there is a unique polynomial, called a Jack polynomial P
(α)
λ (Xn) that

satisfies the following [4]:

(i) P
(α)
λ (Xn) = mλ +

∑
µ<λ cλ,µmµ

(ii) P
(α)
λ (Xn) is an eigenfunction of the CMS operator L(N)

α
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Jack polynomials are eigenfunctions obtained by applying a symmetric poly-
nomial to the CMS operator. When the Jack polynomial is written as a linear
combination of monomial symmetric polynomials, the coefficients of that ex-
pansion are the eigenvalues of the system.

Looking back at the Laplace–Beltrami operator used by Macdonald (1), the
last term of this equation is the Euler Operator

N∑
i=1

xi
∂

∂xi

Note that when we apply a homogeneous degree polynomial, it returns a homo-
geneous degree polynomial.

Example 3.1.1 Let us apply Euler’s Operator to the term x1x
2
2

N∑
i=1

xi
∂x1x

2
2

∂xi
= x1x

2
2 + x2(2x1x2)

= 3x1x
2
2

Here we find the eigenfunction is x1x
2
2 and the eigenvalue is 3.

The Euler Operator distinguishes the eigenfunctions and eigenvalues. Simi-
larly, Jack polynomials are the eigenfunctions of the CMS operator. Eigenvalues
are coefficients needed to normalize the Jack polynomial. The CMS operator
gives distinct eigenvalues that form a basis, and there exists a linear transfor-
mation (scalar transformation) to the normalized basis of eigenvalues.

Interpolation polynomials P ρ
λ (Xn) are inhomogeneous symmetric polynomi-

als partitioned by λ and parameterized by ρ = (ρ1, ρ2, ..., ρn). In particular, we
study the one-parameter family where ρ = rδ and δ = (n − 1, n − 2, ..., 1, 0).
Since this family of symmetric polynomials P rδ

λ (Xn) is inhomogeneous, we can
collect all terms of highest degree and find that those top degree terms are
actually Jack polynomials.

P rδ
λ (Xn) = P

(α)
λ (Xn) + (terms of degree < |λ|)

Jack polynomials are given by P
(α)
λ (Xn) where α = 1/r. If we let r = 1,

then this gives us the Schur polynomials. Interpolation polynomials P ρ
λ (Xn)

are uniquely characterized by the vanishing property described in the following
theorem.

Theorem 3.1.2 (Thm 2.1 [2])There is a unique symmetric polynomial P ρ
λ (Xn)

of total degree |λ| = λ1 + λ2 + ...+ λn such that
(i) P ρ

λ (µ+ ρ) = 0 for all µ ∈ Pn where |µ| ≤ |λ| and µ ̸= λ
(ii) the coefficient of the symmetric monomial mµ in P ρ

λ is 1
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Example 3.1.3 Let us find the unique interpolation polynomial P ρ
λ (Xn) for

λ = (1, 1).

We have |λ| = 2, so we write all possible partitions µ such that |µ| ≤ |λ| and
µ ̸= λ. We find that

µ1 = ∅, µ2 = (1, 0), µ3 = (2, 0)

Here n = 2 and recall δ = (n − 1, ..., 1, 0), so then ρ = rδ = r(1, 0) = (r, 0).
Consider the interpolation polynomial

P
(r,0)
1,1 (X2) = x1x2

We need to verify P ρ
λ (µ+ ρ) = 0 for all µi, and P ρ

λ (µ+ ρ) ̸= 0 for µ = λ.

P1,1(µ1 + ρ) = P1,1(∅+ (r, 0)) = P1,1(r, 0) = r(0) = 0

P1,1(µ2 + ρ) = P1,1((1, 0) + (r, 0)) = P1,1((r + 1, 0)) = (r + 1)(0) = 0

P1,1(µ3 + ρ) = P1,1((2, 0) + (r, 0)) = P1,1((r + 2, 0)) = (r + 2)(0) = 0

P1,1(λ+ ρ) = P1,1((1, 1) + (r, 0)) = P1,1((r + 1, 1)) = (r + 1)(1) = r + 1 ̸= 0

Hence P
(r,0)
1,1 (X2) = x1x2 satisfies the conditions of Theorem 3.0.2, it is the

unique interpolation polynomial for λ = (1, 1).

So far we have seen that interpolation polynomials P rδ
λ can be expressed as

a sum of Jack polynomials and lower degree terms. These polynomials can be
expressed as normalized polynomials

Jrδ
λ = Jα

λ + (terms of lower degree)

where
J
(α)
λ = cλ(α)P

(α)
λ

We call Erδ
η and E

(α)
η the nonsymmetric analogues of P rδ

λ and P
(α)
λ respectively,

where η is a composition rather than a partition λ (defined in Section 2.2). We

call F rδ
η and F

(α)
η the normalized nonsymmetric analogues of Jrδ

λ and J
(α)
λ .

4 Recursions and Operators

Previous work by Knop and Sahi [3] has shown that the coefficients of J
(α)
λ

with respect to mµ belong to N[α]. Recent work by Naqvi, Yusra, and Sahi [2]
extends this result to prove the positivity conjecture of interpolation polynomials
Jrδ
λ and P rδ

λ . To do this, a few extra tools are required. This proof uses
certain recursions and intertwining properties that are used on nonsymmetric
polynomials, described in this section.

12



4.1 Generating monomials by recursion

Any monomial can be expressed recursively from a sequence of elementary trans-
positions si and affine intertwiners Φ, starting from x0 = x0

1x
0
2 · · · x0

n = 1. The
elementary transposition works on a composition η in the following way

s1(η) = s1(η1, η2, η3, ..., ηn) = (η2, η1, η3, ..., ηn)

Similarly, we can write the action of si on a function in n variables. For example
take i = 2, then

s2(f(Xn)) = f(s2(x1, x2, x3, ..., xn)) = f(x1, x3, x2, ..., xn)

The affine intertwiner Φ works on a composition η by moving the first entry to
the last position and adding 1

Φ(η) = Φ(η1, η2, η3, ..., ηn) = (η2, η3, ..., ηn, η1 + 1)

We also have that Φ works on a function in n variables by moving the last
variable to the first position and multiplying the function by that entry

Φf(x1, x2, x3, ..., xn) = xnf(xn, x1, x2, x3, ..., xn−1)

Note that Φ(η) increases the length of a composition with each recursion since
|η| will increase by 1. Also note Φ(f) increases the degree of a monomial with
each recursion since the function is multiplied by xn.

Example 4.1.1 We consider the two variable case n = 2 and our goal is to
show that f(x, y) = x4y8 can be obtained recursively.

We start with the composition η = (4, 8) and we want to write a sequence of si
and Φ such that we arrive at the zero composition in two variables (0, 0) which

13



corresponds to x0y0 = 1.

(4, 8) = Φ(7, 4)

(7, 4) = Φ(3, 7)

(3, 7) = Φ(6, 3)

(6, 3) = Φ(2, 6)

(2, 6) = Φ(5, 2)

(5, 2) = Φ(1, 5)

(1, 5) = Φ(4, 1)

(4, 1) = Φ(0, 4)

(0, 4) = Φ(3, 0)

s1(3, 0) = (0, 3)

(0, 3) = Φ(2, 0)

s1(2, 0) = (0, 2)

(0, 2) = Φ(1, 0)

s1(1, 0) = (0, 1)

(0, 1) = Φ(0, 0)

Hence we obtain the monomial x4y8 from x0y0 recursively since

(4, 8) = Φ9s1Φs1Φs1Φ(0, 0)

4.2 Generating nonsymmetric interpolation polynomials
by recursion

Theorem 4.2.1 (Thm 2.13 [2]) Nonsymmetric interpolation polynomials sat-
isfy the recursion

Erδ
ϕη = ϕ−Erδ

η , (σ−
i + cηi )E

rδ
η = dηiE

rδ
siη

where
ϕ−f(x) = xnf(xn − 1, x1, ..., xn−1), σ−

i = si − r∂i

and the scalars cηi and dηi are given by

cηi =
r

ηi − ηi+1

, dηi =

{
1 if ηi < ηi+1

1− (cηi )
2 if ηi ≥ ηi+1

These recursions suffice to generate all Erδ
η from Erδ

0 = 1.

4.3 The Dehomogenization Operator

We want to find a way to relate homogeneous and inhomogeneous polynomials,
and we can do this using the dehomogenization operator Ξ. Recall that the set
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{1, x, x2} forms a basis for P2, but so does {1 + x, 2x+ x2,−3 + 5x+ x2}. The
first basis is a set of homogeneous polynomials, whereas the second basis is a
set of inhomogeneous polynomials and there is a unique linear map that relates

them. Similarly, the homogeneous polynomials F
(α)
η and the inhomogeneous

polynomials F rδ
η are both basis for the vector space of polynomials Pn. The

dehomogenization operator Ξ is the unique linear operator that maps F
(α)
η to

F rδ
η .

Ξ(F (α)
η ) = F rδ

η

Recall F
(α)
η is the normalized version of E

(α)
η and F rδ

η is the normalized ver-

sion of Erδ
η .The operator Ψ is the unique linear operator that maps E

(α)
η to Erδ

η

where
Ψ = S−1ΞS = SΞS

and S is the sign change operator. Ξ and Ψdo not commute with Φ and si, but
we do find the following relationships

ΞΦ = Φ+Ξ, Ξsi = σ+
i Ξ

ΨΦ = Φ−Ψ, Ψsi = σ−
i Ψ

where σ+
i = si + r∂i and Φ+f(x) = xnf(xn + 1, x1, ..., xn−1).

The following propositions are proved in [2] and included here for reference.

Proposition 4.3.1 If f is a homogeneous polynomial, then Ψ(f) is character-
ized by the properties
(i)Ψ(f(x)) = f(x)+ terms of degree < deg(f)
(ii)Ψ(f(η)) = 0 for all compositions η with |η| < deg(f)

Proposition 4.3.2 The operator Ψ preserves the space of symmetric polyno-
mials.

Proposition 4.3.3 If f is a homogeneous symmetric polynomial, then Ψ(f) is
characterized by the properties
(i)Ψ(f)is symmetric
(ii)Ψ(f(x)) = f(x)+ terms of degree < deg(f)
(iii)Ψ(f(µ+ rδ)) = 0 for all partitions µ with |µ| < deg(f)

Proposition 4.3.4 The operator Ψ maps P
(α)
λ to P rδ

λ .

Proposition 4.3.5 If f is a homogeneous polynomial, then Ξ(f) is character-
ized by the properties
(i)Ξ(f(x)) = f(x)+ terms of degree < deg(f)
(ii)Ψ(f(−η)) = 0 for all compositions η with |η| < deg(f)
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Theorem 4.3.6 The operator Ξ preserves the space of symmetric polynomials

and maps J
(α)
λ to Jrδ

λ . If f is a homogeneous symmetric polynomial, then Ξ(f)
is characterized by the properties
(i)Ξ(f)is symmetric
(ii)Ξ(f(x)) = f(x)+ terms of degree < deg(f)
(iii)Ξ(f(−µ− rδ)) = 0 for all partitions µ with |µ| < deg(f)

5 The Bar Game

Given any composition η, we can create a diagram by stacking rows of boxes
where the length of each row corresponds to the entries of a composition η. If
η = (4, 5, 2, 1, 3, 2), then the associated diagram would be

where we call row 1 the uppermost row. A bar game, denoted by G(η) is of a
sequence of moves g1, g2, ...g|η|, where each move gi is called a glissade.

5.1 Performing a glissade

First identify the critical box - the rightmost and uppermost box of the diagram.
We label the critical box by X.

X

Let m be the length of a row, and let k be the row number where k = 1 is the
uppermost row. Above, the critical box has row length m = 5 and is in row
k = 2. The critical box, denoted by s[η], is given by s[η] = (k,m) = (2, 5).
Once we identify the critical box, we delete it and choose l boxes to the left of
the critical box. Move these l boxes to the end of another row - either above
and strictly left, or below and weakly left of their original position.

Note that l ≥ 0 and so there can be more than one possible game for each
composition η. We call G(η) the set of all possible bar games for the composition
η. In the previous example, suppose l = 1 (marked by ∗), since moving the box
to the end of the above row would not be strictly to the left, we can only move
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the box to a row below and weakly to the left. There are 4 possible places to
move the box.

∗ X

∗

or

∗

or

∗
or ∗

Suppose we choose the first option, then our new composition becomes η2 =
(4, 3, 3, 1, 3, 2). This completes our first glissade of this bar game, denoted G1.
We repeat this process until no boxes remain. Let us complete this example
and choose the second glissade g2 to be the deletion of the critical box and
movement of l = 2 to row 4.

∗ ∗ X ∗ ∗

∗ ∗

Let the third glissade g3 be the deletion of the critical box, and movement
of l = 0 (do not move any boxes).

X

Let glissades g4, g5, g6 be the deletion of the critical box, and movement of
l = 0 (do not move any boxes).

X
X
X
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At this point in the game, we notice that there is only one possible option
for subsequent glissades. There is no possible way to delete the critical box and
move another box above and strictly left or below and weakly left. Our only
option is to delete the critical box and make no movements, hence l = 0 for
glissades g7, ..., g17.

X
X

X
X

X

X
X

X
X

X
X

This constitutes one bar game G1 in the set of all possible bar games G(η)
where

G1 = g1, g2, ..., g17 (2)

5.2 Weight of a glissade

Now that we understand the bar game, we can use it to describe a bar monomial.
First, we need to understand the weight of a glissade and the weight of a bar
game. Recall the critical box is s[η] = (k,m) where k is the row number and m
is the length of the row. Let n be the number of rows remaining. Let l[η] be
the leg of the critical box (k,m), this is the number of rows below row k that
have length m, in addition to the number of rows above row k that have length
m− 1.Then the weight of a glissade w(g) is given by

w(g) =

{
xk + (m− 1) + r(n− 1− l[η]), l = 0

r, l > 0
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There are 17 glissades in the bar game outlined above (2). Let us calculate the
weight of each glissade.

w(g1) = r, since l > 0

w(g2) = r, since l > 0

w(g3) = x2 + (3− 1) + r(6− 1− 3) = x2 + 2 + 2r

w(g4) = x3 + (3− 1) + r(6− 1− 3) = x3 + 2 + 2r

w(g5) = x4 + (3− 1) + r(6− 1− 1) = x4 + 2 + 2r

w(g6) = x5 + (3− 1) + r(6− 1− 3) = x5 + 2 + 2r

w(g7) = x2 + (2− 1) + r(6− 1− 5) = x2 + 1

w(g8) = x3 + (2− 1) + r(6− 1− 5) = x3 + 1

w(g9) = x4 + (2− 1) + r(6− 1− 5) = x4 + 1

w(g10) = x5 + (2− 1) + r(6− 1− 5) = x5 + 1

w(g11) = x6 + (2− 1) + r(6− 1− 5) = x6 + 1

w(g12) = x1 + (1− 1) + r(6− 1− 5) = x1

w(g13) = x2 + (1− 1) + r(6− 1− 5) = x2

w(g14) = x3 + (1− 1) + r(6− 1− 5) = x3

w(g15) = x4 + (1− 1) + r(6− 1− 5) = x4

w(g16) = x5 + (1− 1) + r(6− 1− 5) = x5

w(g17) = x6 + (1− 1) + r(6− 1− 5) = x6

Definition 5.2.1 The weight of a bar game is the product of all the weights of
each glissade in that bar game.

w(G) =
∏
g∈G

w(g)

Example 5.2.2 The weight of the bar game G1 = g1, g2, ..., g17 is given by

w(G1) =
∏
g∈G

w(g)

=(x2 + 2 + 2r)(x3 + 2 + 2r)(x4 + 2 + 2r)(x5 + 2 + 2r)

(x2 + 1)(x3 + 1)(x4 + 1)(x5 + 1)x1x2x3x4x5x6

=

5∏
i=2

(xi + 2 + 2r)(xi + 1)

6∏
j=1

xj

The bar monomial denoted by xη can now be expressed as the sum of weights
of all possible bar games for the composition η.

xη =
∑

G∈G(η)

w(G)
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Example 5.2.3 Let us determine the bar monomial for the composition η =
(1, 3, 1).

There are two possible bar games for this composition.

G1 :

X X
X

X
X

G2 :

∗ X
∗ X

X
X

X

The weight of the first bar game G1 is the product of the weight of each glissade
w(g1) = x2 + (3− 1) + r(3− 1− 0) = x2 + 2 + 2r
w(g2) = x2 + (2− 1) + r(3− 1− 1) = x2 + 1 + r
w(g3) = x1 + (1− 1) + r(3− 1− 2) = x1

w(g4) = x2 + (1− 1) + r(2− 1− 1) = x2

w(g5) = x3 + (1− 1) + r(1− 1− 0) = x3

w(G1) = (x2 + 2 + 2r)(x2 + 1 + r)x1x2x3

Similarly we can calculate the weight of the second bar game G2.
w(g1) = r
w(g2) = x3 + (2− 1) + r(3− 1− 2) = x3 + 1
w(g3) = x1 + (1− 1) + r(3− 1− 2) = x1

w(g4) = x2 + (1− 1) + r(2− 1− 1) = x2

w(g5) = x3 + (1− 1) + r(1− 1− 0) = x3

w(G2) = r(x3 + 1)x1x2x3

The bar monomial xη is the sum of the weights of each bar game

x1,3,1 = x1x2x3(x2 + 2 + 2r)(x2 + 1 + r) + r(x3 + 1)x1x2x3

6 Uniqueness of bar monomials

We have now seen that given a composition, we can find an expression for the
corresponding bar monomial by playing bar games and summing their weights.
It remains to be proved that bar monomials are uniquely defined by these ex-
pressions.
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6.1 Bar monomials and the dehomogenization operator

Proving uniqueness of bar monomials uses the dehomogenization operator Ξ, by
constructing a map from the monomials indexed by composition xη = xη1

1 xη2

2 ·
· · xηn

n to the bar monomials xη. We can also do the same for partitions.

xη = Ξ(xη), mλ = Ξ(mλ)

where the expansion coefficients of the bar monomials are defined by

xη =
∑
γ

cη,γ(r)x
γ , mλ =

∑
µ

dλ,µ(r)mµ

Theorem 6.1.1 (Thm 3.11 [2]) The bar monomial xη is the unique polynomial
g(x) satisfying
(i) g(x) = xη+ terms of degree < |η|
(ii) g(−γ) = 0 if |γ| < |η|

Recall γ = γ + wγ(ρ) where wγ is the shortest permutation that sorts the
composition γ into a partition γ+ and ρ = r(n− 1, ..., 1, 0).

Example 6.1.2 Suppose n = 3 and η = (1, 3, 1). Let us use Theorem 6.0.1 to
show that the bar monomial x1,3,1 is the unique polynomial

g(x1x2x3) = x1x2x3(x2 + 2 + 2r)(x2 + 1 + r) + r(x3 + 1)x1x2x3

Expanded and simplified, we find that

g(x1x2x3) = x1x
3
2x3 + 2r2x1x2x3 + 3rx1x

2
2x3 + rx1x2x

2
3 + 5rx1x2x3

+ 3x1x
2
2x3 + 2x1x2x3

= x1,3,1 + (terms of degree < 5)

hence (i) is satisfied.

Now for (ii), we have n = 3 so ρ = rδ = r(2, 1, 0) = (2r, r, 0). We need to
write all compositions γ such that |γ| < |η| = 5.

If |γ| = 0, then γ = (0, 0, 0)
If |γ| = 1, then γ = (1, 0, 0), (0, 1, 0), or (0, 0, 1)
If |γ| = 2, then γ = (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), or (0, 0, 2)
If |γ| = 3, then γ = (1, 1, 1), (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1), (1, 2, 0),
(1, 0, 2), (0, 1, 2), or (0, 2, 1)
If |γ| = 4, then γ = (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), (3, 1, 0),
(3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 1, 3), (0, 3, 1), (4, 0, 0), (0, 4, 0), or (0, 0, 4)

Notice that the compositions (0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0),
(1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1), (2, 2, 0), and (3, 1, 0) are already sorted - they
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are partitions and so the shortest permutation to sort them is the identity per-
mutation. Hence for these γ, wγ(ρ) = (2r, r, 0) and −γ = −(γ+(2r, r, 0)). This
means for any γ with last entry 0, we have that g(−(γ + (2r, r, 0)) = 0 since
every term in g is multiplied by x3.

Let’s prove (ii) for γ = (1, 1, 1) where wγ(ρ) = ρ given that
g(x1, x2, x3) = x1x2x3(x2 + 2 + 2r)(x2 + 1 + r) + x1x2x3r(x3 + 1)

g(−((1, 1, 1) + (2r, r, 0)) = g(−2r − 1,−r − 1,−1)

= x1x2x3(x2 + 2 + 2r)((−r − 1) + (r + 1))

+ x1x2x3r(−1 + 1)

= x1x2x3(x2 + 2 + 2r)(0) + x1x2x3r(0)

= 0

Let’s prove (ii) for γ = (1, 2, 1) where wγ(ρ) ̸= ρ. We note that (1,2,1)
is not a partition and the shortest permutation that sorts this composition
into a partition is one that swaps the first and second entries. We apply this
permutation to ρ.

−γ = −(γ + wγ(ρ)) = −((1, 2, 1) + (r, 2r, 0))

Then

g(−((1, 1, 1) + (r, 2r, 0)) = g((−r − 1,−2r − 2,−1))

= x1x2x3(−2r − 2 + 2 + 2r)(x2 + 1 + r)

+ x1x2x3r(−1 + 1)

= x1x2x3(0)(x2 + 1 + r) + x1x2x3r(0)

= 0

Indeed, it can be shown that (ii) is satisfied for all compositions γ and thus
the bar monomial x1,3,1 is the unique polynomial

g(x1x2x3) = x1x2x3(x2 + 2 + 2r)(x2 + 1 + r) + r(x3 + 1)x1x2x3

The bar game gives us a tool to identify a polynomial corresponding to a
given composition η, and Theorem 6.0.1 allows us to confirm this polynomial is
the unique bar monomial xη.

7 Summary and future directions

The proof of Theorem 6.0.1 uses recursions, permutations, downwards induction
and iteration. Once it is established that bar monomials are uniquely defined
by the sum of the weights of bar games, it follows that bar monomials have
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coefficients that lie in N[α] since these weights are given by polynomials with
non-negative integer coefficients.

Nonsymmetric interpolation polynomials

F rδ
η =

∑
|γ|≤|η|

α|γ|−|η|bη,γ(α)x
γ

can be expressed as

F rδ
η =

∑
|ζ|=|η|

bη,ζ(α)x
ζ

where the nonsymmetric Jack polynomial has positive coefficients.

F (α)
η =

∑
|ζ|=|η|

bη,ζ(α)x
ζ , bη,ζ(α) ∈ N[α]

Since both Jack polynomials and bar monomials have positive coefficients,
the same must be true for F rδ

η . Using a similar argument, the normalized sym-

metric case Jrδ
λ and regular symmetric case P rδ

λ of interpolation polynomials
are shown to have positive coefficients.

One interesting topic for future research would be to investigate a natural
extension of this positivity property to a family of super-symmetric polyno-
mials called Sergeev-Veselov polynomials [5]. They are characterized by being
symmetric in m + n variables (x1, ..., xn, y1, ..., ym) which are also symmetric
in (x1, ..., xn) and (y1, ..., ym) separately. They are a one-parameter family of
symmetric polynomials and have the property that by setting x1 = y1 = t , the
parameter t disappears.
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