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Chapter 1

Spherical t-designs

The concept of a spherical t-design was first proposed by P. Deslarte in 1976 [8], and
subsequently studied extensively by Y. Hong in 1982. Later, one of the fundamental
theorems in the study of spherical t-designs (1.4.1) was proved by P. Seymour and
T. Zaslavsky in 1984 [15]. While there has been sporadic research on the subject
since then, interest in t-designs was greatly renewed due to their usefulness in the
study of quantum information, which is discussed further in the section on quantum
information (2).

This report will first discuss the history, and basic mathematical concepts of
spherical t-designs, followed by some recent results on the subject. Then a review
of basic quantum information will be given, to provide context for discussions on
unitary t-designs, leading up to the groundbreaking results of [9].

1.1 Preliminaries

We begin with the definition of a spherical t-design on Sd−1, as well as an intuition
in R3, to provide context for discussions on R2, R3, and the more general case of Rd.

Definition 1.1.1 A finite set X of points on the unit sphere Sd−1 in Rd is called a spherical
t-design if for every d-variable polynomial ft of total degree at most t, we have

1
|X| ∑

x∈X
ft(x) =

∫
S(Rd)

ft(u)dµ(u).

Mathematically, a spherical t-design is a finite set of points on the sphere which,
from an averaging point of view, is indistinguishable from the entire sphere. If one
expects averaging indistinguishability, then a natural choice would be to use vertices
of a polyhedron with plenty of symmetry, examples of which will be shown in the
following sections. In addition, a finite set of points cannot behave indistinguish-
ably with respect to averaging on all functions. Therefore it is natural to assume
boundedness of degree in 1.1.1.

Intuitively, one can think of a spherical design as an object created to behave the
same as the unit sphere, while containing less information. As a traditional sphere
is a 3-dimensional shape, it is easiest to imagine a spherical t-design in R3. If you
put a tetrahedron inside of a sphere, you lose a lot of the sphere, but you only have
to place 4 vertices onto the surface of the sphere. A cube will retain more of the
sphere, but you have twice as many vertices you must place. A dodecahedron be-
gins to resemble a sphere, but now you have 20 vertices to align with the sphere. The
mathematical value of this concept is that a sphere has infinite points, whereas these
designs can be represented with a finite number of vertices. Thus, if you had a poly-
nomial, and you wanted to take its average over the sphere, it would be much easier
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to use the set of points that are the vertices, rather than attempting to use the entire
sphere. The problem arises in attempting to construct these designs. The higher the
degree of the polynomial, the more vertices you require for the approximation to be
accurate. This is the importance of the "t" in "t-design". By 1.1.1, at some degree t,
using the points in X, the sum will cease to equal the integration. This motivates the
construction of t-designs for higher values of t.

1.2 Explicit Spherical t-designs in R2 and R3

The simplest constructions of spherical t-designs can be generated based on the fol-
lowing theorem by Bannai:

Theorem 1.2.1 (See [3].) A regular N-gon on S1 ⊂ R2 is a t-design for 1 ≤ t ≤ N − 1.

Bannai’s theorem is a partial converse to the original theorem proved by Hong:

Theorem 1.2.2 (See [10].) Let X be a spherical t-design in R2 with |X| = n. Then, when
t + 1 ≤ n ≤ 2t + 1, X is a regular n-gon.

One might find it interesting that Bannai, who will be referenced often in this re-
port, introduced Hong to spherical designs [10]. These results will not be discussed
in this paper, but it is important to note that not all t-designs on S1 are regular N-
gons. Hong also gives other classifications of t-designs. However, from this theorem
we can easily create t-designs for many values of t. One additional fact that imme-
diately follows from these theorems, especially highlighted by Bannai’s version is
this:

Corollary 1.2.3 Any t-design is a (t−1)-design.

Example 1.2.4 (Various Spherical Designs on S1) An equilateral triangle is a 1-design
and a 2-design. A square is a t-design for t ∈ {1, 2, 3}. A regular heptagon is a t-design for
t ∈ {1, 2, 3, 4, 5, 6}.

Example 1.2.5 (Graphical Representations of Spherical Designs on S1)

x

y

Figure 1: In blue, the spherical 2-design {(1, 0), (− 1
2 ,
√

3
2 ), (− 1

2 ,−
√

3
2 )}.

In red, the spherical 2-design {(0, 1), (−
√

3
2 ,− 1

2 ), (
√

3
2 ,− 1

2 )}.
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x

y

Figure 2: The spherical 3-design {(0, 1), (1, 0), (0,−1), (−1, 0)}.

In R2, spherical designs are constructed on the unit circle, which means one can
use trigonometry to easily construct their t-designs. Any set of three points 2π÷ 3 =
2π
3 apart forms an equilateral triangle, and any four points separated by 2π÷ 4 = π

2
form a square.

In R3, and for higher dimensions, no explicit formula has been found which
gives t-designs for all t, and so explicit constructions of spherical designs is still an
active area of research. There are six widely known t-designs in R3:

Remark 1.2.6 (See [7].) Any set of points in R3 with the center of mass at the origin is a
1-design.

Remark 1.2.7 (See [3].) A regular tetrahedron is a 2-design. A cube and a regular oc-
tahedron are both 3-designs. A regular dodecahedron and a regular icosahedron are both
5-designs.

Example 1.2.8

x

y

z

(0,0,1)

(0,-1,0)

(1,0,0)

(0,0,-1)

(-1,0,0)

(0,1,0)

Figure 3: The spherical 3-design {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0,−1), (0, 0, 1)}.
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1.3 Calculations with Spherical t-Designs on R2 and R3

For this section we will use one example of a 2-design in R2, one 3-design in R2, and
one 3-design in R3, and demonstrate how using each provides the same result as
integration. The examples are as follows,

(1) X1 = {(1, 0), (− 1
2 ,
√

3
2 ), (− 1

2 ,−
√

3
2 )}

(2) X2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}

(3) X3 = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0,−1), (0, 0, 1)}

Let f (x, y) = x2.

1
|X| ∑

x∈X
ft(x) =

1
3
( f (1, 0) + f (−1

2
,

√
3

2
) + f (−1

2
,−
√

3
2

)) (1.1)

=
1
3
(1 +

1
4
+

1
4
) =

1
2

1
2π

∫ 2π

0
cos2θdθ =

1
2π

∫ 2π

0

1 + cos(2θ)

2
dθ (1.2)

=
1

2π
((

2π

2
+ 0)− (0 + 0)) =

π

2π
=

1
2

Let f (x, y) = x + y3.

1
|X| ∑

x∈X
ft(x) =

1
4
( f (0, 1) + f (1, 0) + f (0,−1) + f (−1, 0)) (1.3)

1
4
(1 + 1− 1− 1) = 0

1
2π

∫ 2π

0
cosθ + sin3θdθ =

1
2π

∫ 2π

0
sin3θdθ (1.4)

1
2π

(
1
3

cos3θ − cosθ)|2π
0 =

1
2π

(
1
3
− 1− 1

3
+ 1) = 0

Let f (x, y, z) = x2 + y2 + 2z2.

1
|X| ∑

x∈X
ft(x) =

1
6
( f (1, 0, 0)+ f (−1, 0, 0)+ f (0, 1, 0)+ f (0,−1, 0)+ f (0, 0, 1)+ f (0, 0,−1))

(1.5)

=
1
6
(1 + 1 + 1 + 1 + 2 + 2) =

4
3

1
4π

∫ 2π

0

∫ π

0

5sinφ + sin3φ

4
dφdθ =

1
4π

∫ 2π

0

8
3

dθ (1.6)

=
16π

12π
=

4
3



Chapter 1. Spherical t-designs 5

1.4 Higher Dimensional Spherical t-designs

One of the fundamental theorems of spherical t-designs is the following:

Theorem 1.4.1 (See [15].) For all Rn, there exists a t-design for all t.

However, currently there are only three known constructions of t-designs which
apply for any Rn.

Theorem 1.4.2 (See [3].) Let n ∈ Z+. In Rn there exists a 2-design of n + 1 points, a
3-design of 2n points, and a 3-design of 2n points.

Referring back to the previous section, in R2, these correspond to the triangle,
and the square. In R3 that is the tetrahedron, the octahedron, and the cube. How-
ever, despite the lack of general rules, many specific constructions have been found
that could be used to inspire research into general constructions, one category of
these constructions will be discussed here.

Remark 1.4.3 (See [3].) Lattices and their shells are a good source to look for spherical t-
designs.

The following are two examples of explicit constructions of spherical designs that
have been found using lattices.

Example 1.4.4 (See [5].) The Leech lattice is an 11-design on S23 ⊂ R24, containing
196560 points.

The Leech lattice will be discussed again in the next section, as it belongs to a special
class of spherical designs.

Theorem 1.4.5 (See [16].) Let m ∈ Z+. Any shell of an extremal even unimodular lattice
is a spherical t-design on S8m−1 for t = 11− 4(m mod3).

This theorem only applies under very specific conditions, but perhaps could be
generalized further to either provide more designs, or be less restrictive.

1.5 Further Work on Spherical Designs

As seen in 1.2.7, a 3-design in R3 can be constructed with 8 points, or instead it could
be constructed with only 6 points. Likewise, one can construct a 5-design with 12
or 20 points. This gives rise to a second area of research in spherical designs. Once
a design has been discovered, the question is whether or not it is the most efficient
design for that t. The reason for constructing t-designs is that they are easier to work
with than spheres, and so the natural goal would be to find the most efficient design
for every t in every dimension n, where efficiency is measured in the number of
points that make up the design.

A lower bound has been proven for the minimum size of t-designs, for both even
and odd values of t:

Theorem 1.5.1 (See [12].)

(1) Let X be a spherical 2e-design on Sn−1, then |X| ≥ (n+e−1
e ) + (n+e−2

e−1 ).

(2) Let X be a spherical (2e+1)-design on Sn−1, then |X| ≥ 2(n+e−1
e ).
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Definition 1.5.2 (Tight Design) A spherical t-design is considered tight if it achieves the
lower bound that corresponds to t = 2e or t = 2e + 1.

An additional tangential definition is required for the study of tight designs.

Definition 1.5.3 (Degree, see [3]) The degree s of a set X is defined in this context as
s = |{u · v|u, v ∈ X, u 6= v}|.

Plainly, it is the size of the set generated by taking the dot product of every vector in
X with every other vector in X.

Example 1.5.4 The degree of the 3-design on S2,
X = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)},
is 2 = |{−1, 0}|.

With degree defined, we can introduce new methods of determining if a design is
tight.

Theorem 1.5.5 (See [12].)

(1) Let X be a spherical 2e-design. X is tight if and only if X is of degree e.

(2) Let X be a spherical (2e+1)-design. X is tight if and only if X is of degree e+1 and is
antipodal.

One can see by this theorem that 1.5.4 is tight.

Certain facts have been proved for tight spherical t-designs:

Theorem 1.5.6 (See [4].) On Sn−1, for n ≥ 3, if X is a tight spherical t-design, then either
t ∈ {1, 2, 3, 4, 5, 7}, or X is the Leech lattice [1.4.4].

In other words, outside of S1, tight spherical t-designs only exist for t ∈ {1, 2, 3, 4, 5, 7},
with one exceptional example when t = 11. The implication of this theorem is that
the lower bound on the size of spherical t-designs from 1.5.1 could be refined further
for when t is not part of the set of values in 1.5.6. It would be both interesting and
significant if there was a second greatest lower bound that could be proven for all
other cases, but it is unlikely that there would be one greatest lower bound that all
other t could achieve. A sub-problem of this is the interesting case of t = 11. There
is a very strong dimensional constraint of n = 24, as the Leech lattice on S23 is the
exceptional tight t-design for t = 11. This deserves a better understanding at a later
time.

Theorem 1.5.7 (See [5].) Let X be a tight spherical t-design on Sn−1.

• If t = 1, then X is two antipodal points.

• If t = 2, then X is a regular simplex of n+1 points.

• If t = 3, then X is a cross polytope, {±ei|1 ≤ i ≤ n}, where the ei’s form an
orthonormal basis of Rn.

The classification for when t is 4, 5 and 7, remains an open problem.
A second area of research with spherical t-designs concerns the applications of

orthogonal transformations.
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Definition 1.5.8 (Rigid Design, see [2]) Let X = {u1, u2, ..., uN} be a spherical t-design.
X is rigid if for any ε ∈ R+, there does not exist a spherical t-design X′ = {u′1, u′2, ..., u′N}
that satisfies both the following.

(1) ||ui − u′i|| < ε for i = 1, 2, ..., N.

(2) There is no orthogonal transformation σ satisfying X′ = Xσ.

Remark 1.5.9 (See [3].) Tight t-designs are rigid.

There are only two known rigid designs that are not tight, thus it is an open problem
to create a rule that defines all rigid designs that are not tight.

Remark 1.5.10 (See [14], [6], [11].) The following are the only two known rigid designs
that are not tight.

(1) (n+2)-point sets on Sn−1 when n is even.

(2) 120 points of a 600-cell on S3.

Finally, Bannai gives the following conjecture:

Conjecture 1.5.11 (See [3].) For each given pair of n and t, there are only finitely many
rigid spherical t-designs on Sn−1, up to orthogonal transformations.
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Chapter 2

Unitary t-designs

In the field of quantum information, it is very common to want to randomize over
the entire unitary group. However, the unitary group is infinite, which is compu-
tationally difficult. Just as spherical t-designs are used to simplify computation on
spheres which contain infinite points, unitary t-designs are used to approximate the
infinite unitary group to simplify computation. The definition for spherical t-designs
is valid for unitary t-designs, however, the proper way to write it in the context of
unitary matrices is as follows:

Definition 2.0.1 (Originally used in [13]) Let X be a finite subset of U(d). The following
are equivalent.

(1) X is a unitary t-design.

(2) 1
|X| ∑U∈X U⊗t ⊗ (U†)⊗t =

∫
U(d) U⊗t ⊗ (U†)⊗tdU

See [1] for a detailed list of the applications of unitary t-designs.

2.1 Review of Unitary Matrices and Quantum Information

Definition 2.1.1 (Unitary Matrix) Let U ∈ M2(C). U is unitary if U∗ = U−1.

Remark 2.1.2 In the context of unitary t-designs, the conventional notation is U† = U−1.

Example 2.1.3 Let U =

[
0 −i
i 0

]
. U−1 =

[
0 −i
i 0

]
and U† =

[
0 −i
i 0

]
thus U−1 = U†,

and so U is unitary.

Definition 2.1.4 (Unitary Group) U(n) is the group of n x n unitary matrices, precisely
U(n) := {U ∈ Mn(C)|U−1 = U†}.

Definition 2.1.5 (Special Unitary Group) SU(n) is the group of n x n unitary matrices
with determinant one, precisely SU(n) := {U ∈ U(n)|det(U) = 1}.

Quantum states, or just states, are the quantum equivalent of probability vectors.
The entries are called amplitudes, and rather than adding up to one, it is the squares
of the amplitudes that must sum to one. They are most commonly presented using
the following notation.

Definition 2.1.6 (Dirac Notation, named for its inventor Paul Dirac)

• |0〉 :=
(

1
0

)
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• |1〉 :=
(

0
1

)

• |+〉 :=

(
1√
2

1√
2

)

• |−〉 :=

(
1√
2

− 1√
2

)

When a state is measured, it is measured with respect to one of two commonly
used bases.

Definition 2.1.7 (Standard Basis) {|0〉 , |1〉}.

Definition 2.1.8 (Hadamard Basis) {|+〉 , |−〉}.

Definition 2.1.9 (Density Operator) Let {(pk, |φk〉)|∑n
k=1 pk = 1} represent a probability

distribution of states, where the φk’s are unit vectors. A density operator ρ is a matrix with
the following form.

ρ := ∑k pk |φk〉 〈φk|.

There are two types of density operators.

Definition 2.1.10 (Pure State) A pure state is a density operator for which the correspond-
ing probability distribution has n = 1. That is, ρ = |φ〉 〈φ| for some unit vector φ.

Example 2.1.11 (Example of a pure state)

ρ =

( 1
2

1
2

1
2

1
2

)
is a pure state corresponding to the probability distribution {1, |+〉}.

Definition 2.1.12 (Mixed State) A mixed state is a density operator for which the corre-
sponding probability distribution has n > 1.

Example 2.1.13 (Example of a mixed state)

ρ =

( 1
4 0
0 3

4

)
is a mixed state corresponding to the probability distribution {( 1

4 , |0〉), ( 3
4 , |1〉)}.

Finally, there is a special class of mixed states.

Definition 2.1.14 (Maximally Mixed State) A density operator ρ (2.1.9) is called a maxi-
mally mixed state if the vectors φ1, ..., φn are orthonormal.

Example 2.1.15 (Example of a maximally mixed state)
1
2 I is a maximally mixed state because it represents infinitely many probability distributions,
including:

(1) { 1
2 |0〉 , 1

2 |1〉}

(2) { 1
2 |+〉 , 1

2 |−〉}

One can apply unitary matrices to probability distributions to generate new prob-
ability distributions. Density operators make this easier, as the full calculation on the
distribution can be reduced to a calculation on the operator.
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Remark 2.1.16 Let Uρ represent the distribution {(pk, U |φk〉)}. ρ′ = Uρ can be calcu-
lated by ρ′ = UρU†.

In practice, this is used for the application of quantum gates to a quantum state.
Say ρ is the state of a quantum system, and U represents a quantum gate. ρ′ repre-
sents ρ after passing through U.

Example 2.1.17 (Example application of unitary matrix to density operator) Let U =

(
0 −i
i 0

)
,

and let ρ =

( 1
4 0
0 3

4

)
.

ρ′ = UpU† (2.1)

=

(
0 −i
i 0

)( 1
4 0
0 3

4

)(
0 −i
i 0

)
ρ′ =

( 3
4 0
0 − 1

4

)

2.2 The Relationship Between SU(2) and S3

S3 is isomorphic to SU(2). Thus, a spherical t-design on S3 can be represented as a
unitary t-design on SU(2).

Remark 2.2.1 Let v = (w, x, y, z) ∈ R4. v can be written as a matrix in SU(2) in the

following manner:
[

w + xi zi− y
y + zi w− xi

]
.

Example 2.2.2 (A spherical 3-design on R4 written as a unitary 3-design on SU(2))

(1) {±(1, 0, 0, 0),±(0, 1, 0, 0),±(0, 0, 1, 0),±(0, 0, 0, 1)}

(2) {±I,±
(

i 0
0 −i

)
,±
(

0 −1
1 0

)
,±
(

0 i
i 0

)

2.3 An Explicit Inductive Construction of Unitary t-Designs

In this last section we briefly touch on the results of [9], a recent paper by Bannai,
Nakata, Okuda and Zhao. This paper contains many deep mathematical ideas which
deserves a more thorough study than the brief overview covered here. It was chosen
because previously only constructions for unitary 1-designs and 2-designs were well
known, with very few for higher t’s but this paper uses induction to create explicit
unitary t-designs for all t and n. First we will review some important definitions
used in the proof, then discuss how those definitions can be used to create designs,
and then finally one specific result from the paper will be discussed.

Definition 2.3.1 (Multi-Set) A set X is called a multi-set, if the elements of X can have
multiplicities higher than one.

Example 2.3.2 (Example of a Multi-Set) {1, 1, 2, 3} is a multi-set. The element 1 has mul-
tiplicity two.
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Definition 2.3.3 (Direct Product of N Copies of a Group) Let G be some group, and N ∈
Zn for some n ≥ 1. The direct product of N copies of G, GN , is defined as taking the direct
product of G with itself, N times.

Definition 2.3.4 (Symmetric Group on GN , [9]) Let GN be the direct product of N copies
of G. GN is the symmetric group on GN with the action defined as the permutation of co-
ordinates.

Remark 2.3.5 (See [9].) A GN orbit in GN is a multi-set on G with N points. For some
x = (x1, ..., xN) ∈ GN , the GN orbit of x is X = {x1, ..., xN}mult.

Several operations are defined on these multi-sets. For the following several
definitions, let X = {x1, ..., xN}mult on G.

Definition 2.3.6 (Cardinality) |X| := N.

Definition 2.3.7 (Sum) ∑
x∈X

ρ(x) :=
N
∑

i=1
ρ(xi).

Definition 2.3.8 (Dot Product/Minkowski Product) Let Y = {y1, ..., yM}mult.
X ·Y := {xiyj|1 ≤ i ≤ N, 1 ≤ j ≤ M}mult.

One should note that this is defined as the dot product due to the chosen notation.
Computationally, it is the Minkowski product of sets.

Definition 2.3.9 (Finite Dimensional Representation, [9]) Let G be a compact Hausdorff
group. (ρ, V) is a finite dimensional complex G-representation if V is a finite dimensional
complex vector space, and ρ : G −→ GLC(V) is a group homomorphism for which
G×V −→ V by (g, v) −→ gv is continuous.

Remark 2.3.10 We call (ρ, V) a trivial representation if ∀g ∈ G the relation ρ(g) = idV
holds.

Definition 2.3.11 (G-stable Subspace) Let W be a subspace of V. W is G-stable if ∀g ∈ G
and ∀w ∈W, ρ(g)w ∈W.

If the vector space of a representation has a G-stable subspace, then a sub-representation
can be constructed.

Definition 2.3.12 (Subrepresentation) Let (ρ, V) be a finite dimensional complex G-representation,
and W a G-stable subspace of V. (τ, W) is a subrepresentation of (ρ, V),
where τ : G −→ GLC, g −→ τ(g) := (ρ(g))|W .

Definition 2.3.13 (Irreducible) Let (ρ, V) be a finite dimensional complex G-representation.
(ρ, V) is irreducible if V 6= 0, and the only G-stable subspace of V are 0 and V.

For the next definition, note that (τ, W) is not considered a subrepresentation of
(ρ, V).

Definition 2.3.14 (G-intertwining, [9])
A linear map θ : V −→W is G-intertwining if ∀g ∈ G the relation θρ(g) = τ(g)θ holds.

One can then say that (τ, W) and (ρ, V) are equivalent if θ is bijective.
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Definition 2.3.15 (Unitary Representation) Let (ρ, V) be a finite dimensional G-representation.
(ρ, V) is unitary if V has a Hermitian inner product, and for any g ∈ G, ρ(g) preserves the
inner product.

All of the previous definitions have been building up to this next definition,
which is very important to the final results of the paper.

Definition 2.3.16 (Unitary Dual of a Group, [9]) Let G be a compact Hausdorff group. The
unitary dual Ĝ of G is the set of representatives of the equivalence classes of the irreducible
finite-dimensional unitary representations of G.

Remark 2.3.17 (See [9].) Two facts are well-known.

(1) For any finite-dimensional G-representation, there exists an inner product such that
the representation is unitary.

(2) Any two irreducible unitary G-representations are equivalent if and only if they are
unitary equivalent.

Therefore, the unitary dual can simply be defined as the set of representatives for the equiva-
lence classes of finite-dimensional irreducible G-representations.

In addition to the unitary dual, the other important definition for the paper is
how to construct designs using compact groups.

Definition 2.3.18 (ρ-design, [9]) Let G be a compact Hausdorff group with the Haar mea-
sure, and (ρ, V) a finite-dimensional G-representation. The finite multi-set X on G is a
ρ-design if

1
|X| ∑

x∈X
ρ(x) =

∫
G

ρ(g)dg

in the vector space EndC(V).

It is important to note that in Rn, t-design referred to the ability of the design to
function for some polynomial of degree t. ρ-design only refers to the representation
involved. With ρ-designs, further designs can be constructed.

Definition 2.3.19 (Λ-design, [9]) Let Λ be a collection of finite-dimensional G-representations.
X is a Λ-design if X is a ρ-design for all ρ ∈ Λ.

Remark 2.3.20 (See [9].) Several further designs can be constructed with ρ-designs and
λ-designs.

• Let X be a ρ-design on G, and take some g ∈ G. Xg and gX are also ρ-designs on G.

• Let X be a Λ-design on G, and take some g ∈ G. Xg and gX are also Λ-designs on G.

• Let τ be a subrepresentation of ρ. Any ρ-design is a τ-design.

• Let X be both a ρ-design on G and a φ-design on G. Then X is also a (ρ⊕ φ)-design
on G.

These definitions of designs on compact groups are used to prove the following
two propositions.
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Proposition 2.3.21 (See [9].) Let X be a ρ-design on G, and let Y and Z be two non-empty
finite multi-sets on G. Then Y · X · Z is a ρ-design on G.

Proposition 2.3.22 (See [9].) The following are equivalent.

(1) X is a ρ-design on G.

(2) X−1 is a ρ-design on G.

Bannai and his collaborators use representation theory of compact Lie groups to
give an inductive algorithm for construction unitary t-designs, and as a result they
obtain some explicit examples in U(2) and U(4). The base case for the algorithm in
U(4) is given below.

Lemma 2.3.23 (See [9].) Let ω be a primitive fifth root of unity. X = {1, ω, ω2, ω3, ω4}
is a unitary 4-design on U(4).
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