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Abstract 

Human activities, such as urban expansion, have led to an increase in contacts between humans 

and wildlife and have resulted in the loss and isolation of suitable habitats for animal populations. These 

human-induced pressures threaten the persistence of animal populations and understanding how animals 

respond to them is crucial for conservation. A multidisciplinary approach that includes different 

biological components of a species, such as behaviour, physiology, and population genetic structure, is 

necessary to obtain a comprehensive insight into the impact of human activities on wildlife. Turtle 

populations are particularly vulnerable to human disturbance due to their life-histories, but there is 

limited information available on how human-induced perturbations affect different components of their 

biology. In this context, my thesis aims to evaluate the impact of human disturbance and human-made 

barriers on the behaviour, physiology, and genetic structure of painted turtles (Chrysemys picta) in the 

Rideau Canal, Ontario, Canada. In chapter one, I evaluate the relationship between risk-taking 

behaviours and human disturbance levels. In chapter two, I assess the impact of human disturbance on 

the relationships between risk-taking behaviours, physiological response, and colouration. Finally, in 

chapter three I characterize the genetic structure of painted turtles in the Rideau Canal and assess the 

impact of human-made barriers, such as locks, on the genetic substructuring occurring in the system. 

Overall, I show that human activities and human-made barriers have several impacts on painted turtle 

biology, from influencing their risk-taking behaviours to inducing physiological changes and causing 

genetic discontinuities among groups. More specifically, in chapter one, I show that painted turtles are 

consistent in their risk-taking behaviour and that turtles located in areas with more boat activities are 

more prone to take risks, suggesting that being risk-prone may be associated with a greater tolerance to 

human disturbance. I also show that painted turtles exhibit a lower physiological response when human 

activity is limited, indicating that human activities may induce physiological costs on wildlife. In 
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addition, I report variations in physiological responsiveness according to the propensity of turtles to take 

risks, where risk-prone males have higher physiological responses than risk-averse males, highlighting 

the importance to use different disciplines to better understand the consequences of human activities 

and how the different biological components interact together under human-induced pressures. Finally, 

I found genetic substructuring among groups of turtles within the Rideau Canal, which seems to be 

partly caused by locks, especially when they are numerous and clustered in space. My results provide a 

better understanding of the impact of human disturbance on animal populations as well as information 

that could be used to better guide management decisions that are relevant to species vulnerable to human 

activities, such as turtles. Monitoring animal behaviour alongside physiological biomarkers and genetic 

populational trends can aid in the development of better adapted conservation strategies.  
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Résumé 

Les activités humaines, telle que l'expansion urbaine, ont entraîné une augmentation des contacts 

entre les humains et la faune, ainsi que la perte et l'isolement d'habitats naturels pour les populations 

animales. Ces pressions induites par les humains menacent la persistance des populations animales et il 

est donc essentiel pour la conservation de comprendre comment les animaux réagissent à ces pressions. 

Une approche multidisciplinaire incluant différentes composantes biologiques d’une espèce, telles que 

le comportement, la physiologie et la structure génétique des populations, est nécessaire pour obtenir un 

aperçu global de l'impact des activités humaines sur la faune. Les populations de tortues sont 

particulièrement vulnérables aux perturbations humaines en raison de leurs traits d’histoire de vie, mais 

il existe peu d'informations sur la façon dont les perturbations humaines affectent les différentes 

composantes de leur biologie. Dans ce contexte, ma thèse vise à évaluer l'impact des perturbations et 

infrastructures humaines sur le comportement, la physiologie et la structure génétique des populations 

de tortues peintes (Chrysemys picta) dans le canal Rideau, Ontario, Canada. Dans le premier chapitre, 

j’évalue la relation entre les comportements associés à la prise de risque et la variation spatiale des 

activités humaines. Dans le deuxième chapitre, j’évalue l'impact des perturbations humaines sur les 

relations entre les comportements associés à la prise de risque, la réponse physiologique et la coloration. 

Dans le chapitre trois, je caractérise la structure génétique des groupes de tortues peintes du canal Rideau 

et évalue l'impact des barrières artificielles, telles que les écluses, sur la sous-structuration génétique 

présente dans le système. Dans cette thèse, je montre que les activités humaines et les barrières 

construites par les humains ont un impact sur la biologie des tortues peintes, en influençant leurs 

comportements associés à la prise de risque, en induisant des changements physiologiques et en 

provoquant de la sous-structuration génétique entre les groupes de tortues. Plus précisément, dans le 

premier chapitre, je montre que les tortues peintes sont cohérentes dans leur capacité à prendre des 
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risques: les tortues situées dans des zones où les activités nautiques sont plus importantes prennent plus 

de risques, ce qui suggère que le fait d'être enclin à prendre des risques peut possiblement aider à mieux 

tolérer les perturbations humaines. Je montre également que les tortues peintes présentent une réponse 

physiologique plus faible lorsque l'activité humaine est limitée, ce qui indique que l'activité humaine 

peut infliger des pressions physiologiques sur la faune. De plus, j'observe des variations de la réactivité 

physiologique en fonction de la propension des tortues à prendre des risques, les mâles prenant plus de 

risques ont des réponses physiologiques plus élevées que les mâles qui en prennent moins, ce qui 

souligne l'importance d’utiliser différentes disciplines pour mieux comprendre l’impact des activités 

humaines sur la faune et d’identifier comment les différentes composantes biologiques interagissent 

ensemble sous pression humaine. Enfin, j'ai montré de la sous-structuration génétique entre les groupes 

de tortues du canal Rideau qui semble être principalement causée par le nombre d'écluses, en particulier 

lorsqu'elles sont nombreuses et regroupées dans l’espace. Mes résultats amènent une meilleure 

compréhension de l'impact des perturbations humaines sur les populations animales, ainsi que des 

informations qui pourraient être utilisées afin de mieux orienter les décisions de gestion concernant les 

espèces vulnérables à l'activité humaine, telles que les tortues. Le suivi du comportement des animaux, 

de biomarqueurs physiologiques et des tendances génétiques des populations peut aider au 

développement de stratégies de conservation mieux adaptées. 
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Preface 

My thesis consists of three stand-alone manuscripts that are already published, or will be 

submitted soon, in peer-reviewed journals. Each chapter represents my own work, which means that I 

led the conceptualization, conducted the data collection and statistical analyses, interpreted the results, 

created all figures and tables, and wrote the content. However, all manuscripts were prepared in 

collaboration with other researchers whose contribution was sufficient to merit authorship with their 

guidance, support, and advice. Thus, I used the term “We” instead of “I” throughout the chapters to 

consider their contribution as it was employed in the published versions. I slightly modified each 

manuscript to uniformize the thesis and to better integrate figures, tables, and all supporting documents. 

However, slight variations in the format can occur among chapters given that they follow the criteria of 

the journal where they were or will be published. Publication details are available at the beginning of 

each chapter for the manuscripts already published.  

During my PhD studies, I also led and contributed to the peer-reviewed publication of two 

manuscripts that are not directly related to my thesis: 

Bergman, J. N., Beaudoin, C., Mistry, I., Turcotte, A., Vis, C., Minelga, V., Neigel, K. L., Lin, H.-Y., 

Bennett, J. R., Young, N., Rennie, C., Trottier, L. L., Abrams, A. E. I., Beaupre, P., Glassman, D., 

Blouin-Demers, G., Garant, D., Donaldson, L., Vermaire, J., … Cooke, S. J. (2021). Historical, 

contemporary, and future perspectives on a coupled social-ecological system in a changing world: 

Canada’s historic Rideau Canal. Environmental Reviews, 16, 1–16. https://doi.org/10.1139/er-2021-

0026 

Turcotte, A., Kermany, N., Foster, S., Proctor, C. A., Gilmour, S. M., Doria, M., Sebes, J., Whitton, 

J., Cooke, S. J., & Bennett, J. R. (2021). Fixing the Canadian Species at Risk Act: Identifying major 
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issues and recommendations for increasing accountability and efficiency. FACETS, 6, 1474–1494. 

https://doi.org/10.1139/facets-2020-0064
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General Introduction 

Over the last several decades, contacts between humans and wildlife have increased in part 

because of the expansion of human activities (e.g., urban expansion) (Barnosky et al., 2012; Foley et 

al., 2005; Kennedy et al., 2019; Larson et al., 2016; Steven et al., 2011). These activities have often led 

to the loss and isolation of suitable habitats for animal populations (Haddad et al., 2015; Su et al., 2021; 

WWF, 2022). As a result, many animals are now living in highly human-impacted landscapes and 

subjected to growing human-induced pressures that threaten their persistence (Dirzo et al., 2014; 

Kennedy et al., 2019; McCauley et al., 2015; WWF, 2022). Given that human disturbance is one of the 

main causes of biodiversity decline worldwide, it is becoming crucial to understand how animals are 

affected by and respond to these perturbations (WWF, 2022). However, understanding animal responses 

to human disturbance can be complex given the different types of perturbations that can vary spatially 

both in intensity and in predictability (Gaynor et al., 2018; Larson et al., 2016; Nickel et al., 2020; 

Tablado & Jenni, 2017; Tucker et al., 2018). In addition, different components of an animal’s biology 

may interact together and may be simultaneously affected by human-induced perturbations making it 

difficult to have a complete overview of the consequences on wildlife (Walls & Gabor, 2019). Using a 

multidisciplinary approach that incorporates behaviour, physiology, and population trends (e.g., genetic 

dynamics) is thus needed to obtain a global insight of how human activities affect animal communities 

(Anthony & Blumstein, 2000; Muposhi et al., 2017; Tobias & Pigot, 2019). More specifically, 

identifying how animals behaviourally and physiologically respond to human disturbance can give us 

an overview of the short-term consequences on animal populations, while the long-term effects can be 

perceived on the population dynamic, which can be evaluated with landscape genetic analyses.  

Animals exposed to human disturbance can, as a first response, alter their behaviours in the short 

term to improve their probability of surviving and reproducing (Tuomainen & Candolin, 2011). 
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Although individuals may have the capacity to adjust their behaviours to their environment, individuals 

within a population may show consistent differences in the way they perceive and respond to risky 

situations (Koolhaas et al., 1999; Tuomainen & Candolin, 2011). Regardless of context, some 

individuals are consistently more prone to take risks (i.e., proactive) while others minimize their 

exposure to risky situations (i.e., reactive) (Koolhaas et al., 1999; Réale et al., 2007; Sih, 2004). Over 

time, this consistent variability in risk-taking propensity among individuals may lead to changes in the 

dynamics of animal populations exposed to human disturbance (Tuomainen & Candolin, 2011; Wong 

& Candolin, 2015). These new environmental conditions can then i) cause plastic changes in 

behavioural responses (Caspi et al., 2022; Vincze et al., 2016), ii) lead individuals to preferentially select 

habitats according to their behaviours (Cote et al., 2010; Holtmann, Santos, et al., 2017; Jacob et al., 

2015), and/or iii) alter selection pressures which could favour specific behaviours (Miranda et al., 2013; 

Mueller et al., 2013; Sih et al., 2011). Regardless of the mechanisms, behavioural differences should be 

observed among habitats varying in levels of human disturbance where risk-prone individuals should 

be more frequent in areas highly disturbed by human activities (Breck et al., 2019; Hardman & 

Dalesman, 2018; Holtmann, Santos, et al., 2017; Sprau & Dingemanse, 2017).  

Human disturbance also triggers the release of stress hormones, such as glucocorticoids, causing 

the activation of physiological processes and allowing the mobilization of energetic resources that are 

necessary to maintain homeostasis and to improve immediate survival probability (Buchanan, 2000; 

Sapolsky et al., 2000; Wingfield et al., 1997). Since human-induced perturbations generally persist over 

time, they often result in chronic and maladaptive physiological responses that can alter other important 

biological processes (e.g., immune activities and carotenoid-based colouration). Such prolonged 

physiological responses can be measured using the heterophil-to-lymphocyte ratio (H/L ratio), which is 

generally higher in animals exposed to high levels of human activities (Davis et al., 2008). When 
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individuals face challenging conditions, trade-offs can occur between biological functions that rely on 

limited resources to operate (Stearns, 1989; Zera & Harshman, 2001). For instance, this is the case for 

carotenoid pigments: individuals may allocate them to essential physiological functions (e.g., immune 

functions and antioxidant activity) at the expense of colour signalling (Aguilera & Amat, 2007; Blount 

et al., 2003; Faivre et al., 2003; Mcgraw, 2005). The magnitude of these trade-offs can vary between 

individuals according to the way they perceive and react to stressful events (Réale et al., 2010). Human 

activities can thus have physiological consequences that can threaten animal survival and reproductive 

success, and jeopardize the persistence of populations (Acevedo-Whitehouse & Duffus, 2009; Martin, 

2009).  

By increasing and expanding their presence on the landscape, humans create new barriers that 

isolate suitable habitats for wildlife: animal populations that were previously connected are now isolated 

in smaller habitat fragments (Haddad et al., 2015; Su et al., 2021). By restricting animal movements and 

thus gene flow in the landscape, human-made barriers can result in : i) the loss of genetic diversity 

within isolated populations and ii) the increase of genetic differentiation among isolated populations 

(Schlaepfer et al., 2018; Schmidt et al., 2020). Over time, with the loss and the limited exchange of 

favourable alleles (Lenormand, 2002; Morjan & Rieseberg, 2004), these effects may reduce population 

persistence in face of environmental perturbations (Leigh et al., 2019; Reed & Frankham, 2003; Willi 

et al., 2006). By providing insights on the dispersal events that led to successful reproduction, genetic 

data can inform us about the past landscape changes that impeded or improved dispersal and, thus, 

inform us about the functional connectivity of the landscape (Landguth et al., 2010; Lowe & Allendorf, 

2010). Landscape genetics modelling is an interesting tool that can be used in conservation to determine 

how genetic differentiation is related to landscape features, such as human-made structures, and to 

identify which barriers are related to the genetic structure observed in the populations studied 
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(Holderegger & Wagner, 2008; Manel et al., 2003).  

Turtles are one of the most threatened taxa, with more than half of the species now facing high 

extinction risk (Stanford et al., 2020). Under high anthropogenic pressures, turtle resilience is limited 

by their life-histories (e.g., delayed maturity, high longevity, low juvenile survival) that make them more 

vulnerable to additional mortality induced by human activities (Brooks et al., 1991; Congdon et al., 

2003; Gibbons, 1987; Midwood et al., 2015). Compared to other taxa, scant information is available on 

how human-induced perturbations impact turtle behaviour and physiology, as well as the genetic 

structure of their populations, which is surprising considering the major roles they play in terrestrial and 

aquatic ecosystems (e.g., bioturbation, seed dispersal, carbon storage, mineral cycling) (Lovich et al., 

2018). There is thus a need for more studies documenting how human disturbance affects different 

aspects of turtle biology (see examples: Bennett et al., 2010; Selman et al., 2013). 

My thesis aims to provide an in-depth understanding of the impact of human disturbance and 

human-made barriers on painted turtles (Chrysemys picta) by assessing i) how human activities are 

related to turtles’ propensity to take risks; ii) how human activities influence the relationships between 

physiological response, carotenoid-based colouration, and risk-taking behaviours; and iii) how human-

made barriers, such as locks, affect the genetic structure of painted turtles living in the Rideau Canal, 

Ontario, Canada. My results will provide a more global view of the effects of human activities and 

human-made barriers on a species especially vulnerable to human disturbance, which could help guide 

management decisions and develop better adapted conservation plans for this species and others facing 

similar threats. 

The Rideau Canal is a 202-km slackwater canal system (i.e., locks built above pre-canal water 

levels) that connects the Ottawa River to Lake Ontario. This waterway is composed of a network of 



5 
 

rivers, lakes, and excavated channels that are connected by 23 lockstations (45 locks). The construction 

of the Rideau Canal started at the beginning of the 19th century (e.g., between 1826 and 1832) with the 

objective to create a military supply route to facilitate the protection of British colonies against the 

United States (Tulloch, 1981). Since its opening approximately 200 years ago, the canal never stopped 

being operated, but it was never used for its original military purpose. The canal has been mainly used 

for recreational activities with over 40,000 vessel crossings recorded at lockstations each year (Parks 

Canada, 2006). Therefore, the Rideau Canal is an excellent study system to evaluate simultaneously the 

impact of human activities and human-made barriers on different biological components of a species.  

In chapter one, I hypothesized that risk-taking behaviours in painted turtles were related to the 

level of human disturbance in the environment. To test this hypothesis, I took repeated measurements 

of three risk-taking behaviours: i) the sum of active defensive behaviours used during handling, ii) the 

escape latency, and iii) the emergence of the turtle from the water after escaping. Then, I assessed i) the 

consistency of these behaviours within individuals and ii) how these behaviours were related to the 

extent of human disturbance occurring in the Rideau Canal. The level of human disturbance was 

quantified at each sampling site using several proxies for boat and other human activities. 

In chapter two, I hypothesized that human disturbance created stressful environmental conditions 

that resulted in greater physiological responses in turtles exposed to these stressors and led to the 

mobilization of carotenoids at the expense of colouration. Also, individual turtles may have perceived 

and responded differently to human disturbance, which could have affected i) their physiological 

response and ii) their capacity to gather carotenoids and, thus, to allocate them to their colouration. To 

test this hypothesis, I used i) the sum of active defensive behaviours used during handling as the 

measurement of behavioural responsiveness to human presence, ii) the H/L ratio as the measure of the 

prolonged physiological response to stressors, and iii) the proportion of yellow on the turtle’s head and 
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red on the turtle’s neck as the measurements of colouration. Then, I assessed how recreational boating 

influenced the relationships between these different biological components with structural equation 

modelling. 

In chapter three, I hypothesized that the construction of locks for the Rideau Canal has impeded 

movements of painted turtles and thus reduced gene flow between populations. I used 13 microsatellite 

loci to characterize the genetic diversity and genetic structure of painted turtles in the Rideau Canal. 

Then, I evaluated how landscape features of the Canal, especially the locks, were related to the genetic 

structuring occurring in the canal and I assessed if specific barriers were responsible for the genetic 

substructure observed.  
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Chapter 1 

 

Effects of human disturbance on risk-taking behaviour in painted turtles 

 

This chapter is a slightly modified version of the manuscript published in Ethology: 

Turcotte, A., Garant, D., & Blouin-Demers, G. (2023). Effects of human disturbance on risk-taking 

behavior in painted turtles. Ethology, 129, 406–420. https://doi.org/10.1111/eth.13377 
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Abstract 

Animals are exposed to high levels of anthropogenic disturbance, which has profound 

consequences for population persistence. Individuals can adjust their behaviour plastically when faced 

with perturbations in their environment and may show consistent differences in the way they perceive 

and respond to risky situations. Over time, this variability among individuals in response to risk can 

affect the dynamics of populations exposed to human disturbance. Thus, understanding how animals 

cope behaviourally with human disturbance is important, especially for species vulnerable to human 

perturbations, such as turtles. In this context, we evaluated whether risk-taking behaviours are consistent 

within individual painted turtles (Chrysemys picta) and assessed how these behaviours are related to the 

extent of human disturbance along the Rideau Canal, Ontario, Canada. Specifically, we conducted 

repeated measurements of the number of active defensive behaviours used during handling and the time 

taken to escape a floating platform for a total of 730 painted turtles (1117 observations) from 22 sites 

varying in human disturbance along the canal. We also quantified the emergence of the turtles from the 

water after escaping the platform. First, individual painted turtles showed consistent differences in all 

risk-taking behaviours. Second, painted turtles in areas with high boat activity displayed more active 

defensive behaviours, while turtles from sites in proximity to more houses with access to the canal used 

fewer. Our study highlights the importance of studying animal behaviour to better understand the impact 

of human activities on animal populations. 
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Introduction 

Human activities impact wildlife in most ecosystems (Barnosky et al., 2012; Ceballos et al., 2015; 

Foley et al., 2005). In fact, only 5 % of the Earth’s terrestrial lands are still untouched (Kennedy et al., 

2019). Animals are now exposed to frequent and varied anthropogenic disturbances (e.g., 

pedestrian/vehicle traffic, outdoor recreation, noise pollution, etc.) that can negatively affect important 

fitness-related activities (e.g., reproduction and foraging; Larson et al., 2016; Price, 2008; Steven et al., 

2011) and thus threaten the persistence of wild populations (Dirzo et al., 2014). Therefore, the ability of 

animals to adjust to these perturbations is crucial to persist in human-impacted landscapes (Lowry et al., 

2013). 

To cope with human disturbance, the initial response of animals is often to alter their behaviour 

(Lowry et al., 2013; Tuomainen & Candolin, 2011; Wong & Candolin, 2015). By adjusting their 

behaviour to the new conditions prevailing in their environment, animals may improve their probability 

of surviving and reproducing in the short-term (reviewed in: Lowry et al., 2013; Tuomainen & Candolin, 

2011; Wong & Candolin, 2015). For example, animals exposed to frequent human disturbance are more 

often in vigilance postures, at the expense of other activities (e.g., feeding and sleeping), to assess and 

respond better to potential threats (Ciuti et al., 2012; McBlain et al., 2020). Changes in activity and 

feeding patterns to avoid disturbed areas are other common behavioural modifications that help reduce 

animal exposure to stressful conditions (Tuomainen & Candolin, 2011). For instance, two studies 

conducted on over 50 species of mammals showed that they are less active, less vagile, and more 

nocturnal near human disturbance (Gaynor et al., 2018; Tucker et al., 2018). In contrast, some species 

(e.g., Peregrine falcons Falco peregrinus, Kettel et al., 2018; Raccoons Procyon lotor, Prange et al., 

2003; Eastern chipmunks Tamias striatus, Lyons et al., 2017) often thrive in areas with high human 

density by benefiting from new food resources and reduced predation (Spotswood et al., 2021). 
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Individuals can adjust their behaviours to their environment and consistent differences in 

behavioural responses are often present among individuals within a single population (Dingemanse & 

Wolf, 2010). Many studies showed that individuals differ consistently over time and across contexts in 

the way they perceive and respond to risky situations by expressing different behaviours, referred to as 

animal personalities (McDougall et al., 2006; Réale et al., 2007; Sih, 2004). Regardless of context, some 

individuals are consistently more prone to take risks (i.e., bold) while others minimize their exposure to 

risky situations (i.e., shy; Koolhaas et al., 1999; McDougall et al., 2006; Réale et al., 2007; Sih, 2004). 

Therefore, behavioural consistency within individuals may affect how an individual perceives and copes 

with the changes in its environment (Dingemanse et al., 2004; Sih, 2004).  

Among-individual variability in risk-taking propensity can affect the dynamics of populations 

exposed to human disturbance (Tuomainen & Candolin, 2011; Wong & Candolin, 2015). Environmental 

changes induced by human activities can alter selection pressures and individuals with specific 

behaviours can become favored in this new context, therefore shaping the population’s behavioural 

response to human exposure (Miranda et al., 2013; Møller, 2008; Mueller et al., 2013; Sih et al., 2011). 

Alternatively, individuals can settle preferentially in habitats that better match their capacity to respond 

to risky situations, allowing them to reduce their stress level and avoid the need for behavioural 

adjustments (Cote et al., 2010; Holtmann, Santos, et al., 2017; Jacob et al., 2015; Martin & Réale, 2008). 

Over time, regardless of the underlying mechanism, an increase in interindividual differences in 

behaviour should be observed among habitats exposed to different intensities of perturbations (Lowry 

et al., 2013; Tuomainen & Candolin, 2011). Several studies showed that animals living in areas that 

were highly impacted by human activities differ behaviourally from their conspecifics located in less 

perturbed regions in that the former use more risk-taking behaviours (see Breck et al., 2019; Hardman 

& Dalesman, 2018; Holtmann, Santos, et al., 2017). For instance, Great tits (Parus major) that are 
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consistently more prone to take risks are more common in areas with higher human frequentation (Sprau 

& Dingemanse, 2017). Given that variability in behavioural types could shape population dynamics, it 

is important to consider interindividual differences in risk-taking propensity when studying adaptation 

to human disturbance (Sprau & Dingemanse, 2017). 

Evidence of how animal behaviour is affected by human activities is accumulating for various 

taxa (reviewed in: Lowry et al., 2013; Tuomainen & Candolin, 2011; Wong & Candolin, 2015). Early 

studies mainly focused on mammals and birds, but there is growing interest to study animal behaviour 

in other taxa, such as turtles. Indeed, the propensity to take risks has been explored in turtles using 

various behavioural measurements. Diverse measures of latencies (e.g., latency for the head to emerge 

from the shell, latency to move) following a confinement or a simulated predator attack have been used 

as proxies for risk-taking propensity in several turtle species (Eastern box turtles Terrapene carolina, 

Carlson & Tetzlaff, 2020; Kashon & Carlson, 2018; Pich et al., 2019; Painted turtles Chrysemys picta, 

Roth et al., 2020; Carter et al., 2016; Spanish terrapins Mauremys leprosa, Ibáñez et al., 2013b, 2015, 

2018). In particular, Pich et al. (2019) assessed risk-taking propensity in Eastern box turtles by adding 

the number of active defensive behaviours used during a simulated predator attack. Furthermore, the 

propensity to surface from the water was used by Allard et al. (2019) to evaluate risk-taking behaviour 

in Blanding’s turtles (Emydoidea blandingii) exposed to a simulated predator attack. By taking repeated 

measurements on individuals, these previous studies established that these behaviours were consistent 

within individuals, but the influence of human disturbance on these behavioural responses has yet to be 

assessed. A few studies indicated that turtles from areas highly frequented by humans seem to take more 

risks (i.e., shorter flight initiation distance to human approach and lower abandonment rate of basking 

sites after disturbance by boats; Polich & Barazowski, 2016; Selman et al., 2013). Given that turtles 

were not uniquely identified and not tested multiple times, the authors were unable to determine if the 



12 
 

different behavioural responses expressed toward human disturbance were consistent within turtles 

(Polich & Barazowski, 2016; Selman et al., 2013).  

The scant information on how turtles adjust behaviourally to human disturbance is surprising 

considering their important ecological roles and that they are among the taxa most vulnerable to human 

activities (Böhm et al., 2013; Buhlmann et al., 2009; Gibbons et al., 2000; Lovich et al., 2018). In 

Canada, six out of 10 native freshwater turtles are considered at risk by the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC, Species at risk public registry: 

www.canada.ca/en/environment-climate-change/services/species-risk-public-registry). Freshwater 

turtles are exposed to human perturbations both on land and in the water. On land, females can be 

disturbed while nesting (Moore & Seigel, 2006). In the water, recreational boating can perturb important 

activities, such as basking (Bulté et al., 2020; Moore & Seigel, 2006; Selman et al., 2013). Freshwater 

turtles can abandon nesting and basking sites for many hours after disturbance by a boat (Bulté et al., 

2020; Moore & Seigel, 2006). Loss of basking opportunities can compromise thermoregulation, a 

critical behavioural mechanism to maintain body temperature in a range that optimizes reproductive 

success in turtles (Bulté & Blouin-Demers, 2010; Ernst & Lovich, 2009; Jain-Schlaepfer et al., 2017; 

Rollinson & Brooks, 2007). 

In this study, we first determined whether risk-taking behaviours are consistent within individuals 

and different among individuals in painted turtles by estimating their repeatability. We took repeated 

measurements of three risk-taking behaviours: i) the sum of active defensive behaviours used during 

handling, ii) the escape latency, and iii) the emergence of the turtle from the water after escaping. Then, 

we assessed the relationship between these behaviours and the extent of human disturbance along the 

Rideau Canal, Ontario, Canada. We quantified the level of human disturbance at each sampling site with 

several proxies for boat and human activities. We hypothesized that risk-taking behaviours in painted 
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turtles are related to the level of human disturbance in the environment. More specifically, we predicted 

that individuals located in areas with higher human disturbance should be more prone to take risks. Our 

study was not designed to assess the mechanisms responsible for the observed relationships, but we 

offer plausible explanations for our findings. 

Methods 

Study species and system 

Painted turtles occupy various aquatic habitats (e.g., swamps, marshes, rivers and lakes) and are 

present in human-impacted habitats (DeCatanzaro & Chow-Fraser, 2010; Ernst & Lovich, 2009). 

Painted turtles inhabit the Rideau Canal, a 202-km slackwater canal located in southeastern Ontario, 

Canada, that connects the Ottawa River to Lake Ontario (Figure 1-1a). The Rideau Canal is composed 

of rivers, lakes, and excavated channels connected by 23 lockstations (Figure 1-1a). The canal is used 

extensively for recreational boating: there were over 60,000 vessel crossings recorded at lockstations in 

2019 (Figure 1-1b), without counting the boaters that used the canal without going through the locks. 

Therefore, painted turtles are exposed to high levels of disturbance in some sections of the canal. Painted 

turtles have been assessed as a species of Least Concern by the International Union for Conservation of 

Nature (van Dijk, 2011), but populations in southeastern Ontario are considered of Special Concern by 

COSEWIC given their life-history traits (e.g., late sexual maturity, low juvenile survival) that make 

them vulnerable to the rapid human-induced changes currently occurring in their environment 

(COSEWIC 2018). 

Sampling sites and turtle captures 

We captured 730 painted turtles with fyke nets from May to August in 2019 and in 2020 at 22 

sampling sites distributed approximately every 10 km along the Rideau Canal (except two pairs of 
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sampling sites, RR3-1 and RR3-2: 1.2 km apart, RR2-2-2019 and RR2-2020: 2.2 km apart; Figure 1-

1a; Supporting Information 1 – Table S1-1). We set our nets in areas suitable for painted turtles 

characterized by shallow water, weak currents, abundant aquatic vegetation, and presence of structures 

for basking (e.g., rocks, logs, and stumps). We deployed fyke nets for at least one week at each site and 

checked them every 24 hours. During sampling, we moved nets within a given site to increase trapping 

success. We visited ten sampling sites both years (Supporting Information 1 – Table S1-1). We uniquely 

marked painted turtles by notching their marginal scutes according to the North American coding system 

developed for hard-shelled turtles to identify individuals (Nagle et al., 2017). We determined the sex of 

each turtle based on external morphological traits (e.g., tail and claw length, cloaca position on the tail, 

and shape of the shell). We also measured plastron length, carapace length, height, and width (± 0.5 mm) 

with an aluminum caliper (Haglöf, Sweden).  

Risk-taking behaviours 

We measured three behaviours related to risk-taking propensity: sum of active defensive 

behaviours used, escape latency, and emergence of the turtle from the water after escaping. We repeated 

all behavioural measurements at each capture to obtain multiple observations per individual (mean 

number of observations per turtle: 1.5; range = 1 - 7 observations per turtle, see Supporting Information 

1 – Table S1-2 for the number of painted turtles per number of trials). All turtles were tested individually 

and no visual contact with other turtles occurred during testing. The behavioural responses could be 

influenced by the experimenter’s handling and measurement techniques, but we tried to minimize 

variation in handling by always performing our behavioural tests in the same way and order (i.e., sum 

of active defensive behaviours, escape latency, and emergence of the turtle after escaping). It was not 

possible to use a blinded method because our study involved behavioural measurements that required 

the release of focal turtles at their site of capture (see below in Escape latency and Emergence of the 
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turtle after escaping). The experimenter was thus aware of the identity of the turtle tested and the 

location of capture. We controlled statistically for variation in testing conditions (e.g., order, time and 

day of the trial and lab- vs. field-based tests) and individual characteristics (e.g., sex and carapace length) 

to minimize the possible effects of potential confounds related to the STRANGE framework (e.g., biases 

related to individual learning, habituation, natural behavioural changes over time; Webster & Rutz, 

2020) on the relationship between human disturbance and risk-taking behaviours (see Relationships 

between risk-taking behaviours and human disturbance in the Methods). No information was available 

on individual history prior to the first capture given that turtles were captured from the wild. All turtles 

sampled during the study were used in the analyses (see Supporting Information 1 – Table S1-1 for more 

details on the sample sizes). 

Sum of active defensive behaviours used 

During measurements of the four morphological traits, we noted if the turtle used the following 

active defensive behaviours: i) trying to escape (movement of the legs), ii) trying to bite (the turtle closes 

and opens the mouth with its neck stretched), iii) hissing (gaping of the mouth when retracting the head 

in the shell, thus expulsing air), iv) defecating and/or urinating. We then calculated the number of active 

defensive behaviours used during the test ranging from 0 (no active defensive behaviours used) to 4 (all 

four active defensive behaviours used). Turtles were not handled prior to this test. This test was adapted 

from Pich et al. (2019) (see Supporting Information 2 of Chapter 1 for an example of the test). We 

considered that a turtle that used more active defensive behaviours was more prone to take risks. 

Uniquely among vertebrates, turtles have the possibility to withdraw in their shell, a passive strategy 

that is their main protection against predation (Greene, 1988). Thus, we considered the use of alternative 

active defensive behaviours to be a riskier strategy than hiding in the shell. 
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Escape latency 

After the morphological measurements, we measured surface temperature (± 1 °C) of the turtle 

with an infrared laser thermometer (UEi test instruments, United States) pointed at the middle of the 

plastron because latency behaviours in turtles are affected by plastron temperature (see Pich et al., 2019). 

We then put the turtle in the center of a floating platform (Figure 1-1c) and kept it under a black pail for 

1 min. The floating platform consisted of a 0.6 m x 0.6 m plywood mounted on rigid polystyrene and 

covered with white adhesive vinyl (Figure 1-1c). The platform was held away from the boat with a 1 m 

wooden dowel attached to the platform with a hinge. After the 1-min wait, we lifted the pail with a stick 

from the boat and timed the latency to escape as the time until the turtle touched the water for a 

maximum of 10 min. The maximum time (i.e., 10-min latency) was recorded if a turtle did not escape. 

We estimated wind speed with the Beaufort scale during the platform test as wind can affect water 

turbulence and, thus, turtle escape behaviour. Head emergence and movement latency were also 

measured during the platform test, but were not kept for analyses given their strong positive correlations 

with escape latency (Pearson’s r correlations > 0.60; see Supporting Information 1 – Table S1-3 for the 

correlation coefficients between behavioural measurements), as observed in previous studies (see 

Carlson & Tetzlaff, 2020). We considered that a turtle that left the platform rapidly was more prone to 

take risks. As suggested by Ibáñez et al. (2018), turtles that take more time to move could be considered 

more cautious given that they are taking more time to get visual information about their environment 

and to analyze risk cues. In addition, the pace-of-life syndrome hypothesis suggests that risk-averse 

individuals explore more thoroughly their environment compared to risk-prone individuals (Réale et al., 

2010). 
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Emergence of the turtle after escaping 

After the turtle escaped the platform, we surveyed the water surface around the platform for 30 

sec to see if the turtle emerged from the water (No = 0, Yes = 1; Figure 1-1d). Individuals who did not 

escape from the platform after the 10-min period were not considered for this test. We considered that 

a turtle that emerged from the water after escaping was more prone to take risks than a turtle that 

remained submerged. We acknowledge that turtles could emerge far from the platform and several 

minutes after the test was performed. However, we were not interested in monitoring distant and late 

emergence from the platform given that we wanted to measure the level of risk-taking. Turtles that 

emerged close to the platform (i.e., the risky environment) were more prone to take risks than those that 

emerged far from the platform or much later. 

Behavioural measurements in a controlled environment 

To secure repeated behavioural measurements on several individuals, we brought 122 painted 

turtles (2019 = 50; 2020 = 72) to the Queen’s University Biological Station (Figure 1-1a). Turtles were 

kept for a maximum of four days in outside tanks (940 L; 1.3 m x 1 m [diameter x depth]) filled with 

water from the canal in groups consisting of a maximum of 10 individuals from the same sampling site. 

The same three behavioural measurements described above were made every day on each turtle. The 

platform test, used to measure escape latency and the emergence of the turtle after escaping, was 

performed in the tank (Supporting Information 2 of Chapter 1). On the last day of captivity, we 

performed all behavioural tests one last time prior to release at the sites of capture. Sampling occurred 

daily in the field and newly captured turtles were brought every day at the station until we reached the 

end of sampling period at a given site of capture (i.e., approximatively one week). Thus, the number of 

days in captivity varied between turtles leading to different numbers of repeated behavioural 
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measurements per turtle (see Supporting Information 1 – Table S1-2 for the number of painted turtles 

per number of trials for each behavioural test in the controlled environment).  

The measurements made in the controlled environment were combined with those made in the 

field for the analyses. We statistically controlled for the testing environment (i.e., tests performed in the 

field or in the controlled environment), allowing us to quantify the impact of the environment on each 

risk-taking behaviour. Measuring behavioural responses in both settings also allowed us to document 

the context-dependency of the behavioural tests by comparing repeatability estimates and estimating the 

correlations between lab- and field-based behavioural measurements (see Repeatability and correlations 

between risk-taking behaviours and testing environments and Relationships between risk-taking 

behaviours and human disturbance in the Methods).  

Ethical statement 

All protocols were approved by animal care committees at the University of Ottawa (protocol BL-

3008) and Queen’s University (protocol 2018-1836). All fieldwork was conducted under a Parks Canada 

Agency research and collection permit (number RIC-2018-29178) and Wildlife Scientific Collector’s 

Authorizations from the Ontario Ministry of Natural Resources (numbers 1089358, 1092637 and 

1095459). Prior to handling, turtles were kept under constant supervision in large containers away from 

direct sunlight with a small amount of lake water. Turtles that were temporarily kept in tanks at the 

Queen’s University Biological Station had access to rocks for hiding and logs for basking. Food (e.g., 

lettuce and worms according to the recommendations made by the University of Ottawa Animal Care 

Committee) was distributed in each tank every two days and the tank water was changed 3-4 hours after 

feeding. The health status of each turtle was visually verified every day for the turtles in captivity and 

prior to their release at the capture sites. 
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Repeatability and correlations between risk-taking behaviours and testing environments 

All statistical analyses were conducted with R 3.6.2 (R Core Team, 2019). We used mixed models 

to assess the consistency of behavioural measurements. Prior to analyses, we explored the distribution 

of each behavioural measurement (response variable) to select the best distribution to use for our models. 

We fitted the sum of active defensive behaviours with a Gaussian distribution and an identity link 

function, the emergence of the turtle after escaping with a Binomial distribution and a logit link function, 

and the escape latency with a Gaussian distribution and an identity link function, after normalizing the 

variable using a log(x+1) transformation. In all models, we included turtle identity as a random effect 

and assessed among and within-individual variance for each behavioural measurement. Individual 

repeatability corresponds to the proportion of phenotypic variance attributed to differences among 

individuals (Nakagawa & Schielzeth, 2010). A high repeatability indicates that the variance of a 

repeated measurement within an individual is smaller than the variance among individuals (Lessells & 

Boag, 1987). We only used observations from individuals tested more than once and from sampling 

sites with more than five individuals sampled (N = 202 turtles from 15 sampling sites; see Supporting 

Information 1 – Table S1-1, S1-2). We used the rpt function implemented in the rptR package (Stoffel 

et al., 2017) and adjusted our models for among-individual differences using sex, order of the trial, 

testing environment (i.e., made in the controlled environment or in the field), and sampling year as fixed 

effects. We included sampling site identity as a random effect to control for the non-independence of 

observations from the same location. We also fitted unadjusted models with only turtle identity as a 

random effect. We calculated 95 % confidence intervals (95 % CI) of repeatability estimates and raw 

variance components using likelihood ratio tests (LRTs) with 1,000 parametric bootstrap iterations. We 

also assessed repeatability separately for behavioural measurements made in the field and in the 

controlled environment. Finally, we calculated Pearson’s and Spearman’s correlations between each 
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pair of behaviours (and their respective p values) by using the mean values of each behaviour for each 

individual tested (entire dataset, N = 730) with R Hmisc packages (Harrell, 2020). We also assessed 

correlations between lab- and field-based measurements for each behaviour with the first measurement 

of each individual tested in both environments (N = 122).  

Quantifying human disturbance 

We used ArcGIS version 10.7.1 (ESRI, 2019) and Python version 2.7.16 (Python Software 

Foundation, 2019) to perform all spatial analyses. We used four variables to quantify the intensity of 

human disturbance at each sampling site: i) mean number of daily vessel crossings during the 

operational period of the canal, ii) shortest aquatic distance (in m) to the navigation channel, iii) number 

of houses with access to the canal within various buffers (see below), and iv) proportion of urban area 

within various buffers (see below).  

We calculated the mean daily number of vessel crossings at each lockstation based on Parks 

Canada counts made during the operational period (i.e., May (Canadian Victoria Day) to October 

(Canadian Thanksgiving); see Supporting Information 1 - Table S1-4; Figure 1-1b). Given the lower 

frequentation and late opening of the Rideau Canal in 2020 due to the Covid-19 pandemic, we only used 

the number of vessel crossings from 2019 to be more representative of boat traffic during a typical year 

and given that we were interested in the inter-site variation in boating activity (Supporting Information 

1 - Table S1-4). We used the mean daily number of vessel crossings from the upstream and downstream 

lockstations of each sampling site to calculate the mean daily number of vessel crossings. We considered 

that sampling sites in proximity to lockstations with high mean daily numbers of vessel crossings should 

have more boat activity. 

We calculated the shortest aquatic distance of each sampling site to the navigation channel with 
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the Generate near table tool in ArcMap. The channel was digitized by Parks Canada from digital 

navigation charts. We considered that sampling sites closer to the navigation channel should have more 

boat activity.  

We used ArcGIS world imagery online basemap (ESRI, 2021) to identify each house with access 

to the Rideau Canal (e.g., presence of a dock on the property or at least one side of the property with 

access to the canal). We calculated the number of houses with access to the canal using buffer distances 

that ranged from 100 m to 1000 m at 100-m increments with the Spatial Join tool in ArcMap (based on 

the work of Čapkun-Huot et al. (2021) and Fyson & Blouin-Demers (2021). We considered that 

sampling sites close to numerous houses with access to the canal should have more boat activity.  

Based on the same buffer distances as above, we determined the proportion of urban area around 

each sampling site based on the Southern Ontario Land Resource Information System (SOLRIS) V.3 

with 15-m resolution (OMNRF, 2019; Figure 1-1a). We used the Tabulate Area 2 tool from the Spatial 

Analyst Supplemental Tools v1.3 in ArcMap to calculate the number of cells of each land cover class 

inside each buffer distance. Then, we calculated the proportion of urban area (i.e., transportation, built-

up area-pervious, and built-up area-impervious land cover classes) over the total buffer area (Figure 1-

1a). We considered that sampling sites in proximity to higher proportion of urban area should have more 

human activity. 

Finally, we determined the distance at which the number of houses with access to the canal and 

the proportion of urban area had the maximum effect on the three behavioural measurements separately. 

The scale of maximum effect was attributed to the buffer distance at which the variable had the highest 

Pearson’s correlation coefficient with each behavioural measurement (see Supporting Information 3 of 

Chapter 1). We only kept the scale of maximum effect for each variable for further analyses. Similar 
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techniques were used in other taxa to determine the scale of maximum effect of landscape variables (see 

Čapkun-Huot et al., 2021; Courtois et al., 2021; Fyson & Blouin-Demers, 2021; Martin et al., 2020; 

Wilkin et al., 2006).  

Relationships between risk-taking behaviours and human disturbance 

The same distributions and link functions described above for repeatability analyses were used 

here. We used (generalized) linear mixed models to assess the relationships between human disturbance 

and risk-taking behaviours from measurements made on 730 painted turtles (Supporting Information 1 

– Table S1-1, S1-2) with the lme4 package (Bates et al., 2015). In all models, we used the behaviour as 

the response variable and different predictor variables to assess the variance related to testing conditions 

(e.g., order of the trial and lab- vs. field-based tests) and individual characteristics (e.g., sex and carapace 

length), as well as the variables quantifying human disturbance (see Supporting Information 1 – Table 

S1-5 and S1-6 for a list and description of all the variables included). All continuous predictor variables 

were standardized (mean zero, unit variance) before model selection (Supporting Information 1 – Table 

S1-6). We removed from initial models all variables that were highly correlated (r > 0.8) or with high 

generalized variance inflation factors (GVIF(1/(2*df)) > 2) to avoid multicollinearity (see Supporting 

Information 1 – Table S1-5 and S1-7). We simplified models with a backward selection procedure (α = 

0.05) until all remaining variables were significant and the inclusion/deletion of each variable was 

confirmed with a LRT (Crawley, 2007). We also included turtle and sampling site identity as random 

effects to respectively control for the repeated behavioural measurements on individuals and individuals 

from the same location. Turtle identity was significant (according to LRTs) and kept in all models, while 

sampling site identity was only significant in the sum of active defensive behaviours model. We visually 

verified model assumptions of each initial model by checking residual distributions and their 

relationships with fitted values. We calculated the estimates and 95 % CI for all predictor variables from 
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the final models fitted with restricted maximum likelihood (Zuur et al., 2009). We estimated marginal 

and conditional variance explained (R2) by the final models with the MuMIn package (Bartoń, 2020). 

We generated final model predictions with the ggeffects package (Lüdecke, 2018) and built figures with 

the ggplot2 package (Wickham, 2016).  

Results 

Description of risk-taking behaviours in painted turtles 

Combining tests performed in the controlled environment and in the field, we made 1117 observations 

of the number of active defensive behaviours used during manipulations on the 730 turtles captured. In 

30 % of observations, no active defensive behaviours were used (340 observations; mean = 1.08 active 

defensive behaviours used, standard deviation (SD) = 0.92). Only three turtles used all four active 

defensive behaviours during the same trial. We made 1115 observations of escape latency and turtles 

escaped within 30 sec 82 % of the time (929 observations; mean = 65.74 sec, SD = 117.54). During the 

platform test, 23 turtles (29 observations) had not escaped after 10 min. Finally, for the 1071 

observations of emergence after escaping, turtles did not emerge from the water 70 % of the time (750 

observations; see Supporting Information 1 – Table S1-1 for more details on the sample sizes). 

Repeatability and correlations between risk-taking behaviours and testing environments 

We obtained repeated behavioural measurements both from the controlled environment and in the 

field for 202 individuals, representing 28% of the total number of turtles tested (N = 730; Supporting 

Information 1 – Table S1-2). We found statistically significant adjusted repeatability estimates for sum 

of active defensive behaviours (0.363 (95 % CI = 0.263 – 0.458)), escape latency (0.387 

(95 % CI = 0.286 – 0.490)) and emergence of the turtle after escaping (0.365 

(95 % CI = 0.129 – 0.630)) (Table 1-1). There were slight differences between adjusted and unadjusted 
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repeatability estimates for all behavioural measurements: when our models were adjusted with the fixed 

effects and sampling site identity as a random effect, repeatability estimates for escape latency and 

emergence of the turtle after escaping increased, while it decreased for the sum of active defensive 

behaviours used (Table 1-1). For all behavioural measurements, however, the 95 % CI of the unadjusted 

and adjusted repeatability estimates overlapped (Table 1-1). In each testing environment separately, 

repeatability estimates were significant for all risk-taking behaviours and similar to those we obtained 

with the combined dataset (Supporting Information 1 – Table S1-8). We found slightly higher 

repeatability estimates in the field for the sum of active defensive behaviours used and escape latency, 

while it was the opposite for the emergence of the turtle after escaping the platform (Supporting 

Information 1 – Table S1-8). However, the 95 % CI of repeatability estimates from field and controlled 

environment all overlapped (Supporting Information 1 – Table S1-8). 

Painted turtles that used more active defensive behaviours escaped from the floating platform 

sooner (Pearson’s r correlation = -0.24, p < 0.01; Supporting Information 1 - Table S1-3) and emerged 

from the water more often after escaping (r = 0.26, p < 0.01; Supporting Information 1 - Table S1-3). 

Finally, turtles that took more time to escape from the platform emerged less often from the water after 

escaping (r = -0.19, p < 0.01; Supporting Information 1 - Table S1-3). We obtained similar results with 

a multivariate mixed model that included the three behavioural measurements as response variables with 

the MCMCglmm package (Hadfield, 2010; Supporting Information 1 – Table S1-9). Painted turtles 

tested in the controlled environment used fewer active defensive behaviours during handling and 

emerged less often from the water after escaping (Table 1-2). Lastly, for all risk-taking behaviours, we 

obtained significant positive correlations between measurements made in the field and those made in 

the controlled environment (r active defensive behaviours = 0.40; r escape latency = 0.39; r emergence = 0.33; p < 0.01; 

Supporting Information 1 – Table S1-10).  
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Relationships between risk-taking behaviours and human disturbance 

We found significant relationships between some measurements of human disturbance and the 

sum of active defensive behaviours used, but no relationships for escape latency and emergence of the 

turtle after escaping (Table 1-2). Painted turtles from sites closer to the navigation channel (Table 1-2; 

Figure 1-2a) and with more daily vessel crossings (Table 1-2; Figure 1-2b) used more active defensive 

behaviours. In contrast, painted turtles from sites with more houses with access to the canal within 200 m 

used fewer active defensive behaviours (Table 1-2; Figure 1-2c). Model estimates and their 95 % CI for 

all predictor variables included in our models are provided in Table 1-2.  

Discussion 

Understanding how animals adjust behaviourally to perturbations in their environment is crucial 

to better evaluate the impact of human disturbance on wildlife populations, especially for species 

particularly vulnerable to human activities. We observed that risk-taking behaviours of painted turtles 

were repeatable and consistent among the different tests and the two testing environments. Painted 

turtles from sites with more boat activity used more active defensive behaviours, while turtles from sites 

in proximity to more houses with access to the canal used fewer. These findings add to the limited 

information currently available on the impact of human disturbance on risk-taking behaviours in turtles. 

Painted turtles show consistent differences in risk-taking behaviours 

All three risk-taking behaviours of painted turtles were repeatable, as observed in other studies 

(Bell et al., 2009; Holtmann, Lagisz, et al., 2017). Across taxa, approximately 40 % of the phenotypic 

variation of behavioural responses reflects among-individual variance, similar to our estimates (Bell et 

al., 2009; Holtmann, Lagisz, et al., 2017). In previous studies of turtles, repeatability estimates of risk-

taking behaviours were slightly higher than ours (mean ~ 0.5; see Supporting Information 1 – Table S1-
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11). In these studies, however, repeated measurements were generally only obtained in controlled 

environments, over short periods of time (i.e., a few hours to several weeks), and on a small number of 

individuals (i.e., fewer than 30 turtles; Supporting Information 1 – Table S1-11). Repeatability estimates 

are generally higher when measurements are made temporally close to each other and in stable 

conditions (Bell et al., 2009; Holtmann, Lagisz, et al., 2017). The use of only one sampling technique 

(i.e., fyke nets) in our study, however, could have led to more conservative repeatability estimates (see 

also Possible limitations of the study). Estimating repeatability over a longer period and from a large 

dataset collected in the field, as in our study, is probably more realistic and representative of the long 

lifespan of turtles and the environmental context in which they live. Given that risk-taking behaviours 

are partially consistent within individuals, it allows evaluating the effect of human disturbance on the 

variation observed in risk-taking behaviours.  

We observed consistency among our three measures of risk-taking propensity. Painted turtles that 

escaped sooner from the floating platform used more active defensive behaviours and emerged more 

often from the water after escaping: these turtles may be considered more risk prone. Our three 

behavioural tests seem to measure the same underlying risk-taking propensity. Previous studies in turtles 

also indicated consistent boldness under alternative tests (Pich et al., 2019; Roth et al., 2020). 

Behavioural consistency among tests could indicate a behavioural syndrome (i.e., suite of correlated 

behavioural measurements) in painted turtles where individuals use different behavioural strategies (i.e., 

pace-of-life continuum: proactive vs. reactive individuals; Réale et al., 2010; Sih, 2004). Measurements 

in different contexts (e.g., simulated predation attack vs. human presence) or along other axes of 

behaviour (e.g., exploration, aggressivity, and sociability) are needed to confirm the presence of a 

behavioural syndrome in painted turtles.  

Risk-taking behaviours were positively correlated between testing environments indicating 
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consistency across contexts. Risk-taking behaviours were also repeatable in each testing environments 

indicating consistency in among-individual differences regardless of the context (Rudin, Simmons, et 

al., 2018). These results indicate that behavioural measurements obtained in a controlled environment 

could predict risk-taking level in the field. On the other hand, painted turtles used fewer active defensive 

behaviours and emerged less often from the water after escaping in the controlled environment. Painted 

turtles reacted slightly differently between testing environments. In the controlled environment, turtles 

were not exposed to external cues and might have perceived it as a novel environment while turtles 

tested in the field had access to cues from their surroundings with which they were familiar (Mouchet 

& Dingemanse, 2021; Rudin, Simmons, et al., 2018; Rudin, Tomkins, et al., 2018). Turtles tested in the 

controlled environment may also have different behavioural responses to the tests given their short-term 

captivity. Our findings highlight the importance of performing behavioural tests in different contexts, 

especially in natural environments, and to control statistically for testing conditions given their potential 

impacts on behavioural responses. We lacked enough repeated measurements in the field to calculate 

correlations between contexts by partitioning among- and within-individual variances and to completely 

evaluate cross-context consistency, which would be useful in future analyses (Mouchet & Dingemanse, 

2021).  

Painted turtles from sites with high boat activity take more risks  

Painted turtles from sites more exposed to boat activity were more prone to take risks, as indicated 

by their use of more active defensive behaviours, suggesting that human presence influences behavioural 

responses. Previous studies documented similar relationships. For instance, more risk-prone turtles (i.e., 

shorter flight initiation distance to human approach and lower abandonment rate of basking sites after 

boating disturbance) were observed in areas with more frequent human disturbance (Polich & 

Barazowski, 2016; Selman et al., 2013). To our knowledge, our study is the first to relate the use of 
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active defensive behaviours to human disturbance, making comparisons with other studies impossible. 

While shorter flight initiation distances and lower abandonment rates in areas with higher exposure to 

human activities reflect a higher tolerance toward human disturbance, the use of more active defensive 

behaviours suggests the opposite (Bejder et al., 2009). We need to understand how these various 

behaviours are related to each other and to human disturbance.  

It is unclear how the use of active defensive behaviours can be advantageous in human-altered 

environments considering that turtles have the opportunity to withdraw in their shell, a possibly safer 

strategy for protection. A previous study by Kashon and Carlson (2018) found that risk-prone Eastern 

box turtles (i.e., low movement latencies) had more shell injuries, suggesting a higher exposure to risky 

situations such as predation. Thus, risk-prone turtles may use alternative active defensive behaviours 

(i.e., stronger antipredator behaviours) to compensate for the risks of not hiding in risky situations 

(Pascual & Senar, 2014; Pich et al., 2019). While risk-averse individuals (i.e., those that use fewer active 

defensive behaviours, greater propensity to hide) are more cautious and may have a lower mortality rate 

(Smith & Blumstein, 2008), they may miss many feeding, reproductive and basking opportunities 

compared to risk-prone individuals by avoiding areas with high human disturbance (Dugatkin & Alfieri, 

2003; Dyer et al., 2009; Griffin et al., 2017; Réale et al., 2009). Risk-prone individuals resume activities 

more rapidly after exposure to an unknown threat, suggesting that the loss of opportunities can be limited 

compared to risk-averse individuals (Cole & Quinn, 2014). Therefore, the capacity to cope better with 

risky situations, suggested by the use of more active defensive behaviours, may allow painted turtles to 

coexist with boating activities in the canal and to persist in a human-altered environment.  

We observed that painted turtles from sites with more houses with access to the canal used fewer 

active defensive behaviours. This result is unexpected because we predicted that all our proxies of 

human disturbance would be similarly related to risk-taking behaviour. One possible explanation is that 
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this relationship is simply spurious. The scale of maximum effect occurred at 200 m and the effect size 

was weak, at least partly because of limited variance in the predictor variable (Supporting Information 

1 – Table S1-6). It is also possible that the number of houses within 200 m is a poor predictor of the 

level of recreational boating. The response of wildlife to human disturbance can be complex depending 

on the type and intensity of perturbations (Gaynor et al., 2018; Larson et al., 2016; Tablado & Jenni, 

2017; Tucker et al., 2018). The behavioural response can also depend on the predictability of 

perturbations and, thus, the capacity of the animal to predict the risk level (Nickel et al., 2020). 

Therefore, risk-averse turtles (i.e., that use fewer active defensive behaviours) could avoid areas with 

high boat activity where risk level is less predictable, whereas the number of houses may reflect a more 

permanent and constant human disturbance (i.e., predictable), leading to different behavioural responses 

to these different proxies of human disturbance.  

While our study was not designed to assess the mechanisms responsible for the observed effects, 

our findings still provide insights into which mechanisms may play a role in the relationship observed 

between human disturbance and the number of active defensive behaviours used. For instance, the use 

of a higher number of active defensive behaviours in larger turtles (i.e., long carapace; Table 1-2) that 

are likely older (Wilson et al., 2003), suggests a long-term behavioural plasticity where turtles may 

adapt their behaviour according to their past experiences. We cannot exclude that the behavioural 

responses observed in this system could be the result of multiple mechanisms. Indeed, new selection 

pressures could have appeared during canal construction leading to the selection of risk-prone turtles 

and followed by a long-term behavioural plasticity of the individuals that have persisted in these new 

conditions. The construction of the canal is relatively recent (e.g., between 1826 and 1832) in terms of 

painted turtle generation time (~ 30-45 years; COSEWIC, 2018) and it could be too short for selection 

to occur. Another possibility is that painted turtles, after exposure to new environmental conditions 
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caused by the canal construction, have dispersed and selected habitats better adapted to their behaviour 

at some point during their lifetime. Long-term monitoring of these populations would be necessary to 

achieve a better understanding of the mechanisms driving the behavioural responses of painted turtles 

toward human disturbance. 

Possible limitations of the study and STRANGEness of animals sampled 

We are aware of the potential lack of independence between nearby sampling sites along the canal 

and that risk-taking behaviours could be spatially autocorrelated. To quantify the potential presence of 

spatial autocorrelation, we estimated the Moran’s I statistic for different distances (i.e., from 5 km to 

130 km) for each risk-taking behaviour. We detected positive spatial autocorrelation for the sum of 

active defensive behaviours and the emergence of the turtle after escaping in the water (positive and 

significant Moran’s I statistic respectively under 5 km and 27 km; see Supporting Information 1 – Table 

S1-12). Given that we did not find a significant effect of sampling site identity and human disturbance 

on the emergence of the turtle after escaping, it was only relevant to evaluate the effect of spatial 

autocorrelation on the results obtained for the sum of active defensive behaviours. We modified the 

variable representing sampling site identity by grouping together observations from sampling sites 

located less than 5 km apart (i.e., RR3-1 with RR3-2 and RR2-2-2019 with RR2-2020). By fitting a new 

model with this adapted version of sampling site identity that considers spatial autocorrelation as a 

random effect, we found that the variance explained by sampling site identity was very similar to that 

in the model that did not consider spatial autocorrelation (without correction for spatial autocorrelation: 

variance = 0.051, SD = 0.226; with the correction: variance = 0.053, SD = 0.229). We also obtained the 

same significant predictors in the final model after model selection (Supporting Information 1 – Table 

S1-13). 
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We only used one sampling technique (i.e., fyke nets), which may have led to the capture of turtles 

that are not representative of the entire population in their behaviours according to the STRANGE 

framework (Webster & Rutz, 2020). Nets could have been avoided by risk-averse individuals leading 

to the trapping of more risk-prone individuals and, thus, to the underestimation of the range of 

behavioural responses. Less diversity in behavioural types, however, should have led to more 

conservative repeatability estimates by reducing among-individual variances. It should also have 

reduced our capacity to identify how human disturbance is related to risk-taking behaviours, which did 

not appear to be the case, possibly because our high sampling effort at a large spatial scale may have 

minimized these biases. In addition, by combining data collected in two testing environments, we 

obtained a large sample size that allowed us to control statistically and quantify the effect of multiple 

confounding factors related to testing conditions (e.g., order of the trial and lab- vs. field-based tests) 

and individual characteristics (e.g., sex and carapace length; see Table 1-2 for a list of all the variables 

included in models and their respective effect size). By measuring behaviours in the field, however, we 

could not control for spatio-temporal variations in the testing environment. In addition, our ability to 

detect the emergence of the turtle after escaping could potentially vary between testing environments. 

Positive correlations and similar repeatability estimates between testing environments indicate that our 

behavioural tests seem appropriate to assess risk-taking level in both contexts. In addition, repeating the 

analyses separately for turtles tested in the controlled environment and in the field, and for turtles tested 

more than once, gave qualitatively similar results (see Supporting Information 1 – Table S1-14 and S1-

15). Thus, we are confident that our analyses are robust, and that the results obtained reflect how human 

disturbance is related to risk-taking behaviours in painted turtles.  

Conclusion 

Overall, we found that painted turtles show consistent differences in risk-taking behaviours and 
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that their behavioural response to risky situations is influenced by the level of human disturbance in the 

Rideau Canal. Our study adds to the current research on turtle behaviour and is one of the first to assess 

how risk-taking behaviour is related to human disturbance in this group. There is a need to assess the 

impact of human activities on other types of behaviours and to identify the mechanisms driving the 

differences observed in behavioural responses according to the level of human disturbance. It would 

also be critical to assess how the behavioural responses are related to fitness and survival (see Allard et 

al., 2019; Germano et al., 2017). A better understanding of the consequences of behavioural changes 

would allow better management of species vulnerable to human activities through the creation of 

conservation plans that are better adapted to minimize the negative effects of human disturbance on 

wildlife. 

Data availability  

Data and R codes used for this study are available in the Zenodo Digital Repository: 

https://doi.org/10.5281/zenodo.7795750 



33 
 

Tables 

Table 1-1 Sources of variance (VG: group-level variance; VR: residual variance) and repeatability estimates (R) for three risk-taking 

behaviours in painted turtles (Chrysemys picta): sum of active defensive behaviours, escape latency, and emergence of the turtle after 

escaping. The unadjusted repeatability estimates only included turtle identity as random effect, while the adjusted repeatability estimates 

also included sex, trial order, testing environment (i.e., made in the controlled environment or in the field), and year as fixed effects, and 

sampling site identity as a random effect (VG - site and Rsite). Significance [95 % confidence intervals] of the variances and repeatability 

estimates were determined with likelihood ratio tests. The coefficient of determination (R2) of the fixed effects included in the adjusted 

repeatability estimates was calculated. Sources of variances for the emergence of the turtle after escaping were estimated from the link-

scale approximation and repeatability estimates from the original scale. Number of individuals tested (Nb. ID) with the total number of 

observations (Nb. Entries) for each behaviour are provided 
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 Nb. ID (Nb. Entries) VG - individual VG - site VR Rindividual Rsite R2 fixed 

Sum of active defensive behaviours 

Unadjusted 202 (569) 0.374 

[0.275 - 0.492] 

– 0.430 

[0.374 - 0.499] 

0.465 

[0.371 - 0.549] 

– – 

Adjusted 196 (553) 0.292 

[0.206 - 0.388] 

0.103 

[0.014 - 0.234] 

0.411 

[0.349 - 0.473] 

0.363 

[0.263 - 0.458] 

0.128 

[0.020 - 0.254] 

0.06 

Escape latency 

Unadjusted 199 (574) 0.506 

[0.338 - 0.681] 

– 0.916 

[0.796 - 1.045] 

0.356 

[0.258 - 0.442] 

– – 

Adjusted 193 (558) 0.506 

[0.352 - 0.682] 

0.081 

[0.000 - 0.226] 

0.723 

[0.619 - 0.817] 

0.387 

[0.286 - 0.490] 

0.062 

[0.000 - 0.154] 

0.10 

Emergence of the turtle after escaping 

Unadjusted 196 (543) 1.679 

[0.521 - 2.484] 

– 4.565 

[4.298 - 5.065] 

0.257 

[0.107 - 0.317] 

– – 

Adjusted 190 (527) 3.185 

[0.813- 4.928] 

2.325 

[0.226 - 4.553] 

4.576 

[4.152 - 6.137] 

0.365 

[0.129 - 0.630] 

0.267 

[0.008 - 0.555] 

0.20 
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Table 1-2 Summary statistics for the final (generalized) linear mixed models with risk-taking 

behaviours in painted turtles (Chrysemys picta) as the response variable: sum of active defensive 

behaviours used, escape latency, and emergence of the turtle after escaping. All continuous predictor 

variables were scaled (mean zero, unit variance) before model selection. Reference factors are in 

parentheses for categorical predictor variables. Turtle and sampling site identities were included as 

random effects in the model for sum of active defensive behaviours, while only turtle identity was 

included in the two other models. For each model, we provided for each significant predictor variable: 

the estimate, the standard error (SE), the t-value (z-value for the binomial model), the p-value, and the 

95 % confidence interval (95 % CI). Statistically significant effects (p-value < 0.05) are in bold. The 

marginal and conditional coefficient of determination (R2) are provided for each model as well as the 

number of unique painted turtles tested with the total number of observations in parentheses
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Variables Estimate  SE  t-value p-value [95 % CI] 

Sum of active defensive behaviours 714 individuals (1091 observations); R2 - marginal : 0.08; R2 - conditional: 0.52 

Intercept 0.853 0.074 11.544 < 0.001 [0.708 to 0.998] 

Number of houses within 200 m -0.134 0.058 2.316 0.031 [-0.247 to -0.021] 

Distance to navigation channel -0.122 0.057 2.122 0.047 [-0.234 to -0.009] 

Mean daily number of vessel crossings  0.194 0.065 2.986 0.008 [0.067 to 0.321] 

Sex (Male) 0.327 0.070 4.687 < 0.001 [0.191 to 0.464] 

Testing environment (controlled setting) -0.218 0.068 3.228 0.001 [-0.350 to -0.086] 

Carapace length 0.112 0.037 3.014 0.003 [0.040 to 0.186] 

Turtle temperature 0.003 0.046 0.077 0.939 [-0.087 to 0.094] 

Julian Day -0.012 0.061 0.197 0.845 [-0.132 to 0.107] 

Hour 0.016 0.035 0.462 0.644 [-0.053 to 0.086] 

Year (2020) 0.040 0.073 0.555 0.579 [-0.102 to 0.183] 

Order of the trial 0.043 0.027 1.573 0.116 [-0.010 to 0.096] 

      
Escape latency 596 individuals (919 observations); R2 - marginal : 0.10; R2 - conditional: 0.44 

Intercept 3.401 0.044 76.525 < 0.001 [3.314 to 3.488] 

Order of the trial -0.231 0.036 6.415 < 0.001 [-0.302 to -0.161] 

Julian Day 0.141 0.053 2.645 0.008 [0.036 to 0.245] 

Turtle temperature  -0.199 0.047 4.245 < 0.001 [-0.291 to -0.107] 

Carapace length  0.167 0.042 4.013 < 0.001 [0.085 to 0.248] 

Wind scale (Beaufort scale) -0.176 0.036 4.899 < 0.001 [-0.246 to -0.106] 

Sex (Male) 0.005 0.093 0.053 0.958 [-0.177 to 0.186] 

Distance to navigation channel  0.025 0.052 0.475 0.635 [-0.077 to 0.126] 

Number of houses within 400 m 0.032 0.053 0.602 0.548 [-0.072 to 0.137] 

Mean daily number of vessel crossings -0.028 0.041 0.681 0.496 [-0.108 to 0.052] 

Year (2020) -0.087 0.088 0.995 0.320 [-0.260 to 0.085] 

Proportion of urban areas within 200 m 0.094 0.060 1.547 0.123 [-0.025 to 0.212] 

Testing environment (controlled setting) 0.244 0.144 1.692 0.091 [-0.039 to 0.527] 

Hour of the platform test -0.039 0.039 0.990 0.322 [-0.115 to 0.038] 
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Emergence of the turtle after escaping 704 individuals (1071 observations); R2 - marginal : 0.12; R2 - conditional: 0.49 

Intercept -1.135 0.208 5.464 < 0.001 [-1.543 to -0.728] 

Testing environment (controlled setting) -2.318  0.417 5.558 < 0.001 [-3.135 to -1.500] 

Julian Day 0.994 0.182 5.473 < 0.001 [0.638 to 1.350] 

Carapace length -0.323 0.131 2.473 0.013 [-0.579 to -0.067] 

Sex (Male) -0.072 0.242 -0.298 0.767 [-0.545 to 0.402] 

Turtle temperature 0.082 0.135 0.606 0.545 [-0.183 to 0.348] 

Hour of the platform test 0.080 0.128 0.627 0.531 [-0.170 to 0.331] 

Year (2020) 0.299 0.231 1.293 0.196 [-0.154 to 0.751] 

Distance to navigation channel -0.188 0.138 1.361 0.173 [-0.459 to 0.083] 

Number of houses within 300 m -0.160 0.134 1.196 0.232 [-0.423 to 0.102] 

Mean daily number of vessel crossings 0.196 0.121 1.620 0.105 [-0.041 to 0.433] 

Order of the trial 0.167 0.107 1.570 0.116 [-0.042 to 0.376] 
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Figures 

 

Figure 1-1 (a) Map of the Rideau Canal Waterway, Ontario, Canada, and the 22 sites (dots labelled with 

site names) sampled in 2019 and 2020. Solid bars (dark blue) represent the lockstations with their 

respective numbers used as reference for Figure 1-1b. Urban areas (i.e., building and roads) are depicted 

in red (dark grey) based on the Southern Ontario Land Resource Information System (SOLRIS) V.3 

(OMNRF, 2019). The star shows the location of the Queen’s University Biological Station where the 
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behavioural measurements in a controlled environment occurred. The map was built using ArcGIS® 

software by ESRI (www.esri.com) (b) Mean daily number of vessel crossings at each lockstation in 

2019 based on Parks Canada records. The dashed line represents the mean across all lockstations. The 

numbers used to identify each lockstation are the reference numbers from Figure 1-1a. (c) Image of a 

painted turtle (Chrysemys picta) on the floating platform during the platform test. (d) Image of a painted 

turtle that emerged from the water after escaping from the floating platform 

 

Figure 1-2 Relationships between the number of active defensive behaviours used by painted turtles 

(Chrysemys picta) and three proxies of human disturbance in the Rideau Canal, Ontario, Canada: (a) 

shortest aquatic distance to the navigation channel, (b) mean daily number of vessel crossings, and (c) 

number of houses with access to the canal within 200 m of the sampling site. Predictor variables were 

standardized (mean zero, unit variance). Each dot represents an observation (N = 1091). Dots were 

jittered to avoid overlap. Grey areas represent 95 % confidence intervals of the model-predicted effect 

(black line)
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Supporting Information for Chapter 1 

Supporting Information 1 – Table S1-1 to S1-15 

Table S1-1 Count of observations made for the three risk-taking behaviours (Sum of active defensive 

behaviours, escape latency and emergence of the turtle after escaping) measured on painted turtles at 22 

sampling sites across the Rideau Canal, Canada, in 2019 and 2020. Number of unique painted turtles 

tested are in parentheses. The total number per site correspond to the total of unique painted turtles 

tested: some turtles were captured between years during the entire project and, thus, are duplicated 

between years. aSampling sites whose data have been used for repeatability analyses 

 



41 
 

  Sum of active defensive behaviours  Escape latency  Emergence of the turtle after escaping 

Sampling sites   2019 2020 Total   2019 2020 Total   2019 2020 Total 

RR1a  27 (21) 35 (20) 62 (26)  27 (21) 33 (19) 60 (26)  25 (19) 32 (18) 57 (24) 

RR2-2-2019  15 (9) 0 (0) 15 (9)  14 (8) 0 (0) 14 (8)  14 (8) 0 (0) 14 (8) 

RR2-2020a  0 (0) 50 (30) 50 (30)  0 (0) 50 (30) 50 (30)  0 (0) 50 (30) 50 (30) 

RR3-1a  25 (17) 0 (0) 25 (17)  25 (17) 0 (0) 25 (17)  25 (17) 0 (0) 25 (17) 

RR3-2a  12 (11) 24 (9) 36 (16)  12 (11) 24 (9) 36 (16)  11 (11) 24 (9) 35 (16) 

RR4  32 (32) 0 (0) 32 (32)  32 (32) 0 (0) 32 (32)  30 (30) 0 (0) 30 (30) 

RR5  46 (43) 0 (0) 46 (43)  45 (42) 0 (0) 45 (42)  43 (40) 0 (0) 43 (40) 

RR6a  32 (22) 46 (42) 78 (61)  31 (22) 46 (42) 77 (61)  32 (22) 44 (40) 76 (59) 

RR7a  31 (29) 32 (27) 63 (54)  25 (23) 32 (27) 57 (49)  24 (22) 31 (26) 55 (47) 

RR8  37 (35) 0 (0) 37 (35)  36 (34) 0 (0) 36 (34)  37 (35) 0 (0) 37 (35) 

RR9a  13 (13) 27 (24) 40 (33)  13 (13) 27 (24) 40 (33)  13 (13) 27 (24) 40 (33) 

RR10  30 (28) 0 (0) 30 (28)  30 (28) 0 (0) 30 (28)  29 (27) 0 (0) 29 (27) 

LR1  51 (47) 0 (0) 51 (47)  50 (46) 0 (0) 50 (46)  48 (44) 0 (0) 48 (44) 

BR1a  13 (13) 105 (40) 118 (53)  12 (12) 105 (40) 117 (52)  12 (12) 103 (40) 115 (52) 

BR2-2020a  0 (0) 32 (25) 32 (25)  0 (0) 32 (25) 32 (25)  0 (0) 32 (25) 32 (25) 

UP6  42 (40) 0 (0) 42 (40)  42 (40) 0 (0) 42 (40)  42 (40) 0 (0) 42 (40) 

CL2a  0 (0) 54 (21) 54 (21)  0 (0) 54 (21) 54 (21)  0 (0) 54 (21) 54 (21) 

SA1a  59 (20) 0 (0) 59 (20)  77 (20) 0 (0) 77 (20)  57 (20) 0 (0) 57 (20) 

WF1a  7 (7) 52 (29) 59 (35)  7 (7) 52 (29) 59 (35)  6 (6) 51 (29) 57 (34) 

C1a  13 (12) 27 (15) 40 (26)  13 (12) 27 (15) 40 (26)  13 (12) 23 (12) 36 (23) 

RS1a  52 (16) 22 (13) 74 (29)  51 (16) 22 (13) 73 (29)  49 (16) 22 (13) 71 (29) 

CB1a  35 (16) 39 (36) 74 (50)  30 (16) 39 (36) 69 (50)  29 (16) 39 (36) 68 (50) 

TOTAL   572 (431) 545 (331) 1117 (730)   572 (420) 543 (330) 1115 (720)   539 (410) 532 (323) 1071 (704) 
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Table S1-2 Count of painted turtles per number of trials performed for the three risk-taking behaviours: 

Sum of active defensive behaviours, escape latency and emergence of the turtle after escaping. (A) 

Count from the dataset to calculate repeatability estimates: include only individuals with more than one 

observation and from sites with more than 5 unique turtles (15 sampling sites; Table S1-1). (B) Count 

from the dataset used for the (generalized) linear mixed models to assess the relationship between risk-

taking behaviours and human disturbance. Some turtles were captured and tested between sampling 

years (2019 and 2020). Numbers in parentheses represent the number of painted turtles tested in the 

controlled setting 

  

(A) Repeatability             

  Number of turtles 

Number of trials  Active defensive behaviours  Escape latency  Emergence of the turtle 

2  92 (52)  93 (29)  97 (38) 

3  67 (28)  48 (46)  57 (31) 

4  37 (1)  52 (1)  37 (0) 

5  2 (0)  2 (0)  1 (0) 

6  2 (0)  2 (0)  3 (0) 

7  2 (0)  2 (0)  1 (0) 

Total number of turtles  202 (81)  199 (76)  196 (69) 

Turtles tested between years   31 (0)   29 (0)   28 (0) 

              

(B) (Generalized) linear mixed models         

  Number of turtles 

Number of trials  Active defensive behaviours  Escape latency  Emergence of the turtle 

1  509 (41)  502 (46)  489 (50) 

2  110 (52)  111 (29)  115 (38) 

3  68 (28)  49 (46)  58 (31) 

4  37 (1)  52 (1)  37 (0) 

5  2 (0)  2 (0)  1 (0) 

6  2 (0)  2 (0)  3 (0) 

7  2 (0)  2 (0)  1 (0) 

Total number of turtles  730 (122)  720 (122)  704 (119) 

Turtles tested between years   32 (0)   30 (0)   29 (0) 
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Table S1-3 Pearson (lower panel) and Spearman (upper panel) correlation coefficients between the risk-

taking behaviours measured on painted turtles. All correlations were significant (p value < 0.01). Head 

emergence and movement latencies were not kept in further analyses given their relatedness with escape 

latency (Pearson correlation coefficients over 0.6) 

  

  Active defenses HEL ML EL Emergence 

Sum of active defensive behaviours (Active defenses) – -0.31 -0.27 -0.24 0.28 

Head emergence latency (HEL) -0.15 – 0.47 0.45 -0.28 

Movement latency (ML) -0.24 0.60 – 0.95 -0.20 

Escape latency (EL) -0.24 0.60 0.99 – -0.16 

Emergence of the turtle after escaping (Emergence) 0.26 -0.16 -0.19 -0.19 – 
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Table S1-4 Mean daily number of vessel crossings of the 23 lockstations of the Rideau Canal, Canada. 

The count of vessel crossings was collected during the operational period (May to October) of 2019 and 

2020 from the Ottawa River (Ottawa) to Lake Ontario (Kingston Mills). The mean number represents 

the mean between 2019 and 2020. Data were provided by Parks Canada 

 

Lockstations 2019 2020 Mean 

1. Locks 1-8 (Ottawa) 7.33 4.41 5.87 

2. Locks 9-10 (Hartwells) 10.14 6.81 8.48 

3. Locks 11-12 (Hogs Back) 10.51 6.79 8.65 

4. Lock 13 (Black Rapids) 8.80 6.96 7.88 

5. Locks 14-16 (Long Island) 10.37 6.67 8.52 

6. Lock 17 (Burritts Rapids) 11.21 8.01 9.61 

7. Lock 18-19 (Nicholsons) 10.46 7.48 8.97 

8. Lock 20 (Clowes) 10.57 7.52 9.04 

9. Locks 21-23 (Merrickville) 9.82 6.90 8.36 

10. Lock 24 (Kilmarnock) 10.76 7.33 9.04 

11. Lock 25 (Edmonds) 11.18 7.30 9.24 

12. Locks 26-27 (Old Slys) 10.61 7.29 8.95 

13. Lock 29a (Smiths Falls Combined) 11.43 8.32 9.87 

14. Lock 31 (Smiths Falls Detached) 13.41 11.77 12.59 

15. Lock 32 (Poonamalie) 14.63 13.06 13.84 

16. Lock 35 (Narrows) 35.75 31.98 33.86 

17. Lock 36 (Newboro) 32.38 22.66 27.52 

18. Lock 37 (Chaffeys) 24.43 15.06 19.75 

19. Lock 38 (Davis) 19.99 11.60 15.80 

20. Locks 39-42 (Jones Falls) 10.48 5.98 8.23 

21. Locks 43-44 (Upper Brewers) 10.39 6.05 8.22 

22. Lock 45 (Lower Brewers) 10.31 6.04 8.18 

23. Locks 46-49 (Kingston Mills) 9.51 5.85 7.68 
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Table S1-5 Pearson (lower panel) and Spearman (upper panel) correlation coefficients between continuous predictor variables included 

in each initial mixed model before multicollinearity tests and model selection. Coefficients > 0.80 are in bold. A table is available for 

each model given that the variables estimating human disturbance were adapted for each risk-taking behaviour used as response variable 

in models: (A) Sum of active defensive behaviours used, (B) escape latency and (C) emergence of the turtle after escaping (see the 

selection process for the variables quantifying human disturbance in the Supporting Information 3 of Chapter 1) 

(A) Sum of active defensive behaviours used                    
Variables 1. 2. 3. 4. 5. 6. 7. 8. 9.  

1. Number of houses within 200 m – 0.45 0.07 -0.32 -0.25 -0.10 0.09 -0.20 0.04  
2. Proportion of urban areas within 900 m 0.80 – -0.13 -0.72 -0.29 -0.44 0.16 -0.52 -0.35  
3. Order of the trial 0.15 0.10 – 0.23 -0.11 0.01 0.02 0.24 -0.02  
4. Julian Day -0.40 -0.56 0.16 – 0.25 0.40 -0.17 0.56 0.19  
5. Hour -0.28 -0.28 -0.09 0.31 – 0.06 -0.14 0.28 0.05  
6. Turtle temperature (°C) -0.19 -0.34 0.04 0.44 -0.01 – -0.07 0.39 0.19  
7. Carapace length (mm) 0.15 0.22 0.04 -0.17 -0.13 -0.06 – -0.11 -0.12  
8. Shortest aquatic distance to the navigation distance (m) -0.10 -0.22 0.10 0.10 0.01 0.25 -0.01 – 0.37  
9. Mean daily number of vessel crossings in 2019 -0.11 -0.35 0.02 0.33 0.13 0.32 -0.08 0.49 –  
(B) Escape latency                     

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

1. Number of houses within 400 m – 0.45 0.01 -0.24 -0.15 -0.06 0.13 -0.28 0.13 -0.02 

2. Proportion of urban areas within 200 m 0.43 – 0.02 -0.44 -0.06 -0.20 0.14 -0.10 -0.30 0.06 

3. Order of the trial -0.01 0.20 – 0.23 -0.09 0.01 0.02 0.24 -0.02 -0.03 

4. Julian Day -0.35 -0.39 0.16 – 0.19 0.40 -0.17 0.56 0.19 -0.27 

5. Hour -0.12 -0.15 -0.11 0.23 – 0.09 -0.12 0.28 < -0.01 -0.41 

6. Turtle temperature (°C) -0.16 -0.22 0.04 0.44 0.03 – -0.07 0.39 0.19 0.10 

7. Carapace length (mm) 0.17 0.18 0.04 -0.17 -0.12 -0.06 – -0.11 -0.12 0.09 

8. Shortest aquatic distance to the navigation distance (m) -0.25 -0.06 0.10 0.10 0.11 0.25 -0.01 – 0.37 -0.27 

9. Mean daily number of vessel crossings in 2019 0.02 -0.21 0.02 0.33 0.09 0.32 -0.08 0.49 – -0.09 

10. Wind speed (Beaufort scale) 0.01 < 0.01 0.03 -0.26 -0.34 0.02 0.07 -0.03 -0.13 – 
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(C) Emergence of the turtle after escaping           

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9.  
1. Number of houses within 300 m – 0.64 0.12 -0.22 -0.11 -0.15 0.08 -0.12 0.05  
2. Proportion of urban areas within 600 m 0.82 – -0.11 -0.73 -0.23 -0.38 0.19 -0.50 -0.10  
3. Order of the trial 0.10 0.12 – 0.23 -0.09 0.01 0.02 0.24 -0.02  
4. Julian Day -0.42 -0.54 0.16 – 0.19 0.40 -0.17 0.56 0.19  
5. Hour -0.12 -0.19 -0.11 0.23 – 0.09 -0.11 0.28 < -0.01  
6. Turtle temperature (°C) -0.32 -0.32 0.04 0.44 0.03 – -0.07 0.39 0.19  
7. Carapace length (mm) 0.13 0.23 0.04 -0.17 -0.12 -0.06 – -0.11 -0.12  
8. Shortest aquatic distance to the navigation distance (m) -0.18 -0.18 0.10 0.10 0.11 0.25 -0.01 – 0.37  
9. Mean daily number of vessel crossings in 2019 -0.18 -0.27 0.02 0.33 0.09 0.32 -0.08 0.49 –  



47 
 

Table S1-6 Descriptive statistics of continuous variables included in the initial mixed models as 

predictor variables before standardization (mean zero, unit variance). Year of the trial, sex and testing 

environment (i.e., made in a controlled environment or directly in the field) were included as categorical 

predictor variables in models 

 

Variables Range Mean Standard deviation 

Julian Day 128-234 185.93 29.71 

Hour 730-2020 1244.37 249.94 

Order of the trial 1-7 1.60 0.97 

Carapace length (mm) 30-188 138.24 18.69 

Hour of the platform test 730-2020 1295.05 249.25 

Turtle temperature (°C) 9.5-34 22.94 4.69 

Shortest aquatic distance to the navigation distance (m) 15.13-6140.65 744.17 1104.15 

Mean daily number of vessel crossings in 2019 8.74-34.07 14.99 7.46 

Number of houses within 200 m 0-5 0.97 1.28 

Number of houses within 300 m 0-17 2.91 4.33 

Number of houses within 400 m 0-28 6.41 8.41 

Proportion of urban areas within 200 m 0-0.57 0.05 0.14 

Proportion of urban areas within 600 m 0-0.78 0.14 0.23 

Proportion of urban areas within 900 m 0-0.81 0.16 0.23 

Wind speed (Beaufort scale) 0-6 1.91 1.81 
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Table S1-7 Generalized variance inflation factors (GVIF) for the predictor variables included in the 

three mixed models using different risk-taking behaviours as response variable: Sum of active defensive 

behaviours, escape latency and emergence of the turtle after escaping. Combination of predictor 

variables are not the same across models. Variable with a GVIF(1/(2*df)) > 2 were not included in the 

initial model before model selection (column Before). The GVIF of the variables after the deletion of 

variables with GVIF(1/(2*df)) > 2 are available in the column After. bThe hour for the escape latency and 

the emergence of the turtle after escaping are not the same as the hour for the sum of active defensive 

behaviours: It corresponds to the hour when the platform test was performed for escape latency and 

emergence of the turtle after escaping
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    GVIF(1/(2*df)) 

Variables  Sum of active 

defensive behaviours 
 Escape latency  Emergence of the 

turtle after escaping 

   Before  After  Before  After  Before  After 

Number of houses within 200 m  1.84  1.25  –  –  –  – 

Number of houses within 300 m  –  –    –  1.86  1.17 

Number of houses within 400 m  –  –  1.36  –  –  – 

Proportion of urban areas within 200 m  –  –  1.28  –  –  – 

Proportion of urban areas within 600 m  –  –  –  –  2.13  – 

Proportion of urban areas within 900 m  2.08  –  –  –  –  – 

Shortest aquatic distance to the navigation distance (m)  1.25  1.25  1.40  –  1.23  1.23 

Mean daily number of vessel crossings in 2019  1.28  1.26  1.40  –  1.23  1.23 

Order of the trial  1.11  1.09  1.12  –  1.12  1.10 

Sex  1.12  1.10  1.07  –  1.08  1.07 

Testing environment (controlled setting)  1.50  1.50  1.84  –  1.41  1.40 

Year  1.22  1.22  1.13  –  1.13  1.11 

Julian day  1.69  1.64  1.50  –  1.46  1.40 

Hourb  1.27  1.27  1.32  –  1.21  1.22 

Turtle temperature (°C)  1.45  1.44  1.18  –  1.29  1.27 

Carapace length (mm)  1.12  1.12  1.12  –  1.09  1.08 

Wind speed (Beaufort scale)   –   –   1.38   –   –   – 
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Table S1-8 Sources of variance (VG: group-level variance; VR: residual variance) and repeatability estimates (R) separately calculated 

for each testing environment (i.e., tests performed in the field vs. in the controlled environment) for three risk-taking behaviours in painted 

turtles (Chrysemys picta): sum of active defensive behaviours, escape latency, and emergence of the turtle after escaping. The unadjusted 

repeatability estimates only included turtle identity as random effect, while the adjusted repeatability estimates also included sex, trial 

order, and year as fixed effects, and sampling site identity as a random effect (VG - site and Rsite). Significance [95 % confidence 

intervals] of the variances and repeatability estimates were determined with likelihood ratio tests. The coefficient of determination (R2) 

of the fixed effects included in the adjusted repeatability estimates was calculated. Sources of variances for the emergence of the turtle 

after escaping were estimated from the link-scale approximation and repeatability estimates from the original scale. Number of individuals 

tested (Nb. ID) with the total number of observations (Nb. Entries) for each behaviour are provided. No information is available for the 

adjusted model in the controlled environment with emergence of the turtle after escaping as the response variable given that the model 

fail to converge 
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A) IN THE FIELD 

Behaviours 

Nb. ID  

(Nb. Entries) VG - individual VG - site VR Rindividual Rsite R2 fixed 

Sum of active defensive behaviours  

Unadjusted 84 (218) 0.427 

[0.268 - 0.606] 

– 0.308 

[0.245 - 0.383] 

0.581 

[0.444 - 0.676] 

– – 

Adjusted 83 (215) 0.274 

[0.158 - 0.432] 

0.145 

[0.000 - 0.406] 

0.295 

[0.228 - 0.362] 

0.384 

[0.226 - 0.564] 

0.203 

[0.000 - 0.410] 

0.04 

        

Escape latency 

Unadjusted 81 (211) 0.550 

[0.287 - 0.828] 

– 0.779 

[0.609 - 0.978] 

0.414 

[0.248 - 0.551] 

– – 

Adjusted 80 (208) 0.662 

[0.346 - 0.964] 

0.059 

[0.000 - 0.283] 

0.644 

[0.488 - 0.799] 

0.469 

[0.295 - 0.618] 

0.045 

[0.000 - 0.195] 

0.06 

        

Emergence of the turtle after escaping 

Unadjusted 81 (210) 4.393 

[1.125 - 63.745] 

– 4.95 

[4.410 - 6.747] 

0.398 

[0.143 - 0.583] 

– – 

Adjusted 80 (207) 3.425 

[0.596 - 18.918] 

1.228 

[0.000 - 3.700] 

4.907 

[4.080 - 6.540] 

0.358 

[0.080 - 0.766] 

0.150 

[0.000 - 0.458] 

0.11 
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B) IN THE CONTROLLED ENVIRONMENT 

Behaviours Nb. ID  

(Nb. Entries) 

VG - individual VG - site VR Rindividual Rsite R2 fixed 

Sum of active defensive behaviours 

Unadjusted 81 (192) 0.280 

[0.130 - 0.470] 

– 0.524 

[0.394 - 0.675] 

0.349 

[0.159 - 0.498] 

– – 

Adjusted 79 (187) 0.202 

[0.052 - 0.370] 

0.039 

[0.000 - 0.190] 

0.528 

[0.388 - 0.661] 

0.263 

[0.091 - 0.445] 

0.051 

[0.000 - 0.237] 

0.07 

        

Escape latency 

Unadjusted 76 (200) 0.560 

[0.275 - 0.882] 

– 1.004 

[0.770 - 1.271] 

0.358 

[0.190 - 0.495] 

– – 

Adjusted 74 (195) 0.508 

[0.251 - 0.833 

0.206 

[0.000 - 0.823] 

0.817 

[0.618 - 1.023] 

0.332 

[0.170 - 0.511] 

0.134 

[0.000 - 0.401] 

0.11 

        

Emergence of the turtle after escaping 

Unadjusted 69 (169) 31.54 

[61.794 - 548.006] 

– 6.364 

[5.272 - 11.667] 

0.577 

[0.546 - 0.782] 

– – 

Adjusted – – – – – – – 
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Table S1-9 Summary statistics of the multivariate mixed model performed with the package MCMCglmm and the three risk-taking 

behaviours as response variables: Sum of active defensive behaviours, escape latency and emergence of the turtle after escaping. We used 

a log(x+1) transformation to normalize escape latency. All the values are significant according to the 95% Bayesian credibility interval. 

Priors used: variance V = 1 and belief parameter ν = 2.002 (inverse-Wishart priors). Iterations = 200,000; burn-in = 50,000; thinning = 

500. Analyses were based on Pich et al. (2019) 

(A) G-structure (Group level) 

Variances among individuals (diagonal) and between-behaviour correlations at the among-individual level (upper panel)  

 Family Active.defenses EL Emergence 

Sum of active defensive behaviours (Active defenses) Gaussian 0.43 -0.17 0.67 

Escape latency (EL) Gaussian – 0.47 -0.36 

Emergence of the turtle after escaping (Emergence) Categorical – – 4.24 

     
(B) R-Structure (Residual level) 

Variances within individuals (diagonal) and between-behaviour correlations at the within-individual level (upper panel)  

 Family Active.defenses EL Emergence 

Sum of active defensive behaviours (Active defenses) Gaussian 0.44 -0.09 0.19 

Escape latency (EL) Gaussian – 0.90 -0.47 

Emergence of the turtle after escaping (Emergence) Categorical – – 1.94 
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Table S1-10 Pearson and Spearman correlation coefficients for each risk-taking behaviour between 

measurements performed in the field and in the controlled environment. All correlation coefficients are 

significant (p value < 0.01). Numbers in parentheses represent the number of turtles with measurements 

in both testing environment 

 
  Correlation coefficients 

Behaviours  Pearson  Spearman 

Sum of active defensive behaviours (N = 122)  0.397  0.383 

Escape latency (N = 121)  0.389  0.312 

Emergence of the turtle after escaping (N = 118)   0.327   0.327 
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Table S1-11 Compilation of the risk-taking behaviours measured in turtles from literature. We extracted data from these studies: A short 

description of the behaviour, the average time period between the first and the last trial made on turtles to measure the behaviour (only 

applies for studies that took repeated measurements), the age group as it is mentioned in the article, the number of turtles tested, the 

number of repeated measurements on each turtle, the repeatability estimates if applicable, and if the study assesses the relationship 

between human disturbance and the behaviour. anot the number of unique turtle tested: It is a total of observations 

Reference Risk-taking behaviours Time period Age Number 
Number of 

repetitions 
Repeatability 

Linked to human 

disturbance 

Blanding’s turtles (Emydoidea blandingii)  

Allard et al. (2019) Difference in latency to 

consume food (Food - 

Predator test) 

3 weeks Juvenile 23 3 0.28 (ICC) No 

 
Difference in percent of 

time moving (Predator - 

Food test) 

3 weeks Juvenile 23 3 0.24 (ICC) No 

 
Difference in the rate of 

surfacing (Predator - 

Food test) 

3 weeks Juvenile 23 3 0.42 (ICC) No 

Desert tortoises (Gopherus agassizii)  

Germano et al. (2017) Head emergence latency Few weeks Juvenile 60 2-3 – No 

Eastern box turtles (Terrapene carolina)  

Carlson & Tetzlaff (2020) Head emergence latency 1-3 years Adult 21 2-4 0.69 

[0.48-0.88] 

No 

 
Movement latency 2 years Juvenile 20 4 0.78 

[0.36-0.94] 

No 

Kashon & Carlson (2018) Head emergence latency Few months Adult 33 2-7 0.73 

[0.61-0.82] 

No 

 
Movement latency Few months Adult 33 2-7 0.43 

[0.25-0.58] 

No 

Pich et al. (2019) Head emergence latency 

- confinement test 

Few weeks Adult 15 2 0.77 

[0.42-0.92] 

No 
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Head emergence latency 

- predation simulation 

Few weeks Adult 15 2 0.76 

[0.44-0.92] 

No 

 
Number of active 

defensive behaviours 

Few weeks Adult 15 2 0.63 

[0.34-0.86] 

No 

European pond turtles (Emys orbicularis)             

Ibáñez et al. (2018) Appearance time Few months Adult 22 3 0.67 

[0.38-0.81] 

No 

 
Righting attempts Few months Adult 22 3 0.58 

[0.33-0.76] 

No 

 
Waiting time Few months Adult 22 3 0.22 

[0.00-0.45] 

No 

Green turtles (Chelonia mydas)             

Griffin et al. (2017) Boldness index from 5 

measurements: Flight 

initiation distance, 

latency to forage, abrupt 

burst response and flight 

to nearest neighbor 

1 month Immature 19 3-14 0.132 

[0.001-0.253] 

No 

Hermann’s tortoises (Eurotestudo boettgeri)             

Mafli et al. (2011) Boldness index from 4 

measurements: 

Immediate response to 

handling, latency to 

move towards the 

handed food, latency to 

eat and duration of 

eating 

2 weeks Adult 25 3 0.54 No 

Painted turtles (Chrysemys picta)             

Polich & Barazowski (2016) Flight initiation distance 26 days NA 335a NA – Yes 

Roth et al. (2020) Body movement latency Same day Adult 86 3 0.783 

(Cronbach's 

alpha) 

No 
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Head movement latency Same day Adult 86 3 0.760 

(Cronbach's 

alpha) 

No 

Red-eared slider turtles (Trachemys scripta)             

Carter et al. (2016) Latency to explore 72-120h Hatchlings 394 2 0.13-0.43 

(according to 

different 

treatments) 

No 

 
Righting latency 24-72h Hatchlings 394 2 0.22-0.72 

(according to 

different 

treatments) 

No 

Spanish terrapins (Mauremys leprosa)             

Ibáñez et al. (2013a) Appearance time – Adult 20 1 – No  
Righting time – Adult 20 1 – No 

Ibáñez et al. (2015) Appearance time – Adult 20 1 – No  
Waiting time – Adult 20 1 – No 

Ibáñez et al. (2018) Appearance time Few months Adult 29 3 0.58 

[0.37-0.74] 

No 

 
Righting attempts Few months Adult 29 3 0.69 

[0.56-0.82] 

No 

 
Waiting time Few months Adult 29 3 0.14 

[0.00-0.30] 

No 
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Table S1-12 Moran's I correlation coefficients estimated at different distances in meters for each risk-taking behaviour measured in 

painted turtles: Sum of active defensive behaviours used, escape latency and emergence of the turtle after escaping. N = number of 

sampling site pairs compared for each distance. Significant Moran's I correlation coefficients are in bold (p value < 0.05) 

   Active defensive behaviours  Escape latency  Emergence 

N distance (m)  coefficient  p value  coefficient  p value  coefficient  p value 

30 4926  0.654  0.003  -0.203  0.712  0.527  0.011 

36 12263  0.052  0.334  0.085  0.285  0.427  0.023 

42 19601  -0.126  0.636  0.115  0.232  0.343  0.039 

38 26938  0.155  0.187  0.170  0.168  0.467  0.012 

36 34276  0.293  0.074  0.302  0.066  0.308  0.062 

42 41613  0.181  0.152  0.007  0.398  0.306  0.053 

38 48951  -0.191  0.727  -0.083  0.556  -0.219  0.769 

34 56288  -0.291  0.834  -0.346  0.890  -0.322  0.868 

28 63626  -0.007  0.427  0.198  0.172  -0.332  0.842 

22 70963  0.020  0.397  -0.244  0.734  -0.104  0.560 

22 78301  0.050  0.352  -0.365  0.842  -0.200  0.680 

20 85638  0.049  0.327  -0.533  0.905  -0.545  0.919 

22 92976  -0.513  0.923  0.040  0.351  -0.774  0.990 

18 100313  -0.700  0.972  0.208  0.193  -0.707  0.976 

12 107651  -0.695  0.932  -0.763  0.946  -0.440  0.806 

10 114989  -0.239  0.590  0.083  0.291  -0.713  0.901 

6 122326  -1.008  0.903  -0.610  0.735  -0.532  0.756 

6 129664   -0.804   0.945   -0.282   0.443   -0.582   0.885 
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Table S1-13 Summary statistics for the final linear mixed models with the sum of active defensive behaviours used by painted turtles as 

the response variable. We fitted the model with a random variable that represent sampling site but including the effect of spatial 

autocorrelation. We detected a positive significant spatial autocorrelation on the sum of active defensive behaviours for sites within less 

than 5 km of each other (Table S1-12). We also included turtle identity as a random effect. We provided for each predictor variable of 

the final model after model selection: the estimate, the standard error (SE), the t-value, the p-value and the 95% confidence intervals 

(95% CI). REML was set as TRUE for the calculation of the model statistics and set as FALSE for model selection. All the continuous 

predictor variables were scaled (mean zero, unit variance) before model selection. Reference factors are in parentheses for categorical 

predictor variables 

Variables Estimate SE t-value p-value 95% CI 

Sum of active defensive behaviours 714 individuals (1091 observations) R2 - marginal: 0.07; R2 - conditional: 0.52 

Number of houses within 200 m -0.098 0.052 -1.894 0.063 [-0.199 to 0.003] 

Distance to navigation channel -0.122 0.058 -2.103 0.049 [-0.236 to -0.008] 

Mean daily number of vessel crossings  0.196 0.066 2.969 0.009 [0.066 to 0.325] 

Sex (Male) 0.329 0.070 4.701 < 0.001 [0.192 to 0.466] 

Testing environment (controlled setting) -0.217 0.068 -3.212 0.001 [-0.350 to -0.085] 

Carapace length 0.113 0.037 3.027 0.003 [0.040 to 0.186] 
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Table S1-14 Summary statistics for the final (generalized) linear mixed models with risk-taking 

behaviours in painted turtles as response variable: Sum of active defensive behaviours used, escape 

latency and emergence of the turtle after escaping. We performed analyses with two subsets: i) 

observations only made in a controlled environment, and ii) only made in the field, and compared the 

results obtained to those with the complete dataset. For each model, we provided for each predictor 

variable: the estimate, the standard error (SE), the t-value (z-value for the binomial model), the p-value 

and the 95% confidence intervals (95% CI). REML was set as TRUE for the calculation of the model 

statistics. All the continuous predictor variables were scaled (mean zero, unit variance) before model 

selection. Reference factors are in parentheses for categorical predictor variables. Turtle and sampling 

site identity were included as random effects in the model for sum of active defensive behaviours with 

the complete dataset and the subset with only the observations made in the field, while only turtle 

identity was included in the other models



61 
 

Variables Estimate SE t-value p-value 95% CI 

Sum of active defensive behaviours      

Only in the controlled environment 117 individuals (225 observations) R2 - marginal: 0.12; R2 - conditional: 0.37 

Mean daily number of vessel crossings 0.262 0.066 3.978 < 0.001 [0.133 to 0.392] 

Sex (Male) 0.452 0.141 3.196 0.002 [0.175 to 0.730] 

      

Only in the field 714 individuals (866 observations) R2 - marginal: 0.08; R2 - conditional: 0.62 

Number of houses within 200 m -0.145 0.060 2.416 0.026 [-0.263 to -0.027] 

Distance to navigation channel -0.116 0.060 1.944 0.067 [-0.233 to 0.001] 

Mean daily number of vessel crossings 0.170 0.068 2.500 0.023 [0.037 to 0.303] 

Sex (Male) 0.321 0.073 4.395 < 0.001 [0.178 to 0.465] 

Carapace length 0.126 0.039 3.219 0.001 [0.049 to 0.203] 

      

Complete dataset 714 individuals (1091 observations) R2 - marginal: 0.10; R2 - conditional: 0.52 

Number of houses within 200 m -0.134 0.058 2.316 0.031 [-0.247 to -0.021] 

Distance to navigation channel -0.122 0.057 2.122 0.047 [-0.234 to -0.009] 

Mean daily number of vessel crossings  0.194 0.065 2.986 0.008 [0.067 to 0.321] 

Sex (Male) 0.327 0.070 4.687 < 0.001 [0.191 to 0.464] 

Testing environment (controlled setting) -0.218 0.068 3.228 0.001 [-0.350 to -0.086] 

Carapace length 0.112 0.037 3.014 0.003 [0.040 to 0.186] 

      
Escape latency      

Only in the controlled environment 117 individuals (238 observations)  R2 - marginal: 0.22; R2 - conditional: 0.50 

Urban areas within 200 m 3.307 1.502 2.201 0.030 [0.362 to 6.251] 

Mean daily number of vessel crossings -0.185 0.089 2.092 0.038 [-0.359 to -0.012] 

Order of the trial  -0.399 0.076 5.274 < 0.001 [-0.547 to -0.251] 

Sex (Male) -0.431 0.190 2.266 0.025 [-0.804 to -0.058] 

Hour of the platform test -0.272 0.099 2.757 0.006 [-0.466 to -0.079] 

Carapace length 0.296 0.101 2.924 0.004 [0.098 to 0.495] 

      



62 
 

Only in the field 580 individuals (691 observations)  R2 - marginal: 0.08; R2 - conditional: 0.40 

Order of the trial -0.131 0.040 3.303 0.001 [-0.208 to -0.053] 

Year (2020) -0.239 0.086 2.766 0.006 [-0.408 to -0.070] 

Turtle temperature -0.195 0.050 3.938 < 0.001 [-0.292 to -0.098] 

Carapace length 0.100 0.042 2.358 0.019 [-0.017 to 0.183] 

Wind scale (Beaufort scale) -0.139 0.046 3.037 0.002 [-0.229 to -0.050] 

      

Complete dataset 596 individuals (919 observations)  R2 - marginal: 0.10; R2 - conditional: 0.44 

Order of the trial -0.231 0.036 6.415 < 0.001 [-0.302 to -0.161] 

Julian Day 0.141 0.053 2.645 0.008 [0.036 to 0.245] 

Turtle temperature  -0.199 0.047 4.245 < 0.001 [-0.291 to -0.107] 

Carapace length 0.167 0.042 4.013 < 0.001 [0.085 to 0.248] 

Wind scale (Beaufort scale) -0.176 0.036 4.899 < 0.001 [-0.246 to -0.106] 

      
Emergence of the turtle after escaping      

Only in the controlled setting 119 individuals (219 observations)  R2 - marginal: 0.00; R2 - conditional: <0.001 

no significant variables      

      

Only in the field 701 individuals (844 observations)  R2 - marginal: 0.12; R2 - conditional: 0.28 

Order of the trial 0.230 0.091 2.516 0.012 [0.051 to 0.408] 

Julian Day 0.543 0.136 3.988 <0.001 [0.276 to 0.810] 

Turtle temperature 0.257 0.113 2.268 0.023 [0.035 to 0.479] 

Carapace length -0.273 0.102 2.683 0.007 [-0.473 to -0.074] 

      

Complete dataset 704 individuals (1071 observations)  R2 - marginal: 0.12; R2 - conditional: 0.49 

Testing environment (controlled setting) -2.318  0.417 5.558 < 0.001 [-3.135 to -1.500] 

Julian Day 0.994 0.182 5.473 < 0.001 [0.638 to 1.350] 

Carapace length -0.323 0.131 2.473 0.013 [-0.579 to -0.067] 
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Table S1-15 Summary statistics for the final (generalized) linear mixed models with risk-taking 

behaviours in painted turtles as response variable: Sum of active defensive behaviours used, escape 

latency and emergence of the turtle after escaping. We used only observations from turtles tested more 

than one and compared the results obtained to those with the complete dataset. For each model, we 

provided for each predictor variable: the estimate, the standard error (SE), the t-value (z-value for the 

binomial model), the p-value and the 95% confidence intervals (95% CI). REML was set as TRUE for 

the calculation of the model statistics. All the continuous predictor variables were scaled (mean zero, 

unit variance) before model selection. Reference factors are in parentheses for categorical predictor 

variables. Turtle and sampling site identity were included as random effects in the model for sum of 

active defensive behaviours with the complete dataset, while only turtle identity was included in the 

other models



64 
 

Variables Estimate SE t-value p-value 95% CI 

Sum of active defensive behaviours     

Turtles tested more than once 215 individuals (561 observations) R2 - marginal: 0.11; R2 - conditional: 0.49 

Number of houses within 200 m -0.154 0.049 3.160 0.002 [-0.249 to -0.058] 

Distance to navigation channel -0.145 0.060 2.395 0.017 [-0.263 to -0.026] 

Mean daily number of vessel crossings 0.184 0.062 2.983 0.003 [0.063 to 0.304] 

Order of the trial 0.058 0.029 2.049 0.041 [0.003 to 0.114] 

Sex (Male) 0.338 0.110 3.079 0.002 [0.123 to 0.553] 

Turtle temperature 0.111 0.044 2.528 0.012 [0.025 to 0.198] 

Carapace length 0.140 0.059 2.387 0.018 [0.025 to 0.255] 

      

Complete dataset 714 individuals (1091 observations) R2 - marginal: 0.10; R2 - conditional: 0.52 

Number of houses within 200 m -0.134 0.058 2.316 0.031 [-0.247 to -0.021] 

Distance to navigation channel -0.122 0.057 2.122 0.047 [-0.234 to -0.009] 

Mean daily number of vessel crossings  0.194 0.065 2.986 0.008 [0.067 to 0.321] 

Sex (Male) 0.327 0.070 4.687 < 0.001 [0.191 to 0.464] 

Testing environment (controlled setting) -0.218 0.068 3.228 0.001 [-0.350 to -0.086] 

Carapace length 0.112 0.037 3.014 0.003 [0.040 to 0.186] 
      

Escape latency      

Turtles tested more than once 202 individuals (543 observations) R2 - marginal: 0.15; R2 - conditional: 0.46 

Urban areas within 200 m 0.242 0.072 3.333 0.001 [0.100 to 0.384] 

Order of the trial -0.269 0.043 6.184 < 0.001 [-0.354 to -0.184] 

Julian Day 0.339 0.086 3.961 <0.001 [0.171 to 0.507] 

Carapace length 0.145 0.063 2.298 0.023 [0.021 to 0.270] 

Wind scale (Beaufort scale) -0.153 0.051 3.023 0.003 [-2.253 to -0.054] 

      

Complete dataset 596 individuals (919 observations)  R2 - marginal: 0.10; R2 - conditional: 0.44 

Order of the trial -0.231 0.036 6.415 < 0.001 [-0.302 to -0.161] 

Julian Day 0.141 0.053 2.645 0.008 [0.036 to 0.245] 
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Turtle temperature  -0.199 0.047 4.245 < 0.001 [-0.291 to -0.107] 

Carapace length  0.167 0.042 4.013 < 0.001 [0.085 to 0.248] 

Wind scale (Beaufort scale) -0.176 0.036 4.899 < 0.001 [-0.246 to -0.106] 

      
Emergence of the turtle after escaping    

Turtles tested more than once 215 individuals (582 observations) R2 - marginal: 0.16; R2 - conditional: 0.56 

Mean daily number of vessel crossings 0.482 0.210 2.294 0.022 [0.070 to 0.894] 

Testing environment (controlled setting) -2.895 0.421 6.877 < 0.001 [-3.719 to -2.070] 

Julian Day 1.013 0.224 4.515 < 0.001 [0.573 to 1.453] 

      

Complete dataset 704 individuals (1071 observations)  R2 - marginal: 0.12; R2 - conditional: 0.49 

Testing environment (controlled setting) -2.318  0.417 5.558 < 0.001 [-3.135 to -1.500] 

Julian Day 0.994 0.182 5.473 < 0.001 [0.638 to 1.350] 

Carapace length -0.323 0.131 2.473 0.013 [-0.579 to -0.067] 
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Supporting Information 2 – Video of risk-taking behaviours in painted turtles 

The first part of the video (00:00 to 00:50) is an example of the test to calculate the number of 

active defensive behaviours used by painted turtles during the measurement of four morphological traits 

(i.e., plastron length, carapace length, height, and width). The second part of the video (00:50 to 02:30) 

shows the platform test to measure escape latency in a controlled environment at the Queen’s University 

Biological Station. Video available at: https://youtu.be/sb6qoy_qF-A 

  

https://youtu.be/sb6qoy_qF-A
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Supporting Information 3 – Determination of the scale of maximum effect 

For the proportion of urban area and the number of houses with access to the canal, we needed to 

determine at which scale their effect on the three risk-taking behaviours (sum of active defensive 

behaviours used, escape latency and emergence of the head after escaping) was maximal. The 

determination of the scale of maximum effect was done separately for each behaviour. This protocol is 

based on the work of Čapkun-Huot et al. (2021) and Fyson & Blouin-Demers (2021). 

1. Dataset 

For each individual, a mean value of all the repeated measurements was calculated for each 

behaviour and a table with one line per individual was created. We added columns for all the buffer 

distances ranging from 100 m to 1000 m in 100-m increments with the values of the human disturbance 

variables.  

2. Calculating the correlations 

We used the function rcorr from the R Hmisc package (Harrell, 2020) to calculate correlations 

(Pearson’s correlation coefficient) between the behaviour (e.g., escape latency) and the human 

disturbance variables (e.g., proportion of urban area) for each buffer distance, and kept only the buffer 

distance at which the correlation was maximal for further analyses (Figure S1-1 and Table S1-16). This 

step was conducted for each behaviour and for each human disturbance variable separately.  
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Figure S1-1 Pearson’s correlation coefficients between the human disturbance variables (a: Number of 

houses with access to the canal; b: Proportion of urban areas) and risk-taking behaviours (blue: sum of 

active defensive behaviours; orange: escape latency; red: emergence of the turtle after escaping) at 

buffer distances ranging from 100 m to 1000 m in 100-m increments. The buffer distance with the 

absolute highest correlation was kept for further analyses.  

Table S1-16 Buffer distances for the number of houses with access to the canal and proportion of urban 

areas with the highest absolute correlation for each behaviour: Sum of active defensive behaviours, 

escape latency, and emergence of the turtle after escaping. 

 

  

  Number of houses  Urban areas 

Variables  Buffer size  Correlation  Buffer size  Correlation 

Sum of active defensive behaviours  200  -0.159  900  -0.178 

Escape latency  400  0.042  200  0.042 

Emergence of the head after escaping  300  -0.101  600  -0.129 

         



69 
 

Chapter 2 

 

Disentangling how human disturbance influences the relationships between colouration, physiological 

response, and risk-taking behaviour in painted turtles with structural equation modelling 

 

A slightly modified version of this chapter will be submitted for publication in Conservation 

Physiology. 



70 
 

Abstract 

Human activities result in fast-changing environmental conditions that often threaten persistence 

of animal populations. Consequences on animals include important physiological modifications that can 

be detrimental for them and affect other important biological processes, such as colour signalling. 

Individuals also vary in the way they perceive and react to these perturbations. The use of a global 

approach that integrates the complex interactions among different biological factors that could be 

affected by human disturbance is thus needed to analyze animal responses. In this context, we 

investigated the effect of recreational boating on the relationships between carotenoid-based colouration 

(i.e., proportion of yellow and red), physiological response (i.e., heterophil-to-lymphocyte (H/L) ratio) 

and risk-taking behaviour (i.e., use of active defensive behaviours) in painted turtles (Chrysemys picta). 

To do so we analysed data from 217 turtles collected within 18 sites varying in boat activities along the 

Rideau Canal, Canada, with structural equation modelling. We found that males and females differed in 

colouration, but that colouration was not related to physiological or behavioural traits. In addition, H/L 

ratios did not vary according to boat activities level, but was lower in painted turtles sampled in 2020, 

possibly due to restrictions related to the COVID-19 pandemic. Finally, risk-taking propensity led to 

higher H/L ratios in more risk-prone males, but not in females. Our findings suggest that human 

activities may induce physiological changes in wildlife which could depend on their propensity to take 

risks. Given the pace of anthropogenic changes on wildlife, our study highlights the importance of 

considering both behavioural and physiological components of animals’ biology when creating 

conservation plans. 
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Introduction 

Human activities impact most ecosystems and expose wildlife to various anthropogenic 

disturbances (Barnosky et al., 2012; Foley et al., 2005; Kennedy et al., 2019; Larson et al., 2016; Steven 

et al., 2011). The growing anthropogenic pressures on wild populations threaten their persistence and 

are the main driver of the global biodiversity loss (Dirzo et al., 2014; McCauley et al., 2015; WWF, 

2022). Therefore, the ability of animals to respond and adjust to human-induced environmental stressors 

may predict if they will persist in changing environments (Tablado & Jenni, 2017; Wong & Candolin, 

2015).  

To persist in changing environments, animals need to cope with frequent and often unpredictable 

perturbations that can destabilize their physiological state (i.e., homeostasis; Dantzer et al., 2014; 

Wingfield, 2013; Wingfield et al., 1997). During stressful events, stress hormones, such as 

glucocorticoids, are released by the organism and these hormones trigger behavioural and physiological 

responses to maintain homeostasis (Buchanan, 2000; Sapolsky et al., 2000; Wingfield et al., 1997). Such 

physiological responses mobilize energetic resources at the expense of other physiological functions 

(e.g., digestion, energy storage, growth) that are not essential to immediate survival (Buchanan, 2000; 

Sapolsky et al., 2000; Wingfield et al., 1997). Frequent human disturbance, however, may result in 

prolonged and maladaptive physiological responses where high basal levels of glucocorticoids are 

maintained (Sapolsky et al., 2000; Wingfield et al., 1997). Maladaptive physiological responses could 

have important fitness consequences on individuals, for instance through the reduction of other 

physiological functions (e.g., immune activities) that could impede the responsiveness to other stressors, 

such as pathogens and parasites ( i.e., allostatic overload; Acevedo-Whitehouse & Duffus, 2009; Martin, 

2009).  
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The quantification of circulating leukocyte profile (e.g., heterophil-to-lymphocyte ratio) is 

commonly used to evaluate the physiological impact of anthropogenic (e.g., human activity) and natural 

environmental stressors (e.g., infections/parasites) on animals (Davis et al., 2008; Davis & Maney, 

2018). An increase of glucocorticoids alters the circulating leukocyte profile of animals by relocating 

the different leukocytes where most needed to respond efficiently to a stressor (Coico & Sunshine, 2015; 

Davis et al., 2008; Dhabhar, 2002). This response is characterized by an influx of heterophils (i.e., 

primary phagocytic leukocytes in reptiles and birds) and a migration of lymphocytes (i.e., related to the 

regulation of the immune response and immunological memory) from the blood to other tissues (Coico 

& Sunshine, 2015; Davis et al., 2008; Dhabhar, 2002). Animals exposed to high human disturbance 

have typically higher heterophil-to-lymphocyte ratios (i.e., H/L ratios) compared to individuals from 

less perturbed areas (Fokidis et al., 2008; Palacios et al., 2018; Selman et al., 2013). Since it fluctuates 

less rapidly over long periods of time compared to glucocorticoid levels, using the leukocyte response 

through the H/L ratio to estimate chronic stress is a more appropriate approach than measuring 

glucocorticoid levels (Davis et al., 2008; Davis & Maney, 2018)  

Aside from their role in the stress response, glucocorticoids mediate the expression of carotenoid-

based colouration (i.e. colours ranging from yellow to red; Berg et al., 2019; Loiseau et al., 2008; 

Martínez-Padilla et al., 2013). Glucocorticoids can modulate how carotenoid pigments are allocated to 

the diverse physiological processes that require them (Berg et al., 2019; Loiseau et al., 2008; Martínez-

Padilla et al., 2013). Carotenoids are limited because they cannot be synthesized; they can only be 

acquired through food (Goodwin, 1980, 1984; Hill, 1992). Thus, when the physiological state of an 

animal is disrupted by suboptimal environmental conditions, carotenoids may be used preferentially to 

stabilize and/or improve essential physiological functions, and this at the expense of colouration 

(Aguilera & Amat, 2007; Blount et al., 2003; Faivre et al., 2003; Mcgraw, 2005). For instance, Pérez-
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Rodríguez and Viñuela (2008) observed that red-legged partridges (Alectoris rufa) with less red 

colouration on their eye ring had lower body condition and higher H/L ratios, highlighting the potential 

trade-off between displaying a carotenoid-based colouration and maintaining essential physiological 

processes. Red carotenoid pigments are less abundant in food than yellow pigments and, thus, red and 

yellow colouration may be affected differently when physiological stasis is compromised (Hill, 1996). 

Given that carotenoid-based colouration may be used as reliable signaling information during various 

social interactions, including courtship (see examples: Ibáñez et al., 2014; Polo-Cavia et al., 2013; 

Schweitzer et al., 2015; Sundberg, 1995; Svobodová et al., 2013), there is a need to understand how the 

physiological changes caused by human disturbance affect its expression.  

Individuals could differ in their perception of cues across contexts and over time and, thus, 

consistently differ in their physiological response to human disturbance (McDougall et al., 2006; Réale 

et al., 2007, 2010; Sih, 2004). Risk-prone individuals (i.e., proactive) are less responsive to stressors 

and usually better tolerate stressful conditions by producing lower basal levels of glucocorticoids 

compared to risk-averse individuals (i.e., reactive) (Koolhaas et al., 1999; Réale et al., 2010). For 

instance, Carbillet et al. (2019) observed that proactive wild roe deer, based on their behavioural 

response upon capture, had lower neutrophil-to-lymphocyte ratios than reactive individuals (neutrophils 

replace heterophils in vertebrates other than reptiles and birds). By being less responsive to stressors, 

risk-prone individuals may potentially lose few foraging opportunities in disturbed environments (Cole 

& Quinn, 2014) and have a better access to limited resources, such as carotenoids, allowing them to 

allocate more resources to colouration (Biro & Stamps, 2008; Dyer et al., 2009). On the other hand, 

risk-averse individuals explore more thoroughly their environment (Réale et al., 2010), potentially 

making them better foragers than risk-prone individuals and thus allowing them to acquire more 

carotenoid-rich food resources. Finally, risk-prone individuals are more active than risk-averse 
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individuals and the higher energetic demands to perform those activities could lead to the re-allocation 

of carotenoids used in colouration to maintain their activity level (Anderson et al., 2015). The link 

between colouration and physiological responses could thus be influenced by an individual’s propensity 

to take risks, highlighting the importance of considering behavioural variation among individuals when 

analysing this relationship.  

In this study, we investigate the effects of human disturbance (i.e., boat activity) on the 

relationships between colouration (i.e., proportion of yellow and red), physiological response (i.e., H/L 

ratio), and risk-taking behaviour (i.e., sum of active defensive behaviours used during handing) in 

painted turtles (Chrysemys picta) of the Rideau Canal, Ontario, Canada, with structural equation 

modelling. Investigating the consequences of human disturbance on animals is often difficult given the 

direct and indirect relationships among the various behavioural and physiological factors that are 

differently affected by these perturbations. Structural equation modelling is a powerful statistical 

method that can be used to decipher complex multivariate hypotheses by considering a network of direct 

and indirect causal relationships among variables that could influence animal responses to human 

disturbance (Arhonditsis et al., 2006; Eisenhauer et al., 2015; Fan et al., 2016).  

Male and female painted turtles have colourful patterns ranging from yellow to red on the majority 

of their body, such as the head, neck, legs and shell (Ernst & Lovich, 2009; Steffen et al., 2015). In 

particular, painted turtles have red and yellow stripes on their neck and chin, and a yellow spot behind 

each eye (Ernst & Lovich, 2009; Steffen et al., 2015). During courtship rituals, male painted turtles may 

repeatedly touch the female’s head and neck with their front claws and make several movements (e.g., 

head vertical vibrations, stretching of anterior limbs; Ernst & Lovich, 2009; Liu et al., 2013; Steffen et 

al., 2015). Such behaviours seemingly help display their colouration, thus suggesting that carotenoid-

based colouration could be a visual signal used by painted turtles for mate choice.  
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The sum of active defensive behaviours displayed by painted turtles during handling can be used 

to quantify the propensity to take risks (Turcotte et al., 2023 (Chapter 1)). In a previous study in the 

Rideau Canal, we showed that individual painted turtles were consistent in the use of active defensive 

behaviours during handling (repeatability estimate = 0.36; Turcotte et al., 2023 (Chapter 1)). In addition, 

the sum of active defensive behaviours was correlated with other risk-taking behaviours (i.e., by also 

escaping more rapidly from a floating platform and emerging more often from the water after escaping), 

indicating that turtles displaying more active defensive behaviours were more prone to take risks overall 

(Turcotte et al., 2023 (Chapter 1)). We also showed that painted turtles in areas with more boat activity 

used more active defensive behaviours (Turcotte et al., 2023 (Chapter 1)), making this behaviour 

relevant to identify how human disturbance influence its relationship with colouration and physiological 

response. 

We hypothesized that human disturbance creates stressful environmental conditions that should 

elicit a physiological response in turtles exposed to these stressors and lead to the mobilization of 

carotenoids at the expense of colouration. Also, individual turtles may perceive and respond differently 

to human disturbance, which should affect i) their physiological response and ii) their capacity to gather 

carotenoids and, thus, to allocate them to their colouration. More specifically, we predicted that painted 

turtles in areas with more boat activity should have higher H/L ratios leading to lower proportions of 

red on their necks and yellow on their heads. We also predicted that turtles that used more active 

defensive behaviours during handling would have i) lower H/L ratios and ii) higher proportions of red 

on their necks and yellow on their heads. We expected to find stronger trade-offs i) with red colouration 

given that red carotenoids are more limited in the environment and ii) in males given the potential role 

of colouration in mate choice (Figure 2-1a illustrates how we tested these hypotheses with structural 

equation modelling). 



76 
 

Methods 

Study system and turtle captures 

We captured painted turtles between May and August of 2019 and 2020 with fyke nets at 18 

sampling sites along the Rideau Canal, a 202-km slackwater canal located in southeastern Ontario, 

Canada, that connects the Ottawa River to Lake Ontario (shortest aquatic distance between sampling 

sites: 10.2 km; Figure 2-1b). The Rideau Canal is composed of rivers, lakes, and excavated channels 

connected by 23 lockstations (Figure 2-1b). The canal is used extensively for recreational boating with 

over 40,000 vessel crossings recorded at lockstations each year (Figure 2-1c, Supporting Information 1 

– Table S1-4 (Chapter 1) and Supporting Information 2 of Chapter 2), which exclude boats travelling 

on the canal without going through locks. We deployed our nets in areas suitable for painted turtles 

characterized by shallow water, weak currents, abundant aquatic vegetation, and presence of structures 

for basking (e.g., rocks, logs, and stumps). We trapped turtles at each site for at least one week and 

checked the nets every 24 hours. We trapped at five of the 18 sites both years (Supporting Information 

1 – Table S2-1). Upon capture, we measured the plastron length and the carapace length, height, and 

width (± 0.5 mm) of each turtle with an aluminum caliper (Haglöf, Sweden). We also sexed each turtle 

based on external morphological characteristics (e.g., tail and claw length, cloaca position on the tail, 

and shape of the shell). Lastly, we filed notches on the marginal scutes of each turtle according to the 

North American coding system to create unique identifications (Nagle et al., 2017).  

Blood sampling and haematological parameters 

We took a blood sample from the jugular or coccygeal vein of each turtle using a U-100 insulin 

syringe with a 28G × 12.7 mm microfine needle (BD Medical). We favoured blood sampling at the 

jugular vein to reduce the risk of haemodilution that is higher when sampling from the coccygeal vein 
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(66% of blood samples were obtained from the jugular vein; Perpiñán, 2017). We noted the venipuncture 

site for each turtle to be able to control for its potential effect on H/L ratios in our models (see Structural 

equation modelling section; Figure 2-1a). We smeared 1-2 drops of blood (~ 4 mm diameter) on a 

microscopy slide, air-dried them, and then stored them in the dark until further manipulation. For each 

turtle, we prepared two blood smears to ensure having at least one good-quality smear for cell counts. 

Once in the laboratory, we fixed blood smears with methanol for 1 minute and air-dried them prior to 

staining. We stained them with Wrigth-Giemsa solution following the rapid dipping method (Sigma-

Aldrich, 2016).  

We analyzed the circulating leukocyte profile of painted turtles using a compound microscope 

(Leitz Laborlux S, Leica) at 1000X magnification under oil immersion. We differentiated the first 200 

leukocytes observed (except thrombocytes and erythrocytes) as heterophils, eosinophils, basophils, 

lymphocytes, or monocytes (Javanbakht et al., 2013; Kassab et al., 2009; Sanchez & Refsnider, 2017). 

We performed counts by following a line perpendicular to the blood smear in the two-thirds of the smear 

(i.e., in the monolayer section where approximately 50 % of the visible cells touched neighbours’ cells; 

Lentfer et al., 2015). We started counts at the edge of the smear, moved towards the center, and stopped 

when 200 leukocytes were counted. It is important to perform the count perpendicularly to the blood 

smear because leukocytes can be non-randomly distributed on the smear according to morphological 

characteristics: heterophils and monocytes are usually more present at the edge of the smear while 

lymphocytes are more often found in the middle (Briggs & Bain, 2017). We calculated the H/L ratio by 

dividing the number of heterophils by the number of lymphocytes (within the 200 leukocytes). We also 

calculated the proportion of the different leukocytes observed over the total number of leukocytes 

counted (Supporting Information 2 of Chapter 2). In addition, we counted the total number of leukocytes 

at 400x magnification in 10 fields of view that were equally distributed on a new scan line (Supporting 
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Information 2 of Chapter 2). Lastly, we reported the presence/absence of haemoparasites (i.e., Yes: 1 or 

No: 0; hemogregarines and reptilian malaria) across the same 10 fields of views. Haemoparasites are 

common parasites infecting erythrocytes and they are transmitted by leeches and/or mosquitoes in 

reptilian hosts (Campbell, 2015; Heatley & Russell, 2018). The consequences of haemoparasite 

infections are variable ranging from being non-detrimental to life-threatening for infected hosts (Maia 

et al., 2014; Paterson & Blouin-Demers, 2020; Stacy et al., 2011). We statistically controlled for the 

potential impact of blood parasites on circulating leukocyte profiles by including the infection status in 

our models (see Structural equation modelling section; Figure 2-1a). To have complete observations for 

all the variables included in our structural equation models, we used haematological parameters from 

217 turtles in our statistical analyses (males = 215, females = 92; Supporting Information 1 – Table S2-

1). Descriptive statistics of the haematological parameters on the full dataset (N = 382) are available in 

Supporting Information 2 of Chapter 2. 

We evaluated the reproducibility of haematological counts by assessing repeatability between the 

first and second set of 100 leukocytes differentiated along the same scan line and from randomly selected 

subsamples of blood smears that were analyzed twice by different observers. We obtained relatively 

high repeatability estimates (ranging from 0.65 to 0.94 according to the parameters and the subsamples 

used), confirming that our haematological counts had good precision (see Supporting Information 2 of 

Chapter 2 for more details). All haematological measurements used in statistical analyses were 

performed by the same observer.  

Colouration 

Picture linearization and scaling 

We photographed the head and neck of each captured painted turtle with a Nikon digital camera 
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D3200 (18 – 55 mm lens). Pictures were saved in a RAW file format (i.e., NEF file). Each turtle was 

photographed in the field on a light background with a colour chart including a ruler (i.e., X-Rite 

ColorChecker Passport). We avoided direct sunlight. Reflectance values of each picture’s colour 

channel (i.e., red, blue, and green wavelength) should linearly increase with light intensity and, if not, a 

correction should be applied (Stevens et al., 2007). To do so, we extracted the reflectance value of each 

grey scale (i.e., grey colour standard) of the colour chart (ranging from 20 % to 95 % in expected 

reflectance) from the first picture taken for each turtle (N = 260) in ImageJ (Abràmoff et al., 2004). 

Prior to correction, the observed reflectance values already appeared linearly related to expected values. 

The observed values were lower than expected, however. Thus, to obtain a better fit between expected 

and observed reflectance values, we applied a linear correction to each colour channel based on these 

equations: 

𝑄𝑟 = 𝑎1 + 𝑏1𝑟 

𝑄𝑔 = 𝑎2 + 𝑏2𝑔 

𝑄𝑏 = 𝑎3 + 𝑏3𝑏 

In these linearization equations, 𝑄 is the expected reflectance value of the grey colour standard, 𝑎 

and 𝑏 are constants, and 𝑟, 𝑔, and 𝑏 represent the observed reflectance value from each colour channel 

(i.e., red, green, and blue). To determine the value of 𝑎 and 𝑏 for each colour channel, we fitted a linear 

regression using the lm function in R 4.2.0 (R Core Team, 2022) with the expected reflectance value of 

each grey scale of the colour chart as the response variable and the corresponding reflectance values 

extracted from Image J for each picture as the predictor. We applied these equations to all our pictures 

before further analyses in R (see Supporting Information 3 of Chapter 2). We also verified that the 

linearized reflectance values of grey colour standards were equal in each colour channel with paired t-

tests (Stevens et al., 2007). Finally, we rescaled all linearized pictures from a line of known length (i.e., 
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the ruler from the colour chart) in ImageJ to ensure that they were all at the same scale. The area of 

interest (i.e., head or neck) was cropped and placed on a 10 cm X 10 cm black background. 

Proportion of colours 

We measured the proportion of yellow on the head and of red on the neck for each turtle. To do 

so, we created segmented black-and-white pictures from all our linearized and scaled pictures. More 

specifically, we binarized our pictures by giving a score of 0 (black) to each pixel corresponding to the 

colour of interest (i.e., yellow or red) and a score of 1 (white) to all other pixels based on a threshold 

reflectance value specific to each colour. We then calculated the proportion of each colour of interest as 

a function of the total area (i.e., black pixel / (black + white pixels)).  

We started the segmentation by extracting the colour of interest in each picture (Teasdale et al., 

2013). The yellow component was isolated by subtracting the blue channel from the green channel. For 

the red component, we subtracted the green channel from the red channel which also allows to keep 

orange hues. Then, we identified a pixel in ImageJ that visually corresponds to each colour of interest 

on a subset of 50 pictures and extracted its reflectance value in R. Based on the values obtained, we 

tested a range of reflectance values as the threshold for each colour of interest and selected the optimal 

value (i.e., value that isolates only the colour of interest, without losing too much of it; threshold value 

= 0.08 for yellow and = 0.15 for red) for the binarization. The proportion of yellow on the turtle’s head 

and red on the turtle’s neck was extracted from 92 females and 215 males (one male had only a 

measurement for the proportion of yellow, and another one only for the red: 214 males for each colour; 

Supporting Information 1 – Table S2-1). We documented step-by-step our colouration analyses in the 

Supporting Information 3 of Chapter 2.  
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Risk-taking behaviour 

We assessed the propensity to take risks in painted turtles by calculating the sum of active 

defensive behaviours displayed during handling (see Turcotte et al., 2023 (Chapter 1) for more details). 

In brief, during measurement of the four morphological traits (i.e., plastron length, carapace length, 

height, and width), we noted if the turtle used the following active defensive behaviours: i) try to escape 

(movement of the legs), ii) try to bite (the turtle closes and opens the mouth with its neck stretched), iii) 

hiss (gaping of the mouth when retracting the head in the shell, thus expulsing air), and/or iv) 

urinate/defecate. We summed the number of active defensive behaviours used by the turtle during the 

test which ranged from zero (i.e., no active defensive behaviours used) to four (i.e., all four active 

defensive behaviours used). We did not handle turtles prior to this test and only used the first behavioural 

measurement performed in the field for the analyses.  

Boat activity 

We quantified boat activity at each sampling site using the mean daily number of vessel crossings 

at each lockstation along the Rideau Canal. The canal is operated by Parks Canada who recorded all 

vessels crossings at each lockstation during the operating period (i.e., May (Canadian Victoria Day) to 

October (Canadian Thanksgiving); Figure 2-1c and Supporting Information 1 – Table S1-4 (Chapter1)). 

We calculated the mean daily number of vessel crossings separately for 2019 and 2020. The number of 

vessel crossings decreased significantly in 2020 due to restrictions related to the COVID-19 pandemic 

(Figure 2-1c, Supporting Information 1 – Table S1-4 (Chapter1)). To estimate boat activity at each 

sampling site, we calculated the mean daily number of vessel crossings using the vessel counts from the 

upstream and downstream lockstations for each sampling year. We considered that sampling sites 

located near lockstations with numerous vessel crossings should be exposed to higher boat activity.  
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Habitat quality: Estimation of food resources 

In turtles, carotenoids are mainly gained by eating algae and various aquatic plants (Ernst & 

Lovich, 2009). Painted turtles occupy shallow, slow-moving, and well-vegetated water bodies such as 

wetlands (Ernst & Lovich, 2009), which are essential foraging habitats and comprised approximately 

20 % of the Rideau Canal (see Figure 2-1b) (Ernst & Lovich, 2009). We considered that sampling sites 

with high surrounding proportion of wetlands should have more food resources available. We thus 

assessed the proportion of wetlands around each sampling site and used it as a proxy for the abundance 

of carotenoids. We used ArcGIS (version 10.7.1; ESRI, 2019) to calculate the proportion of wetlands 

within various buffer distances around each sampling site using the Southern Ontario Land Resource 

Information System (SOLRIS) V.3 with 15-m resolution (OMNRF, 2019; Figure 2-1b). First, we 

calculated the number of cells from each land cover class within buffer distances ranging from 100 m 

to 1000 m at 100-m increments. During the active period, painted turtles make relatively short daily 

aquatic movements up to 300 m (mean home range = 20.38 ha, mean radius = 250 m; Supporting 

Information 1 – Table S2-2; COSEWIC, 2018), and, thus, a maximal buffer distance of 1000 m should 

cover the scale at which landscape features could potentially affect daily activities. Then, we divided 

the number of cells representing wetland areas (i.e., treed swamp, thicket swamp, fen, bog, and marsh) 

by the total number of cells within each buffer area. Finally, we determined the distance at which the 

effect of the proportion of wetlands was maximal for our four variables of interest (i.e., proportion of 

yellow on head, proportion of red on neck, H/L ratio, and sum of active defensive behaviours). We also 

selected the distance of maximum effect separately for males and females because the scale at which 

landscape features influence movement patterns and space use could differ between sexes (Ernst & 

Lovich, 2009). We calculated Pearson’s correlation coefficients between our variables of interest and 

the proportion of wetlands at each buffer distance, and only kept the buffer distance with the highest 
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value for further analyses (see Supporting Information 1 – Table S2-3 for the selected buffer distances; 

see Čapkun-Huot et al., 2021; Fyson & Blouin-Demers, 2021; Turcotte et al., 2023 (Chapter1)) for 

similar analyses).  

Structural equation modelling 

All statistical analyses were conducted in R 4.2.0 (R Core Team, 2022). We used Bayesian 

multivariate mixed-effect regression models to evaluate the influence of human disturbance on 

colouration (i.e., proportion of yellow and red on head and neck), physiological response (i.e., H/L 

ratio), and risk-taking behaviour (i.e., sum of active defensive behaviours), while accounting for the 

relationships among these variables. The models were implemented in the brms package (Bürkner, 

2017) using Stan R interface (rstan package: Stan Development Team, 2023; rstanarm package: 

Goodrich et al., 2022). We built separate models for the proportion of red and yellow, and for males and 

females. We obtained complete observations for all our variables of interest for 124 males and 92 

females with a single observation per turtle (see Supporting Information 1 – Table S2-1). We included 

sampling site identity as a random effect to control for the non-independence of observations from the 

same location and potential confounding variables (i.e., proportion of wetlands, sampling year, 

venipuncture site, presence/absence of haemoparasites, and carapace length) as predictors in models 

(Figure 2-1a). We applied a square-root transformation to the proportion of red and yellow colouration 

and a log transformation to the H/L ratio to achieve normality. We defined the sum of active defensive 

behaviours as a probability to use the four active defensive behaviours during handling by using a 

binomial distribution. We used a lognormal distribution for the mean daily number of vessel crossings. 

No variables were scaled prior to the analyses (Supporting Information 1 – Table S2-4). For each model, 

we ran four chains with 8000 iterations and 2000 warm-ups. We fitted our models with the default priors 

of the brms package. Finally, given that analyses were performed separately for males and females, we 
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estimated if our variables of interest (i.e., proportion of yellow and red on head and neck, H/L ratio, and 

sum of active defensive behaviours) differed between the sexes with univariate mixed models.  

We verified sampling quality and model fit with the shinystan package (Gabry & Veen, 2022). 

We visually verified that the four chains converged to the same area and no parameters had an 𝑅̂ statistic 

above 1.1 (Gelman et al., 2022; Muth et al., 2018). All effective posterior sample sizes (ESS) were over 

1000 and no parameters had an effective sample size that was less than 10% of the total sample size. 

We assessed the error introduced by the Markov chain Monte Carlo (MCMC) approximation by 

calculating the Monte Carlo standard error (MCSE) and found that no parameters had a MCSE greater 

than 10% of the posterior standard deviation (Muth et al., 2018). Finally, we checked if the data 

simulated by our models fitted our observed data by comparing the observed distribution of our response 

variables to 100 simulated datasets from the posterior predictive distribution. We obtained a similar 

distribution between the observed and simulated data from the posterior predictive distribution for the 

response variables of each model (Muth et al., 2018).  

Results 

Our analysis of 217 painted turtles, with complete observations for all our variables of interest, 

showed that lymphocytes (proportion of lymphocytes: mean ± standard deviation = 0.56 ± 0.14) and 

heterophils (proportion of heterophils: 0.36 ± 0.13) were the most abundant leukocytes (see Supporting 

Information 1 – Table S2-4). We found high variability in the H/L ratio among individuals, which ranged 

between 0.10 and 3.56 (0.77 ± 0.60), but found no difference between the sexes (estimate [95% credible 

intervals] = 0.01 [-0.16 to 0.16]). We detected that 28% of the painted turtles were infected by 

haemoparasites (Supporting Information 1 – Table S2-4). Painted turtles with higher proportions of red 

on the neck also had higher proportions of yellow on the head (Pearson’s r correlation = 0.23, p < 0.01; 
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rmale = 0.29, p < 0.01; rfemale = 0.36, p < 0.01). Males had a higher proportion of red on the neck (0.012 

[0.005 to 0.018]), but a smaller proportion of yellow on the head (-0.008 [-0.013 to -0.004]) compared 

to females. Males did not differ from females in the sum of their active defensive behaviour (0.20 [-0.11 

to 0.51]). 

We detected no relationship between the H/L ratio and the proportion of red on the neck or yellow 

on the head, regardless of sex (Figure 2-2, Table 2-1). We also found no relationship between the 

proportion of red and yellow and the number of active defensive behaviours used during handling, again 

regardless of sex (Figure 2-2, Table 2-1). We found that males, but not females, that used more active 

defensive behaviours had higher H/L ratios (Figure 2-2 and 2-3, Table 2-1). The mean daily number of 

vessel crossings was higher in 2019 than in 2020 (Table 2-1). However, we found no effect of the mean 

daily number of vessel crossings on either H/L ratio (even though painted turtles had a higher H/L ratio 

in 2019 compared to 2020; Figure 2-3 and Table 2-1) or on the proportion of yellow and red colouration 

(Figure 2-2, Table 2-1). Blood samples collected from the jugular vein had higher H/L ratio in both 

sexes (Figure 2-2, Table 2-1). Infection with haemoparasites was not related to the H/L ratio (Figure 2-

2, Table 2-1). Finally, the proportion of wetlands was not related to any of our variable of interest, 

regardless of sex (Figure 2-2, Table 2-1). 

Discussion 

Here we investigated the impact of human disturbance on animals by considering the complex 

relationships among colouration, physiological response, and risk-taking behaviour to understand better 

how they cope and persist in a fast-changing world. We found that painted turtles did not seem to 

respond physiologically to boat activity, but lower H/L ratios were detected in 2020, which was the first 

year of restrictions related to the COVID-19 pandemic. Risk-prone males, but not females, were 
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physiologically more responsive in that they exhibited higher H/L ratios than risk-averse males. Males 

and females differed in colour, but their colouration was unrelated to any physiological or behavioural 

traits.  

Painted turtles physiologically respond to changes in human activity 

We found no relationship between H/L ratios of turtles and mean daily numbers of vessel crossings 

at lockstations suggesting that this measure of physiological response was not affected by spatial 

variation in boat activity. This result is unexpected because we predicted that higher H/L ratios should 

be detected in turtles exposed to higher levels of human activity, as found in many other studies (Fokidis 

et al., 2008; Palacios et al., 2018; Selman et al., 2013). On the other hand, our findings are consistent 

with other studies that also found no significant relationship between H/L ratios and human activity 

(Carbó-Ramírez & Zuria, 2017; Hevia et al., 2023; Walthers & Barber, 2020). The inconsistency in the 

relationships observed in previous studies between H/L ratios and human activity could be caused by 

differences in the history of exposure to perturbations, which is generally unknown in wild animals 

(Davis & Maney, 2018). Reflecting the long-term physiological response to challenging conditions, 

changes in leukocyte profiles depend on the quantity and frequency of stressful events experienced prior 

to capture, which could differ among turtles; some individuals could have been recently exposed to 

multiple stressful events while others were not, even if they are from the same area (Davis & Maney, 

2018). This variation in previous experiences can modulate our measurements of H/L ratios. It is also 

possible that the variation in boat activity is too limited in the canal to detect a potential physiological 

effect (Supporting Information 1 – Table S1-4 (Chapter1)). Even if H/L ratios constitute a reliable 

measurement to estimate the prolonged physiological response to human activities, the use of multiple 

biomarkers (e.g., blood and faecal glucocorticoids levels, haematrocrit levels, measures of oxidative 

stress, etc.) could help better quantify variations in stress response (Dantzer et al., 2014; Davis & Maney, 
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2018).  

Interestingly, we observed lower H/L ratios in painted turtles sampled in 2020, which may indicate 

a potential reduction of the physiological effect of exposure to human activities that were largely 

reduced in 2020 due to the COVID-19 pandemic. Movement restrictions mandated to reduce COVID-

19 propagation drastically limited human outdoor activities worldwide and possibly reduced human 

pressures on wildlife (Montgomery et al., 2021; Rutz et al., 2020; Zellmer et al., 2020). For example, 

the opening of the Rideau Canal to navigation was delayed of two weeks in 2020 and aquatic recreational 

activities were highly discouraged which drastically reduced human activity in the canal. As a result, 

we observed a significant reduction in the mean daily number of vessel crossings at lockstations in 2020 

compared to 2019. Even if we did not detect a significant effect of boat activity on H/L ratios, vessel 

crossings at lockstations are strongly intertwined with sampling year, preventing us from differentiating 

the effects of these two predictors. By repeating the analyses without considering sampling year in our 

mixed-effect regression models, we detected a significant relationship between the mean daily number 

of vessels crossings and H/L ratios in males, but not in females, where individuals in areas with more 

boat activity had higher H/L ratios (Supporting Information 1 – Table S2-5). Thus, sampling year seems 

to predict better changes in human activity that occurred during this period and prevails over the possible 

impact of spatial variation in boat activity on the physiological response. While the restrictions related 

to the COVID-19 pandemic provided an opportunity to quantity the impact of human-wildlife 

interactions on physiological state, more data would be necessary to evaluate if the reduced 

physiological response we observed in 2020 is truly a consequence of lower human activity.  

Physiological cost of being risk-prone in males 

We observed that male painted turtles, but not females, that used more active defensive behaviours 
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had higher H/L ratios. This result suggests that males, according to their behavioural types, may 

differently cope with stressful situations where taking risks could be physiologically costly. This result 

is unexpected given that risk-averse individuals usually strongly respond to stressful conditions by 

activating their hypothalamic-pituitary-adrenal axis (i.e., HPA axis; reviewed in: Carere et al., 2010; 

Réale et al., 2010) leading to a higher release of glucocorticoids and thus a higher H/L ratio compared 

to risk-prone individuals. However, Dantzer et al., (2014) indicated that the magnitude of the 

physiological response can differ between sexes, where males can exhibit more marked responses to 

challenging conditions. Higher H/L ratios in risk-prone males could indicate that they face more 

stressful conditions than risk-averse males during the sampling period, which coincides with the 

breeding season. In freshwater turtles, courtship and search for reproductive opportunities constitute 

large parts of male activity during the breeding period, which could be energetically demanding 

(Gibbons, 1968; Gibbons et al., 1990; Morreale et al., 1984). Freshwater turtles also use aggressive 

behaviours (e.g., gaping, biting, lateral displacement) to gain access to high-quality basking sites that 

facilitate efficient thermoregulation and thus optimize reproductive success (Lindeman, 1999; Lovich, 

1988). Beside the traditional courtship behaviours, male painted turtles often employ an alternative 

reproductive tactic where they use aggressive and coercive behaviours toward females to increase their 

mating success (Moldowan et al., 2020a, 2020b). Risk-prone males could search more actively for 

reproductive opportunities and be involved in more agonistic interactions to secure more reproductive 

events and high-quality resources. Thus, considering that fitness-related activities are already 

energetically costly in male reptiles (Abell, 2000; Aldridge & Brown, 1995; Olsson & Madsen, 1998), 

it is possible that risk-prone males have additional energetic expenses compared to risk-averse males. 

Therefore, we show that variation in the propensity to take risks can lead to different physiological 

responsiveness to stressors that can be specific to each sex, thus highlighting the importance of 
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considering behavioural types when studying physiological responses in animals.  

Colouration differs between the sexes, but is unrelated to any physiological or behavioural response 

Male and female painted turtles differed in colouration: males had more red on their necks and 

less yellow on their heads compared to females, indicating sexual colour dimorphism in this species 

(Bulté et al., 2013). However, this variation in colouration was unrelated to any physiological or 

behavioural traits we measured, rendering difficult the interpretation of biological processes underlying 

these differences. A similar difference in colouration was observed in painted turtles by Rowe et al., 

(2014) where males had slightly redder forelimbs than females. As other studies suggested, colouration 

could be used by animals to signal information that is not directly related to fitness-related activities, 

but, for example, used in conspecific and/or mate recognition (Rowe et al., 2014; Wang et al., 2013). In 

addition, higher proportions of red than yellow in males could be advantageous by making them more 

cryptic in aquatic habitats when they are actively searching for reproductive opportunities (Rowe et al., 

2012, 2014). In the visible spectrum, red wavelengths have the highest rate of absorption when going 

through water making red colouration darker and less visible than yellow in water (Clarke, 1939).  

By using single predictors to represent colouration, behavioural and physiological responses in 

painted turtles, we were possibly limited in our capacity to uncover the potential trade-offs among them. 

Many studies have used spectral reflectance both in the visible and UV spectrum to measure colouration 

in turtles and found significant relationships with physiological state and behaviour (see Ibáñez et al., 

2013b, 2014; Judson, 2021; Polo-Cavia et al., 2013). To our knowledge, no other studies have used the 

proportion of colours as a measure of colouration in turtles. We are aware that our colour measurements 

do not completely reflect how turtles perceive carotenoid-based colour patterns given that these colours 

can also reflect in the UV spectrum and can be detected by their tetrachromatic visual system (Steffen 
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et al., 2015; Ventura et al., 1999). However, the use of digital pictures is still useful to collect information 

on colour patterns given that it has been previously related to physiological response in other taxa (e.g., 

Pérez-Rodríguez & Viñuela, 2008; Svobodová et al., 2013). It is also possible that colouration is more 

directly related to immune functions (e.g., bactericidal competence, phytohemagglutinin response) than 

to the physiological stress response, highlighting the need to include multiple biomarkers to better 

represent the physiological response of animals. We can also not exclude that painted turtles could 

potentially use chemical signals and body condition as indications of physiological state, as suggested 

by other studies (Ibáñez et al., 2012; Polo-Cavia et al., 2013). Thus, further studies should include a 

combination of measurements for each variable of interest when studying the relationship of colouration 

with behavioural and physiological traits.  

Importance to standardize blood sampling when measuring leukocyte profiles 

We found that sampling blood at the coccygeal vein, where the risk of haemodilution is higher, 

led to lower H/L ratios indicating that blood sampling at different venipuncture sites can cause variation 

in leukocyte profiles and bias measurements. This result highlights the importance of standardizing 

blood sampling procedures and of following a strict protocol when measuring haematological 

parameters. The effect of venipuncture site on various haematological values due to haemodilution is 

well-known, generally leading to lower counts of the different leukocytes (Gottdenker & Jacobson, 

1995; Harms et al., 2016; Perpiñán, 2017; Stewart et al., 2012). In our case, the lower H/L ratios 

measured from blood samples obtained at the coccygeal vein were mainly caused by a lower detection 

of heterophils and higher detection of lymphocytes (see post-hoc analyses in Supporting Information 1 

– Table S2-6). Thus, it is crucial to be aware of how sampling and analytical methods can affect counts 

by reporting venipuncture site used and other possible confounding factors (e.g., observers that 

performed counts and needle size; Mumm et al., 2019), and by statistically controlling for their potential 
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effects.  

Conclusion 

Our study showed the potential physiological costs that human activities can exert on painted 

turtles and that sex and behavioural types can influence physiological responsiveness to stressors. To 

our knowledge, few studies have incorporated structural equation modelling to investigate the impact 

of human activities on the relationships between several biological factors that can potentially impact 

reproduction and survival of animals. We encourage the use of a synthetic and hypothesis-driven 

approach when studying animal responses to human disturbance to have a more complete understanding 

of human consequences on wildlife. In addition, there is a need to quantify the long-term cost of the 

physiological responses observed in this study by integrating predictors that quantify reproductive 

success and survival. Considering both physiological and behavioural impacts of human disturbance on 

wildlife is essential to make better informed management decisions and to develop conservation plans 

that are better adapted to species that are already threatened by human activities. 
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Tables 

Table 2-1 Posterior mean and 95% credible intervals of predictors from our structural equation 

modelling with proportion of colours, Heterophil-to-lymphocyte ratio (H/L ratio), sum of active 

defensive behaviours and mean daily number of vessel crossings as response variables in painted turtles 

(Chrysemys picta). The models were performed separately for males and females, and for the proportion 

of red on the turtle’s neck and yellow on the turtle’s head. Reference factors are in parentheses for 

categorical predictor variables. Residual and group-level (i.e., sampling site identity) variances are 

available for each response variable. Predictors for which the 95% credible intervals did not overlap 

with zero are in bold
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   Male (N = 124)  Female (N = 92) 

Response 

variables Predictors  Red  Yellow  Red  Yellow 

Proportion of 

colours 

Intercept 

 

-0.019 

[-0.063 to 0.028] 

 
0.042 

[0.011 to 0.075] 

 
0.065 

[0.023 to 0.107] 

 
0.064 

[0.029 to 0.100]  
H/L ratio 

 

-0.003 

[-0.012 to 0.005] 

 
-0.004 

[-0.010 to 0.001] 

 
0.004 

[-0.006 to 0.015] 

 
0.002 

[-0.009 to 0.012]  
Year (2020) 

 

-0.004 

[-0.019 to 0.011] 

 
-0.001 

[-0.013 to 0.010] 

 
-0.008 

[-0.025 to 0.007] 

 
0.004 

[-0.009 to 0.016]  
Carapace length 

 

0.001 

[0.0003 to 0.001] 

 
0.0001 

[-0.0002 to 0.0003] 

 
-0.0001 

[-0.0004 to 0.0002] 

 
-0.0001 

[-0.0003 to 0.0002]  
Sum of active defensive behaviours 

 

0.002 

[-0.004 to 0.005] 

 
0.001 

[-0.002 to 0.004] 

 
-0.001 

[-0.006 to 0.003] 

 
0.0001 

[-0.004 to 0.004]  
Proportion of wetlands  

  

-0.012 

[-0.031 to 0.008] 

 
-0.008 

[-0.026 to 0.008] 

 
-0.017 

[-0.054 to 0.018] 

 
-0.006 

[-0.025 to 0.016]  
Sampling site identity (Group-

level) 

 
0.008 

[0.001 to 0.016] 

 
0.008 

[0.002 to 0.015] 

 
0.018 

[0.009 to 0.033] 

 
0.007 

[0.0004 to 0.017]  
Residuals   0.023 

[0.020 to 0.026] 

 
0.015 

[0.013 to 0.018] 

 
0.019 

[0.016 to 0.023] 

 
0.019 

[0.016 to 0.022] 

H/L ratio Intercept 

 

0.090 

[-0.664 to 0.837]  

0.298 

[-0.445 to 1.127]  

0.147 

[-0.471 to 0.738]  

0.151 

[-0.443 to 0.741]  
Mean daily number of vessel 

crossings  

-0.006 

[-0.040 to 0.028]  

-0.012 

[-0.050 to 0.021]  

-0.007 

[-0.032 to 0.018]  

-0.007 

[-0.032 to 0.018]  
Year (2020) 

 

-0.978 

[-1.503 to -0.479]  

-1.160 

[-1.710 to -0.639]  

-0.677 

[-1.142 to -0.189]  

-0.680 

[-1.138 to -0.204]  
Venipuncture site (Jugular vein) 

 

0.218 

[0.002 to 0.439]  

0.249 

[0.029 to 0.469]  

0.304 

[0.047 to 0.571]  

0.306 

[0.044 to 0.571]  
Sum of active defensive behaviours 

 

0.124 

[0.021 to 0.229]  

0.105 

[0.002 to 0.211]  

-0.070 

[-0.193 to 0.048]  

-0.071 

[-0.187 to 0.046] 

 Haemoparasites (Infected)  0.115 
 

0.137 
 

-0.028 
 

-0.027 
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[-0.136 to 0.364] [-0.106 to 0.390] [-0.293 to 0.239] [-0.291 to 0.236] 

 

Proportion of wetlands  

  

-0.083 

[-1.121 to 1.018] 

 
-0.060 

[-1.144 to 1.106] 

 
-0.339 

[-0.960 to 0.222] 

 
-0.333 

[-0.898 to 0.237] 

 

Sampling site identity (Group-

level)  

0.387 

[0.177 to 0.690] 

 
0.402 

[0.192 to 0.713] 

 
0.181 

[0.009 to 0.469] 

 
0.176 

[0.010 to 0.451] 

  

Residuals 

  

0.551 

[0.479 to 0.631] 

 
0.554 

[0.484 to 0.636] 

 
0.543 

[0.463 to 0.638] 

 
0.544 

[0.466 to 0.636] 

Sum of active 

defensive 

behaviours 

Intercept 
 

-2.880 

[-5.183 to -0.612] 

 
-2.757 

[-5.115 to -0.522] 

 
-0.831 

[-2.972 to 1.189] 

 
-0.833 

[-2.970 to 1.135] 

 
Mean daily number of vessel 

crossings  

0.008 

[-0.029 to 0.050]  

0.009 

[-0.029 to 0.051]  

0.018 

[-0.024 to 0.057]  

0.018 

[-0.025 to 0.059]  
Carapace length 

 

0.015 

[-0.001 to 0.031]  

0.014 

[-0.001 to 0.031]  

-0.004 

[-0.017 to 0.010]  

-0.004 

[-0.017 to 0.010]  
Proportion of wetlands  

  

-0.403 

[-1.720 to 0.941]   

-0.314 

[-1.621 to 0.969]   

0.552 

[-1.227 to 2.099]   

0.585 

[-1.213 to 2.087]  
Sampling site identity (Group-

level)  

0.503 

[0.135 to 0.994]  

0.513 

[0.120 to 0.989]  

0.424 

[0.022 to 1.132]  

0.432 

[0.022 to 1.137] 

  Residuals   –   –   –   – 

Mean daily 

number of vessel 

crossings 

Intercept 

 

2.626 

[2.341 to 2.906] 

 
2.593 

[2.294 to 2.889] 

 
2.576 

[2.268 to 2.883] 

 
2.577 

[2.266 to 2.885] 

 
Year (2020) 

  

-0.395 

[-0.436 to -0.355] 

 
-0.347 

[-0.390 to -0.304] 

 
-0.370 

[-0.420 to -0.319] 

 
-0.369 

[-0.419 to -0.319]  
Sampling site identity (Group-

level)  

0.568 

[0.395 to 0.847]  

0.588 

[0.407 to 0.877]  

0.582 

[0.398 to 0.879]  

0.580 

[0.397 to 0.873] 

  Residuals 

  

0.042 

[0.037 to 0.048]   

0.044 

[0.039 to 0.051]   

0.055 

[0.047 to 0.065]   

0.055 

[0.047 to 0.065] 
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Figures 

 

Figure 2-1 (a) The structural equation model used to investigate how human disturbance influence the 

relationships between colouration, physiological response, and risk-taking behaviour in painted turtles 

(Chrysemys picta) of the Rideau Canal, Ontario, Canada. More specifically, we examined i) how human 

disturbance indirectly influenced colouration through physiological response (light blue lines), and ii) 

the impact of risk-taking propensity on colouration and physiological response (dark blue lines). 

Predictors used as proxies for our variables are in parentheses. The expected direction of the relationship 

between our variables of interests (in grey boxes) are represented by the (+) and (-) symbol located on 

the causal links. All the other predictors were included to control for their potential effect on the 

variables of interest. (b) Map of the Rideau Canal Waterway (light blue), Ontario, Canada, and the 18 

sites (dots labelled with site names) sampled in 2019 and 2020. Pink dots represent supplementary sites 

from which we only have information on haematological parameters. Solid bars represent the 

lockstations with their respective numbers used as reference for Figure 2-1c. Wetland areas are depicted 

in dark blue based on the Southern Ontario Land Resource Information System (SOLRIS) V.3 
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(OMNRF, 2019). The map was built using ArcGIS® software by ESRI (www.esri.com). (c) Mean daily 

number of vessel crossings at each lockstation in 2019 (light blue) and 2020 (dark blue) based on Parks 

Canada records. The dashed line represents the mean across all lockstations for both years. The numbers 

used to identify each lockstation are the reference numbers from Figure 2-1b
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Figure 2-2 Structural equation models used to assess the effect of human disturbance on the relationships between colouration, 

physiological response and risk-taking behaviour in painted turtles (Chrysemys picta) of the Rideau Canal, Ontario, Canada. The models 

were performed separately for males (a-b) and females (c-d), and for the proportion of red on the turtle’s neck (a-c) and yellow on the 

turtle’s head (b-d). The numbers correspond to the non-standardized coefficients of the causal links (lines) between variables. Light blue 

lines depict significant relationships for which the 95% credible intervals do not overlap zero. Variables in grey boxes represent our 

variables of interest according to our hypotheses. Predictors used as proxies for our variables are in parentheses, except for the categorical 

variables (i.e., venipuncture site, haemoparasites and year), for which it is the reference factor from the models 
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Figure 2-3 Effects of (a-b) the sum of active defensive behaviours used by painted turtles during 

handling, and (c-d) the sampling year on the heterophil-to-lymphocyte ratio separately for the males (a-

c) and the females (b-d). Grey dots represent observations (males = 125, females = 92). Black dots (c-

d) and lines (a-b) depicted the model-predicted effect from a simplified version of our final model from 

which no other predictors were included, and the response variable was not log-transformed to facilitate 

effect visualization. Grey areas (a-b) and black bars (c-d) represent the 95% credible intervals. 
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Supplementary information for Chapter 2 

Supporting Information 1 – Table S2-1 to S2-6 

Table S2-1 Count of unique painted turtles with complete observations for all variables of interest (i.e., 

proportion of colours, heterophil-to-lymphocyte ratio and sum of active defensive behaviours used 

during handling) at 16 sampling sites across the Rideau Canal, Canada, in 2019 and 2020. The data from 

these turtles was used in our structural equation modelling which was performed separately for males 

and females, and for the proportion of yellow on turtle's head and proportion of red on turtle's neck. ¶: 

Sampling sites that were visited both years 

  YELLOW  RED 

  MALE  FEMALE  MALE  FEMALE 

Sites  2019  2020  Total  2019  2020  Total  2019  2020  Total  2019  2020  Total 

RR1  0  4  4  0  8  8  0  4  4  0  8  8 

RR2-2020 0  9  9  0  13  13  0  9  9  0  13  13 

RR3-2  0  5  5  0  2  2  0  5  5  0  2  2 

RR6  0  25  25  0  14  14  0  25  25  0  14  14 

RR7  0  4  4  0  1  1  0  4  4  0  1  1 

RR9  0  12  12  0  9  9  0  12  12  0  9  9 

RR10  3  0  3  1  0  1  3  0  3  1  0  1 

LR1  1  0  1  2  0  2  1  0  1  2  0  2 

BR1¶  6  3  9  3  6  9  6  2  8  3  6  9 

BR2-2019 1  0  1  0  0  0  1  0  1  0  0  0 

BR2-2020 0  12  12  0  2  2  0  12  12  0  2  2 

UP6  9  0  9  7  0  7  9  0  9  7  0  7 

WF1¶  1  9  10  1  8  9  1  9  10  1  8  9 

C1¶  2  4  6  5  3  8  3  4  7  5  3  8 

RS1¶  0  4  4  0  1  1  0  4  4  0  1  1 

CB1¶   0   10   10   0   6   6   0   10   10   0   6   6 

TOTAL   23   101   124   19   73   92   24   100   124   19   73   92 
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Table S2-2 Compilation of home range estimates for painted turtles from the literature. N: Number of painted turtles sampled 

FEMALE   MALE   TOTAL     

N   Home range (ha)  N   Home range (ha)  N   Home range (ha)  Source 

3  3.90  5  7.50  8  6.15  Banning Anthonysamy (2012) 

NA  NA  NA  NA  10  89  Jaeger & Cobb (2012) 

NA  NA  NA  NA  15  1.20  Rowe (2003) 

9  1.80  4  2.90  13  2.14  Rowe & Dalgarn (2010) 

5  21.60  3  8.30  8  14.95  Saba & Spotila (2003) 

8   8.86   NA   NA   8   8.86   Spalding (2020) 

Mean   9.04   Mean   6.23   Mean (ha)   20.38   

        Mean (in m2)   203800   

The majority of the data (except Spalding (2020)) come from Slavenko et al. (2016).
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Table S2-3 Buffer distances (in meters) for the proportion of wetlands with the highest absolute 

Pearson's correlation coefficient for each variable of interest: heterophil-to-lymphocyte ratio, proportion 

of colours and sum of active defensive behaviours used during handling. We determined the scale of 

maximum effect separately for the proportion of red and yellow, and for males and females. The buffer 

distance at which the correlation was maximal was included in the mixed-effect regression models 

Male - Red (N=124)         

Variables  Correlation  Buffer (m) 

Heterophil-to-lymphocyte ratio -0.09  400 

Proportion of red on turtle's neck -0.19  100 

Sum of active defensive behaviours -0.10  200 

     
Male - Yellow (N=124)         

Variables  Correlation  Buffer (m) 

Heterophil-to-lymphocyte ratio -0.09  400 

Proportion of yellow on turtle's head -0.12  100 

Sum of active defensive behaviours -0.08  200 

     
Female - Yellow and Red (N=92)     

Variables  Correlation  Buffer (m) 

Heterophil-to-lymphocyte ratio -0.28  100 

Proportion of yellow on turtle's head -0.10  100 

Proportion of red on turtle's neck -0.12  100 

Sum of active defensive behaviours 0.16   400 
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Table S2-4 Descriptive statistics of our variables of interest and the predictors included in the mixed-effect regression models which 

were computed separately for the proportion of red on turtle's neck and yellow on turtle's head, and for males and females. Haemoparasites 

and venipuncture site were included as categorical predictors in models. SD = Standard deviation 

 TOTAL (N=217)  MALE (N=125)  FEMALE (N=92) 

Variables of interest mean  SD range   mean  SD range   mean  SD range 

Heterophil-to-lymphocyte ratio 0.77 0.60 0.10 - 3.56  0.78 0.65 0.10 - 3.56  0.75 0.53 0.16 - 2.71 

Proportion of lymphocytes 0.56 0.14 0.18 - 0.86  0.56 0.15 0.18 - 0.86  0.56 0.13 0.23 - 0.83 

Proportion of heterophils 0.36 0.13 0.08 - 0.73  0.35 0.13 0.08 - 0.73  0.36 0.13 0.13 - 0.68 

Sum of active defensive behaviours used 1.13 1.00 0 - 4  1.21 1.01 0 - 4  1.03 0.99 0 - 3 

Proportion of red on turtle's neck 0.003 0.003 0.000 - 0.015  0.003 0.003 0.000 - 0.015  0.002 0.002 0.000 - 0.008 

Proportion of yellow on turtle's head 0.003 0.002 0.000 - 0.011  0.002 0.002 0.000 - 0.007  0.003 0.002 0.000 - 0.011 

Predictors                       

Carapace length (mm) 140.34 18.46 93 - 188  134 14.09 95 - 160  148.95 20.20 93 - 188 

Mean daily number of vessel crossings 11.76 8.85 5.61 - 34.07  12.02 8.91 5.61 - 34.07  11.41 8.80 5.61 - 34.07 

Proportion of wetlands within 100 m 0.43 0.32 0.00 - 0.98  0.45 0.32 0.00 - 0.98  0.40 0.32 0.00 - 0.98 

Proportion of wetlands within 200 m 0.34 0.28 0.00 - 0.76  0.37 0.28 0.00 - 0.76  0.31 0.28 0.00 - 0.76 

Proportion of wetlands within 400 m 0.29 0.26 0.00 - 0.65  0.31 0.26 0.00 - 0.65  0.26 0.26 0.00 - 0.65 

Haemoparasites (0: uninfected; 1: infected) 0.28 0.45 0 - 1  0.29 0.45 0 - 1  0.26 0.44 0 - 1 

Venipuncture site (0: coccygeal vein; 1: jugular vein) 0.68 0.47 0 - 1   0.64 0.48 0 - 1   0.73 0.45 0 - 1 
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Table S2-5 Posterior mean and 95% credible intervals of predictors from our structural equation modelling with proportion of colours, 

heterophil-to-lymphocyte ratio (H/L ratio), sum of active defensive behaviours, and the mean daily number of vessel crossings as response 

variables in painted turtles (Chrysemys picta). These models were performed to see the outcomes without sampling year as predictor and 

to confirm that the effect of sampling year observed in our final models cannot be distangled from the mean daily number of vessel 

crossings. The models were performed separately for males and females, and for the proportion of red on the turtle’s neck and yellow on 

the turtle’s head. Reference factors are in parentheses for categorical predictor variables. Residual and group-level (i.e., sampling site 

identity) variances are available for each response variable. Predictors for which the 95% credible intervals did not overlap with zero are 

in bold 

   MALE (N = 124)  FEMALE (N = 92) 

Response variables Predictors  Red  Yellow  Red  Yellow 

Proportion of colours Intercept 

 

-0.021 

[-0.066 to 0.024]  

0.041 

[0.010 to 0.071]  

0.059 

[0.019 to 0.100]  

0.068 

[0.033 to 0.103]  
H/L ratio 

 

-0.002 

[-0.010 to 0.005]  

-0.004 

[-0.009 to 0.001]  

0.005 

[-0.006 to 0.016]  

0.0006 

[-0.009 to 0.011]  
Carapace length 

 

0.0006 

[0.0002 to 0.0009]  

0.0001 

[-0.0002 to 0.0003]  

-0.0001 

[-0.0004 to 0.0002]  

-0.0001 

[-0.0003 to 0.0002]  
Sum of active defensive behaviours 0.001 

[-0.003 to 0.005]  

0.0008 

[-0.002 to 0.004]  

-0.001 

[-0.006 to 0.003]  

0.000 

[-0.004 to 0.004]  
Proportion of wetlands  

  

-0.013 

[-0.032 to 0.007]   

-0.008 

[-0.025 to 0.007]   

-0.019 

[-0.053 to 0.013]   

-0.005 

[-0.024 to 0.015]  
Sampling site identity (Group-level) 0.008 

[0.001 to 0.016]  

0.007 

[0.002 to 0.015]  

0.016 

[0.007 to 0.029]  

0.007 

[0.001 to 0.017] 

  Residuals 

  

0.023 

[0.020 to 0.026]   

0.015 

[0.013 to 0.018]   

0.020 

[0.017 to 0.023]   

0.019 

[0.016 to 0.022] 

H/L ratio Intercept 

 

-1.035 

[-1.638 to -0.506] 

 
-1.024 

[-1.574 to -0.510] 

 
-0.474 

[-0.933 to 0.007] 

 
-0.488 

[-0.952 to -0.020]  
Mean daily number of vessel crossings 0.037 

[0.009 to 0.071] 

 
0.035 

[0.008 to 0.070] 

 
0.018 

[-0.005 to 0.044] 

 
0.018 

[-0.004 to 0.043]  
Venipuncture site (Jugular vein) 0.188 

[-0.043 to 0.425] 

 
0.218 

[-0.018 to 0.453] 

 
0.225 

[-0.038 to 0.489] 

 
0.232 

[-0.029 to 0.502] 
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Sum of active defensive behaviours 0.139 

[0.026 to 0.246] 

 
0.117 

[0.003 to 0.230] 

 
-0.062 

[-0.185 to 0.064] 

 
-0.063 

[-0.187 to 0.062]  
Haemoparasites (Infected) 0.036 

[-0.214 to 0.280] 

 
0.091 

[-0.176 to 0.366] 

 
-0.037 

[-0.308 to 0.236] 

 
-0.033 

[-0.311 to 0.235]  
Proportion of wetlands  

  

-0.468 

[-1.735 to 0.718] 

 
-0.542 

[-1.714 to 0.536] 

 
-0.688 

[-1.386 to -0.048] 

 
-0.679 

[-1.386 to 0.006]  
Sampling site identity (Group-level) 0.446 

[0.216 to 0.798] 

 
0.417 

[0.148 to 0.755] 

 
0.297 

[0.072 to 0.583] 

 
0.297 

[0.070 to 0.587] 

  Residuals 

  

0.578 

[0.503 to 0.669] 

 
0.603 

[0.525 to 0.695] 

 
0.551 

[0.470 to 0.652] 

 
0.551 

[0.470 to 0.650] 

Sum of active defensive 

behaviours 

  

Intercept 

 

-2.887 

[-5.155 to -0.610] 

 
-2.712 

[-4.978 to -0.638] 

 
-0.798 

[-2.882 to 1.207] 

 
-0.804 

[-2.940 to 1.156] 

Mean daily number of vessel crossings 0.008 

[-0.030 to 0.048] 

 
0.009 

[-0.030 to 0.053] 

 
0.019 

[-0.024 to 0.057] 

 
0.018 

[-0.023 to 0.056] 

Carapace length 

 

0.015 

[-0.001 to 0.032] 

 
0.014 

[-0.001 to 0.030] 

 
-0.004 

[-0.018 to 0.010] 

 
-0.004 

[-0.018 to 0.010] 

Proportion of wetlands  

  

-0.407 

[-1.751 to 0.947] 

 
-0.304 

[-1.679 to 1.054] 

 
0.560 

[-1.267 to 2.010] 

 
0.585 

[-1.134 to 2.056] 

Sampling site identity (Group-level) 0.507 

[0.118 to 0.993] 

 
0.520 

[0.139 to 1.016] 

 
0.426 

[0.027 to 1.153] 

 
0.416 

[0.024 to 1.110] 

Residuals   – 
 

– 
 

– 
 

– 

Mean daily number of 

vessel crossings 

  

Intercept 

 

2.359 

[2.009 to 2.705] 

 
2.351 

[2.012 to 2.707] 

 
2.308 

[1.949 to 2.661] 

 
2.308 

[1.958 to 2.667] 

Sampling site identity (Group-level) 0.700 

[0.487 to 1.028] 

 
0.709 

[0.489 to 1.057] 

 
0.675 

[0.462 to 1.015] 

 
0.682 

[0.464 to 1.043] 

Residuals 

  

0.088 

[0.077 to 0.100] 

 
0.082 

[0.072 to 0.093] 

 
0.108 

[0.092 to 0.125] 

 
0.110 

[0.092 to 0.126] 
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Table S2-6 Posterior mean and 95% credible intervals of the effect of venipuncture site on different 

haematological parameters in painted turtles (Chrysemys picta) from mixed-effect regression models. 

Sampling site identity was included as random effect. We sampled blood from two venipuncture sites: 

the coccygeal and the jugular vein which the latest is the reference factor used in the models 

Haematological parameters  Total (N = 217)  Male (N = 125)  Female (N = 92) 

Heterophil-to-lymphocyte ratio 0.18 [0.01 to 0.36]  0.19 [-0.06 to 0.43]  0.21 [-0.06 to 0.48] 

Proportion of lymphocytes -0.05 [-0.08 to -0.01]  -0.05 [-0.10 to -0.00]  -0.05 [-0.10 to -0.00] 

Proportion of heterophils 0.03 [-0.00 to 0.07]  0.03 [-0.02 to 0.08]  0.04 [-0.02 to 0.10] 

Total count of leukocytes -30.28 [-67.51 to 7.30]   -1.08 [-49.68 to 45.34]   -66.19 [-126.82 to -5.41] 
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Supporting Information 2 – Description and repeatability estimation of haematological parameters 

1. Description of the haematological parameters 

In this study, we were mainly interested by the heterophil-to-lymphocyte ratio (H/L ratio), which 

is widely used to quantify physiological response to environmental stressors in wildlife (Davis et al., 

2008; Davis & Maney, 2018). However, other parameters can be measured to have a better overview of 

animal’s physiological state (Davis et al., 2008). Indeed, infections and diseases can also be responsible 

for changes observed in circulating leukocyte profiles (Davis et al., 2008). Distinguishing these effects 

from physiological stress can be difficult when no information on animals’ infection status is available 

(Davis et al., 2008). In addition to increase H/L ratios, infections may also lead to an increase in the 

number of circulating monocytes and the total count of leukocytes. On the other hand, physiological 

response to stressful conditions can be associated to a decrease in circulating eosinophils (Davis et al., 

2008). Thus, taking into account of several haematological parameters can help us to dissociate the 

possible different sources of changes in circulating leukocyte profiles (Davis et al., 2008). In our case, 

we included the infection status by blood parasites in our models. In addition, in reptiles, descriptive 

statistics of haematological parameters are currently mainly available for veterinary medicine purpose 

leaving many wildlife species with scant information (Arikan & Çiçek, 2014; Campbell, 2015; Heatley 

& Russell, 2018; Nardini et al., 2013). Thus, increasing the access to haematological information for 

wildlife species is necessary. See Table S2-7 for a descriptive summary of the haematological 

parameters measured in painted turtles, Table S2-8 for the number of individuals with haematological 

measurements per sampling site, and Figure S2-1 for the correlation coefficients between the 

parameters.  
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Table S2-7 Descriptive statistics of haematological parameters measured on 382 painted turtles. SD = Standard deviation. Sex was 

unidentified for 12 individuals. Some granulocytes (i.e., heterophils, eosinophils and basophils) were difficult to differentiate and were 

categorized as unidentified granulocytes 

 

  Total (N=382)  Male (N=219)  Female (N=151) 

Haematological parameters  Mean  SD  Range  Mean  SD  Range  Mean  SD  Range 

 Proportion of lymphocytes  0.57  0.14  [0.18 - 0.90]  0.56  0.15  [0.18 - 0.88]  0.58  0.14  [0.22 - 0.90] 

Proportion of heterophils  0.35  0.13  [0.05 - 0.73]  0.35  0.13  [0.06 - 0.73]  0.35  0.14  [0.06 - 0.68] 

Proportion of eosinophils  0.06  0.04  [0.00 - 0.26]  0.06  0.04  [0.00 - 0.23]  0.06  0.04  [0.00 - 0.26] 

Proportion of basophils  0.01  0.01  [0.00 - 0.06]  0.01  0.01  [0.00 - 0.06]  0.00  0.01  [0.00 - 0.06] 

Proportion of monocytes  0.01  0.01  [0.00 - 0.06]  0.01  0.01  [0.00 - 0.06]  0.01  0.01  [0.00 - 0.04] 

Proportion of unidentified granulocytes  0.01  0.01  [0.00 - 0.06]  0.01  0.01  [0.00 - 0.06]  0.01  0.01  [0.00 - 0.03] 

Heterophil-to-lymphocyte ratio  0.73  0.54  [0.07 - 3.56]  0.76  0.58  [0.07 - 3.56]  0.71  0.50  [0.07 - 2.71] 

Total count of leukocytes   326.36   135.06   [54 - 856]   310.25   134.06   [71 - 807]   346.83   133.82   [54 - 856] 
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Table S2-8 Number of painted turtles with haematological measurements per sampling site. Sex 

was not determined for 12 painted turtles. ¶ Sites sampled in 2019 and 2020 

 
Sampling sites Female Male Not determined Total 

RR1 13 4 2 19 

RR2-2020 14 9 4 27 

RR3-2 2 7 0 9 

RR6 16 26 0 42 

RR7 6 17 0 23 

RR9 9 13 0 22 

RR10 1 6 0 7 

LR1 3 1 0 4 

BR1¶ 18 26 2 46 

BR2-2019 0 1 1 2 

BR2-2020 8 14 0 22 

UP6 8 10 0 18 

CL2 5 11 1 17 

SA1 3 9 0 12 

WF1¶ 10 16 2 28 

C1¶ 10 10 0 20 

RS1¶ 5 17 0 22 

CB1¶ 20 22 0 42 

Total 151 219 12 382 
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Figure S2-1 Pearson correlation coefficients (upper panel) between haematological parameters 

measured on 382 painted turtles: proportion of different leukocytes (i.e., lymphocytes, heterophils, 

eosinophils, basophils, monocytes), heterophil-to-lymphocyte ratio (H/L ratio), and total number of 

leukocytes (Total leukocytes). Significance level of the correlations are represented by the number 

of asterisks (*** = < 0.001; ** = 0.001 – 0.01; * = 0.01 – 0.05). Distribution of each parameter is 

available on the diagonal. Relationships between parameters are illustrated by scatter pots with a 

regression line on the lower panel. Each blue dot represents an observation  
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2. Assessment of repeatability estimates 

To evaluate the accuracy of our measurements, we analyzed twice randomly selected 

subsamples of blood smears and estimated the repeatability of our different haematological 

parameters: the proportion of different leukocytes (i.e., lymphocytes, heterophils and eosinophils), 

the H/L ratio and the total number of leukocytes. The proportion of basophils and monocytes were 

too low to correctly estimate repeatability (mean = 0.01, standard deviation = 0.01; Table S2-7). 

More specifically, we wanted i) to evaluate our capacity to obtain similar haematological 

measurements between two scans following different lines in the same region of the smear; ii) to 

assess the level of reproducibility of our counts between observers; and iii) among scans from a 

second observer. In addition, we wanted to evaluate the potential effect on our measurements of the 

non-random distribution on the smears of the different types of leukocytes. To do so, we estimated 

the repeatability of our measurements between the first and second set of 100 leukocytes 

differentiated along the same scan line from our entire dataset.  

The statistical analyses were conducted with R 4.2.0 (R Core Team, 2022) using the rpt 

function implemented in the rptR package (Stoffel et al., 2017). We assessed repeatability by using 

mixed models which included turtle identity as a random effect to estimate among and within-

individual variance for each haematological parameter. We used a Gaussian distribution for all our 

models, except that we applied a log or a square-root transformation prior to the analyses for some 

parameters (Table S2-9). The transformation that we applied is specific to each subsample we used 

(Table S2-9). We also adjusted our models for among-individual differences using sex, 

venipuncture site (i.e., jugular or coccygeal vein), order of processing (to possibly control for an 

effect of learning by the observer over time on the measurements), scan order (i.e., first or second 

scan), and sampling year (2019 or 2020) as fixed effects. The observer identity was included in the 
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models used to estimate repeatability between observers. We also included sampling site identity as 

a random effect to control for the non-independence of observations from the same location. Blood 

smears analyzed by the second observer were all from 2020 and scanned in a timeframe of two 

weeks, while those analyzed by the first and main observer were scanned over six months. Only the 

variables having a significant effect on the response variable (i.e., haematological parameter) were 

kept in the final adjusted models (Table S2-9). We estimated the 95% confidence intervals of our 

repeatability estimates using likelihood ratio tests (LRTs) with 1,000 parametric bootstrap 

iterations. See Table S2-9 for repeatability estimates and more details about the analyses.  
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Table S2-9 Repeatability estimates (R) of five haematological parameters analyzed in painted 

turtles to evaluate the accuracy of our measurements: the proportion of lymphocytes, heterophils 

and eosinophils, the heterophil-to-lymphocyte ratio (H/L ratio), and the total number of leukocytes 

(Total leukocytes). The unadjusted repeatability estimates only included turtle identity (ID) as 

random effect, while the adjusted repeatability estimates also included sex, venipuncture site, order 

of processing, scan order, sampling year and/or observer identity as fixed effects (according to the 

subsample analyzed), and sampling site identity as a random effect (Rsite). Only the fixed and 

random variables having a significant effect on the haematological parameters were included in the 

final models used to calculate the adjusted repeatability estimates (Final models). Significance 

[95 % confidence intervals] of repeatability estimates were determined with likelihood ratio tests. 

The coefficient of determination (R2) of the fixed effects included in the adjusted repeatability 

estimates was calculated. Number of turtles measured (Nb.turtles) with the total number of 

observations (Nb.entries: two scans per turtle) for each haematological parameter are provided 
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A) Repeatability between the first and second set of 100 leukocytes differentiated by the observer 1 along the same scan line 

   Unadjusted  Adjusted 

Parameters  Nb.turtles 

(Nb.entries) 
 Rindividual  Nb.turtles 

(Nb.entries) 
 Final models  Rindividual  Rsite  R2 fixed 

Lymphocytes 
 

379 (758) 
 

0.86 

[0.84 - 0.89] 

 
379 (758) 

 
y ~ Year + (1 | ID) + (1|Site) 

 
0.70 

[0.60 - 0.79] 

 
0.14 

[0.04 - 0.25] 

 
0.16 

Heterophils 
 

379 (758) 
 

0.86 

[0.84 - 0.89] 

 
379 (758) 

 
y ~ Year + (1 | ID) + (1|Site) 

 
0.73 

[0.63 - 0.82] 

 
0.11 

[0.03 - 0.22] 

 
0.14 

Eosinophils 
 

379 (758) 
 

0.65 

[0.60 - 0.71] 

 
379 (758) 

 
sqrt(y) ~ Year + Processing 

order + (1 | ID) + (1|Site) 

 
0.52 

[0.44 - 0.60] 

 
0.08 

[0.01 - 0.16] 

 
0.18 

H/L ratio 
 

379 (758) 
 

0.86 

[0.83 - 0.89] 

 
379 (758) 

 
sqrt(y) ~ Year + (1 | ID) + 

(1|Site) 

 
0.73 

[0.64 - 0.80] 

 
0.11 

[0.03 - 0.21] 

 
0.17 

Total 

leukocytes 

 
– 

 
– 

 
– 

 
– 

 
– 

 
– 

 
– 

               
B) Repeatability between two scans made by the observer 1 following different lines in the same region of the smear  

   Unadjusted  Adjusted 

Parameters  Nb.turtles 

(Nb.entries) 
 Rindividual  Nb.turtles 

(Nb.entries) 
 Final models  Rindividual  Rsite  R2 fixed 

Lymphocytes 
 

21 (42) 
 

0.80 

[0.58 - 0.91] 

 
21 (42) 

 
y ~ (1 | ID) 

 
– 

 
– 

 
– 

Heterophils 
 

21 (42) 
 

0.85 

[0.64 - 0.94] 

 
21 (42) 

 
y ~ (1 | ID) 

 
– 

 
– 

 
– 

Eosinophils 
 

21 (42) 
 

0.82 

[0.58 - 0.92] 

 
21 (42) 

 
sqrt(y) ~ Processing order + (1 | 

ID) 

 
0.71 

[0.45 - 0.87] 

 
– 

 
0.37 

H/L ratio 
 

21 (42) 
 

0.82 

[0.60 - 0.92] 

 
21 (42) 

 
log(y) ~ (1 | ID) 

 
– 

 
– 

 
– 

Total 

leukocytes 

 
21 (42) 

 
0.63 

[0.32 - 0.84] 

 
21 (42) 

 
y ~ (1 | ID) 

 
– 

 
– 

 
– 
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C) Repeatability between two scans made by the observer 2 following different lines in the same region of the smear 

   Unadjusted  Adjusted 

Parameters  Nb.turtles 

(Nb.entries) 
 Rindividual  Nb.turtles 

(Nb.entries) 
 Final models  Rindividual  Rsite  R2 fixed 

Lymphocytes 20 (40) 
 

0.92 

[0.82 - 0.97] 

 
20 (40) 

 
y ~ (1|ID) + (1|Site) 

 
0.30 

[0.08 - 0.84] 

 
0.64 

[0.00 - 0.87] 

 
– 

Heterophils 20 (40) 
 

0.94 

[0.85 - 0.98] 

 
20 (40) 

 
y ~ (1|ID) + (1|Site) 

 
0.27 

[0.08 - 0.88] 

 
0.67 

[0.00 - 0.89] 

 
– 

Eosinophils 20 (40) 
 

0.67 

[0.36 - 0.85] 

 
20 (40) 

 
sqrt(y) ~ (1 | ID) 

 
– 

 
– 

 
– 

H/L ratio 
 

20 (40) 
 

0.93 

[0.84 - 0.97] 

 
20 (40) 

 
log(y) ~ (1|ID) + (1|Site) 

 
0.29 

[0.08 - 0.88] 

 
0.65 

[0.00 - 0.88] 

 
– 

Total leukocytes 
 

20 (40) 
 

0.60 

[0.22 - 0.82] 

 
20 (40) 

 
log(y) ~ scan order + (1|ID) 

 
0.69 

[0.39 - 0.87] 

 
– 

 
0.07 

               
D) Repeatability between observers 

   Unadjusted  Adjusted 

Parameters  Nb.turtles 

(Nb.entries) 
 Rindividual  Nb.turtles 

(Nb.entries) 
 Final models  Rindividual  Rsite  R2 fixed 

Lymphocytes 20 (40) 
 

0.82 

[0.61 - 0.92] 

 
18 (36) 

 
y ~ Sex + Processing order + 

Observer + (1|ID) 

 
0.75 

[0.51 - 0.91] 

 
– 

 
0.48 

Heterophils 20 (40) 
 

0.73 

[0.44 - 0.88] 

 
18 (36) 

 
y ~ Sex + Processing order + 

Observer + (1|ID) 

 
0.64 

[0.30 - 0.87] 

 
– 

 
0.57 

Eosinophils 20 (40) 
 

0.63 

[0.29 - 0.84] 

 
20 (40) 

 
sqrt(y) ~ Observer + (1 | ID) 

 
0.69 

[0.39 - 0.87] 

 
– 

 
0.04 

H/L ratio 
 

20 (40) 
 

0.77 

[0.52 - 0.90] 

 
18 (36) 

 
log(y) ~ Sex + Processing order 

+ Observer + (1|ID) 

 
0.68 

[0.38 - 0.88] 

 
– 

 
0.55 

Total leukocytes 
 

20 (40) 
 

0.75 

[0.48 - 0.89] 

 
20 (40) 

 
log(y) ~ Processing order + 

Observer + (1|ID) 

 
0.85 

[0.67 - 0.94] 

 
– 

 
0.25 
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Supporting Information 3 – A step-by-step method to quantify colouration with digital photography 

Note: A slightly modified version of this protocol is currently under review for publication in MethodsX. 

Abstract 

Colouration is often used in biological studies, for example when studying social signaling or 

antipredator defense. Yet, few detailed and standardized methods are available to measure colouration 

using digital photography. Here we provide a step-by-step guide to help researchers quantify colouration 

from digital images. We first identify the do’s and don’ts of taking pictures for colouration analysis. We 

then describe how to i) extract reflectance values with the software ImageJ; ii) fit and apply linearization 

equations to reflectance values; iii) scale and select the areas of interest in ImageJ; iv) standardize 

pictures; and v) binarize and measure the proportion of different colors in an area of interest. We apply 

our methodological protocol to digital pictures of painted turtles (Chrysemys picta), but the approach 

could be easily adapted to any species. More specifically, we wished to calculate the proportion of red 

and yellow on the neck and head of turtles. With this protocol, our main aims are to make colouration 

analyses with digital photography:  

− more accessible to researchers without a background in photography ; 

− more consistent between studies. 

About 

Colouration is often used in biological studies, for example when studying social signaling or 

antipredator defense (see Cuthill et al. (2017) for a review). Yet, few detailed standardized methods are 

available to measure colouration using digital photography. Here we aim to make colouration analyses: 

i) more accessible to researchers without a background in photography and ii) more consistent between 
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studies. In this tutorial, you will learn 1) the do’s and don’ts of taking pictures for colouration analysis, 

2) to extract reflectance values with ImageJ, 3) to create linearization equations, 4) to linearize your 

pictures with the equations created, 5) to scale and select the areas of interest in ImageJ, 6) to rapidly 

classify your pictures, 7) to standardize your pictures, and 8) to binarize the colours of the areas of 

interest. Make sure you thoroughly read the whole protocol before beginning your analyses. Important 

notes are included throughout the different sections. 

You should first install the following software/packages: 

− ImageJ: http://imagej.nih.gov/ij/download.html (Abràmoff et al., 2004) 

− DCRaw Reader (ImageJ package to open various RAW file types): http://ij-

plugins.sourceforge.net/plugins/dcraw/ (Coffin, 2015) 

− R https://cran.r-project.org/ (R Core Team, 2022)  

− RStudio (https://posit.co/download/rstudio-desktop/) (Posit Team, 2022) 

The tutorial has been optimized for use under Windows 10. We have not verified compatibility with any 

other operating system and/or version, but because the software and packages we used are available for 

multiple platforms, it should work on all major platforms such as Mac OS and Linux. 

Basic knowledge in colouration and digital photography is needed to understand well this tutorial. We 

also suggest reading the following papers: Paterson & Blouin-Demers, 2017; Stevens et al., 2007; 

Teasdale et al., 2013. 

1. In the field: steps to follow 

Here are some basic guidelines to consider before taking pictures: 

http://imagej.nih.gov/ij/download.html
http://ij-plugins.sourceforge.net/plugins/dcraw/
http://ij-plugins.sourceforge.net/plugins/dcraw/
https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
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Tip #1: All pictures should include a colour chart (e.g., X-Rite ColorChecker Passport) and a ruler (most 

colour charts already include a ruler). 

Tip #2: Pictures should be stored as .RAW or an equivalent format (e.g., .NEF); avoid compressed files. 

Tip #3: All pictures should be taken with identical camera settings. Avoid automatic settings. 

Importantly, make sure all your pictures are taken with the same ISO value. 

Tip #4: It is more convenient if all picture elements have the same configuration: the animal and the 

ruler are approximately at the same place in all pictures, and they are all taken either in portrait or in 

landscape format. 

 

Tip #5: Take slightly underexposed pictures to avoid pixel saturation (see Stevens et al., 2007). Avoid 

direct sunlight; take your pictures in the shade or use a cover (e.g., umbrella). 
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Tip #6: Make sure you have access to the expected reflectance values (sRGB: Red (R), Green (G), Blue 

(B)) of the chart colours used. It is essential to correctly linearize your pictures because the expected 

grey reflectance values are necessary to create the linearization equations. 

In our case, pictures were stored as .NEF and they all included an X-Rite ColorChecker Passport for 

which the grey reflectance values in sRGB are shown in the chart below (squares 19 to 24). 

 

2. Extracting reflectance values with ImageJ 

2.1 Preparing a spreadsheet file 

To create linearization equations, you need to extract reflectance values from a subset of pictures that 

represents various ambient lighting conditions. If you have few pictures, you should use all of them. In 
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our case, we took multiple pictures for each turtle and, thus, we used the first picture taken of all 

individuals to cover all lighting conditions (N = 260 pictures). Before you start working with ImageJ, 

prepare a spreadsheet file similar to this one: 

 

For each individual (ID), you need to have three rows per grey colour square from your colour chart for 

each picture you want to analyze. The number of grey colour squares can vary between colour charts. 

In our case, we had six grey colour squares giving us 18 rows per individual (column Square contains 

the number of each row). You will need to extract the reflectance value for each grey scale square from 

the colour chart (in our colour chart, we had six grey scales: Black, Neutral 3.5, Neutral 5, Neutral 6.5, 

Neutral 8, and White) for each colour channel (RGB: Red (R), Green (G), Blue (B)). Each grey scale 

square has a total of three expected reflectance value: one per colour channel (Expected_sRGB). Each 

row has a square number (Square) that represents the number of the region of interest that will later be 

created in ImageJ to calculate the reflectance value associated to each grey scale for each colour channel. 

All other columns (e.g., Label, Area, Mean, Min and Max) contain information that will be generated 

by ImageJ. 
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2.2 Opening a .NEF picture in ImageJ 

All the steps that are performed in ImageJ are subject to slight variations due to the person performing 

the analyses. It is thus important to i) have the same person to make all the analyses in ImageJ or ii) 

quantify the variance between measurements that were performed by different persons in ImageJ 

(calculate repeatability). 

 You can see steps 2.2 and 2.3 in this video: https://youtu.be/kbqcvgtKjmw 

In our case, all pictures were saved in .NEF format, which is the equivalent of .RAW file extension for 

Nikon cameras. Other companies may use other RAW extensions, but they should basically be the same. 

To open a .NEF picture in ImageJ, the DCRaw package is required (it can be found here: 

https://github.com/ij-plugins/ijp-dcraw; Installation instructions are provided on the same page). To 

install the package on your computer, you need to unzip the file and copy the executable document (ij-

dcraw_.jar) in the plugins file of the ImageJ file from your computer. 

https://youtu.be/kbqcvgtKjmw
https://github.com/ij-plugins/ijp-dcraw
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Once the package is installed, restart ImageJ and it will now be possible to open a picture by clicking 

on Pluggins >> Input-Output >> DCRaw Reader and then selecting the appropriate file. The following 

menu will appear, and you can see the options we used for our analyses: 
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2.3 Saving pictures in TIFF format 

Now save your pictures as .TIFF via File >> Save as >> Tiff. This will allow you to work on a picture 

that has the parameters you previously specified instead of working on a projection of a .RAW file for 

which you do not know what kind of transformations have been applied. The new .TIFF picture will be 

the one you will use as input in the following R scripts. Even if you only use a subset of pictures to 

obtain the linearization equations, you must do this step for all pictures that you want to use in your final 

analyses. The .TIFF picture may appear darker than the visualization, it is normal. 

2.4 Extracting RGB scores in ImageJ 

 You can see step 2.4 in this video: https://youtu.be/8iDWLSDFgOo 

Now that you have your .TIFF picture opened in ImageJ, the first step to extract RGB scores is to create 

selection squares (i.e., region of interest, ROI) over the colour chart’s grey squares. To create multiple 

selections, open the ROI Manager by clicking on Analyze >> Tools >> ROI Manager. Make sure you 

https://youtu.be/8iDWLSDFgOo
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check the Show All and Labels options in the window before you begin. 

 

You can now draw a square over one of the chart’s grey squares (make sure that your selection tool is 

the square one). To add it to the ROI Manager, simply press t or click Add in the ROI Manager. Your 

selection should now appear in the ROI Manager as shown below. 



 

124 

 

 

Do the same for all grey squares making sure that you only include the colour of interest (no black 

borders) in each square, and that all squares are approximately the same size. 

 

Because you need to extract the reflectance values for each of the three channels separately, you now 
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have to convert the image into a multi-channel stack. To do so, click on Image >> Color >> Make 

Composite. 

 

The picture should now be split in three. You can browse through the different channels by using the 

arrows on your keyboard or with the scrolling bar at the bottom of the picture. In the top left corner, you 

should be able to see which channel is represented (Red, Green or Blue). In the picture below, you can 

see that we are viewing the red channel (1/3 channel). 
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To get the reflectance values, select all the created ROI in the ROI Manager and click on Measure in 

the ROI Manager window. This will give you a mean reflectance value for all your squares for the 

channel that is displayed (and other values such as the area, the min and max reflectance values in the 

ROI, etc.). Do the same for each of the three colour channels by moving to the channel you want to 

analyze and click again on Measure. Finally, input all the measurements in your spreadsheet file. 
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If the labels are not displayed properly, you can go in the Results window, click on Results >> Set >> 

Measurements and select Display label >> OK. You will need to measure your ROIs again to activate 

the labelling. 
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Tip #1: If you use labels, add this column to your spreadsheet file because they give information about 

the picture and the colour channel analyzed for each ROI. It is also possible to save a .CSV file with 

those results directly in ImageJ. You can also keep the measurements of a previous picture in ImageJ 

and copy the results to your spreadsheet after few pictures. You just need to keep the ROI Manager 

opened and calculate the reflectance values after a few pictures. 

Tip #2: To be able to quickly fill the spreadsheet file, it is best to always select the different grey colour 

squares in the same order (i.e., always start and finish with the same ones). Make sure that the colour 

chart is always in the same position. 
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3. Creating linearization equations 

As stated in Paterson & Blouin-Demers (2017), “To use photographs for the analysis of colour, a digital 

camera’s three sensors (corresponding to red, green, and blue wavelengths) should respond linearly and 

equally to increases in light intensity”. Contrary to Paterson & Blouin-Demers (2017), our observed 

reflectance values already appeared linearly related to expected reflectance values before any 

corrections because we used ImageJ’s DCRAW package (Coffin, 2015; Troscianko & Stevens, 2015). 

The observed reflectance values, however, were always lower than the expected reflectance values. We 

thus simply needed to apply a linear correction with a normal lm() function in R to obtain a better fit. 

We used the following equations for each colour channel (i.e., camera’s three sensors): 

𝑄𝑟 = 𝑎1 + 𝑏1𝑟 (1) 

𝑄𝑔 = 𝑎2 + 𝑏2𝑔 (2) 

𝑄𝑏 = 𝑎3 + 𝑏3𝑏 (3) 

Where Q is the expected reflectance values from the grey colour squares of the colour chart, a and b are 

constants (for each colour channel), and r, g, and b are the observed reflectance values from each colour 

channel (red, green, and blue). 

If the relationships had not been linear (as was the case for Paterson and Blouin-Demers (2017)), we 

could have used the following equations instead, using the nls() function in R: 

𝑄𝑟 = 𝑎1 ∗ (𝑏1
𝑟) (1) 

𝑄𝑔 = 𝑎2 ∗ (𝑏2
𝑔
) (2) 

𝑄𝑏 = 𝑎3 ∗ (𝑏3
𝑏) (3) 
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We used the reflectance values extracted in section 2 and the expected reflectance values from the colour 

chart to estimate a and b in each equation. Before going further, you need to check how your observed 

reflectance values are related to the expected reflectance values and, thus, determine the type of 

correction needed. Other equations could be used. Make sure to select the equations that are more 

appropriated to your data. This will be done in the following steps. 

3.1 Loading R packages 

Note: Here we present the packages we used in R. However, they might not all be required to conduct 

the analyses and some other packages might be equivalent to the ones we used. Each package needs to 

be installed with the function install.packages() prior to being loaded and attached in R with the function 

library() as shown below. 

library(readxl) 
library(Hmisc) 
library(tidyverse) 
library(rio) 
library(ggplot2) 
library(ggpubr) 

3.2 Setting the directory 

To be able to run these scripts, you need to set your directory by choosing the folder where your data 

are saved (e.g., spreadsheet file) with the function setwd() or by following this path: Session >> Set 

Working Directory >> Choose Directory. 

To practice with the scripts, you can use the Excel file created in section 2.1. 

3.3 Importing data 

As a reminder, the spreadsheet contains all observed reflectance values extracted in ImageJ from the 

colour chart’s grey squares for a subset of pictures representing various ambient lighting conditions. For 
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each picture, the reflectance values were extracted from each colour channel (Red, Green and Blue). 

# Create a vector with the format we want for each column in our xlsx file. 
Color_coltypes <- c("text", "numeric", rep("text", 2), rep("numeric", 2), "text", 
rep("numeric", 4))  
 
Color <- read_excel("Data_Example.xlsx", sheet = 2, col_types = Color_coltypes) 
 
str(Color) 

## tibble [4,698 × 11] (S3: tbl_df/tbl/data.frame) 
##  $ ID           : chr [1:4698] "1" "1" "1" "1" ... 
##  $ No.Photo     : num [1:4698] 5 5 5 5 5 5 5 5 5 5 ... 
##  $ RGB          : chr [1:4698] "R" "R" "R" "R" ... 
##  $ Grey scale   : chr [1:4698] "Black" "Neutral 3.5" "Neutral 5" "Neutral 6.5" 
... 
##  $ Expected_sRGB: num [1:4698] 52 85 122 160 200 243 52 85 122 160 ... 
##  $ Square       : num [1:4698] 1 2 3 4 5 6 7 8 9 10 ... 
##  $ Label        : chr [1:4698] "DSC_0522.NEF:3486-3375:Red" "DSC_0522.NEF:3693
-3369:Red" "DSC_0522.NEF:3897-3360:Red" "DSC_0522.NEF:4098-3336:Red" ... 
##  $ Area         : num [1:4698] 0.122 0.129 0.122 0.144 0.096 0.136 0.122 0.129 
0.122 0.144 ... 
##  $ Mean         : num [1:4698] 17.4 36.6 58.9 86.2 111 ... 
##  $ Min          : num [1:4698] 2 22 48 75 102 129 9 26 49 77 ... 
##  $ Max          : num [1:4698] 40 49 69 98 119 150 28 42 64 89 ... 

3.4 Deleting overexposed/underexposed pictures 

You should exclude all overexposed pictures (i.e., picture with a reflectance of or near to 255) to 

calculate your linearization equations. In our case, we arbitrary chose a threshold of 254.5 to identify 

potentially problematic overexposed pictures. 

which(Color$Mean>=254.5) 

## integer(0) 

You can see here that we do not have any overexposed pictures. You also do not want underexposed 

pictures with a mean reflectance value very close to zero. You should remove them if it is the case. In 

our case, we verified if we had pictures with a mean reflectance value of 0.5 or less. 

which(Color$Mean<=0.5) 
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## integer(0) 

Again, you can see here that we do not have any underexposed pictures. If you have over or 

underexposed pictures, you can use the codes below to delete those pictures. 

## To delete overexposed pictures 
Color <- subset(Color, Mean <= 254.5) 
## To delete underexposed pictures 
Color <- subset(Color, Mean >= 0.5) 

3.5 Transforming the reflectance values: Scaling between 0 and 1 

To create your linearization equations, you want your reflectance values to be relative to the highest 

value possible (i.e., 255). It will avoid you to work simultaneously on three different matrices by having 

only one picture in gray scale. After this transformation, all your values (the expected and the observed 

values) will be between 0 and 1. 

Color$Expected_sRGB_01 <- Color$Expected_sRGB / 255 # Expected value according to 
the colour chart 
Color$Mean_01 <- Color$Mean / 255 # Observed mean reflectance value 
 
summary(Color$Expected_sRGB_01) # Should be between 0 and 1 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.2039  0.3333  0.5529  0.5630  0.7843  0.9529 

summary(Color$Mean_01) # Should be between 0 and 1 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## 0.02316 0.17860 0.33293 0.34808 0.49797 0.94441 

3.6 Splitting data by colour channel 

You need to create one linearization equation per colour channel and, thus, you need to split your data 

per colour channel. 

# Red channel 
Color_R <- subset(Color, RGB == "R") 
hist(Color_R$Mean_01, main = "Red channel", xlab = "Mean observed reflectance val
ues") 
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# Green channel 
Color_G <- subset(Color, RGB == "G") 
hist(Color_G$Mean_01, main = "Green channel", xlab = "Mean observed reflectance v
alues") 
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# Blue channel 
Color_B <- subset(Color, RGB == "B") 
hist(Color_B$Mean_01, main = "Blue channel", xlab = "Mean observed reflectance va
lues") 
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3.7 Linearization equations 

Now, you can create a linear model for each colour channel and extract the slope and the intercept of 

each model to build your equations. In our case, we used the lm() function for our equations as 

mentioned earlier. 

redlinear=lm(Expected_sRGB_01 ~ Mean_01, data = Color_R) 
summary(redlinear) 

##  
## Call: 
## lm(formula = Expected_sRGB_01 ~ Mean_01, data = Color_R) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.27288 -0.06205 -0.01210  0.05449  0.43465  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 0.141803   0.004648   30.51   <2e-16 *** 
## Mean_01     1.213138   0.011629  104.32   <2e-16 *** 
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0909 on 1564 degrees of freedom 
## Multiple R-squared:  0.8744, Adjusted R-squared:  0.8743  
## F-statistic: 1.088e+04 on 1 and 1564 DF,  p-value: < 2.2e-16 

The intercept is 0.141803 and the slope is 1.213138 for the linearization equation of the red channel. 

Now, you can linearize the mean observed reflectance values for the red channel with this equation that 

contains the constants that were extracted from the model. 

r.2.linear <- 0.141803 + (Color_R$Mean_01*1.213138) 

You can visualize the relationship between the linearized observed values and the expected reflectance 

values from the colour chart. If the linearization equation works well, the data are supposed to follow 

the black line (1:1). 

plot(r.2.linear ~ Color_R$Expected_sRGB_01, main = "Red channel", xlab = "Expecte
d reflectance",ylab = "Linearized observed reflectance", xlim = c(0, 1), ylim = c
(0, 1.2))    
abline(0,1) 
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Repeat the same steps for the green and blue channels. 

The intercept is 0.130617 and the slope is 1.242959 for the linearization equation of the green channel. 

Now, you can linearize the mean reflectance values for the green channel with this equation that contains 

the constants that were extracted from the model. In our case, the equations and plots for the green and 

blue channels were the following. 

g.2.linear <- 0.130617 + (Color_G$Mean_01 * 1.242959) 
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b.2.linear <- 0.118825 + (Color_B$Mean_01 * 1.271826) 
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Visualizing the three channels together before and after the linearization 

You can visualize the changes made by the linearization equations to the observed reflectance values 

from the three channels. 

# Plot of the relationship between the observed reflectance values with no linear
ization and the expected reflectance values. 
 
graph.uncorrected <- ggplot() + 
  geom_point(aes(x = Color_R$Expected_sRGB_01, y = Color_R$Mean_01), color = "red
", position = "jitter") + 
  geom_point(aes(x = Color_B$Expected_sRGB_01, y = Color_B$Mean_01), color = "blu
e", position = "jitter") + 
  geom_point(aes(x = Color_G$Expected_sRGB_01, y = Color_G$Mean_01), color = "gre
en", position = "jitter") + 
  geom_abline(intercept = 0, slope = 1, color = "black") + 
  ylab("Observed reflectance") + xlab("Expected reflectance") + labs(title = "Unc
orrected") + theme(plot.title = element_text(hjust = 0.5)) 
 
 
# Plot of the relationship between the corrected reflectance values with the line
arization equations and the expected reflectance values. 
   
graph.corrected <- ggplot() + 
  geom_point(aes(x = Color_R$Expected_sRGB_01, y = r.2.linear), color = "red", po
sition = "jitter") + 
  geom_point(aes(x = Color_B$Expected_sRGB_01, y = b.2.linear), color = "blue", p
osition = "jitter") + 
  geom_point(aes(x = Color_G$Expected_sRGB_01, y=g.2.linear), color = "green", po
sition = "jitter") + 
  geom_abline(intercept = 0, slope = 1, color = "black") + 
  ylab("Observed reflectance") + xlab("Expected reflectance") + labs(title = "Cor
rected") + theme(plot.title = element_text(hjust = 0.5)) 
 
ggarrange(graph.uncorrected, graph.corrected, 
          ncol = 2, nrow = 1) 
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You can see that the corrected observed reflectance values for the three color channels (Red, Green and 

Blue) follow the reference line (1:1). This confirms that the linearization equations are working. 

3.8 Equalizing the channels 

In some cases, the linearization will also equalize the three colour channels (e.g., transformed R = 

transformed G = transformed B). You should thus confirm that linearized pixel scores of grey colour 

scales from the colour chart are equal in each channel using paired t-tests. If it is not the case, see the 

following paper: Stevens et al. (2007). 

t.test(r.2.linear, g.2.linear, paired=TRUE)  

##  
##  Paired t-test 
##  
## data:  r.2.linear and g.2.linear 
## t = -0.0011145, df = 1565, p-value = 0.9991 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
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##  -0.0008726124  0.0008716213 
## sample estimates: 
## mean difference  
##   -4.955514e-07 

t.test(r.2.linear, b.2.linear, paired=TRUE)  

##  
##  Paired t-test 
##  
## data:  r.2.linear and b.2.linear 
## t = 1.5925, df = 1565, p-value = 0.1115 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
##  -0.0003029215  0.0029174415 
## sample estimates: 
## mean difference  
##      0.00130726 

t.test(g.2.linear, b.2.linear, paired=TRUE) 

##  
##  Paired t-test 
##  
## data:  g.2.linear and b.2.linear 
## t = 3.2623, df = 1565, p-value = 0.001129 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
##  0.0005214506 0.0020940605 
## sample estimates: 
## mean difference  
##     0.001307756 

You need to correct your p value according to the number of comparisons made (three in this case). 

alpha = 0.05/3 = 0.0167. In our case, we only observed a significant difference between the green and 

blue channels. The mean difference, however, was very small (0.001). We thus concluded that the 

linearized pixel scores of the grey colour scales were equal in each colour channel (Red, Green and 

Blue). 

4. Linearizing pictures 

Now that the constants a and b are known, it is possible to linearize all your pictures (not just the 
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subsample of pictures previously used) with the equations created in section 3.7. In our case, our final 

dataset included two .TIFF pictures per individual, one representing the neck (showing both yellow and 

red) and one representing the top of the head (usually showing two yellow spots). Here is an example 

of a set of pictures for one turtle: 

 

Before running this script, make sure that all your pictures are saved in .TIFF format and have the same 

properties. All steps in section 3 of this guide should have been completed. 

4.1 Loading R packages 

See note in section 3.1. 

library(imageviewer) 
library(magick) 
library(rsvg) 
library(beepr) 
library(hexView) 
library(tiff) 
library(EBImage) 
options(repos = BiocManager::repositories()) # You can use this setting to instal
l packages (e.g., EBImage) from other repositories than CRAN (e.g., BiocManager) 
with the function install.packages().   

The installation of EBImage should work if you follow these steps: 

http://bioconductor.org/packages/devel/bioc/vignettes/EBImage/inst/doc/EBImage-

introduction.html#1_Getting_started. If you encounter difficulties for the installation, you can try 

http://bioconductor.org/packages/devel/bioc/vignettes/EBImage/inst/doc/EBImage-introduction.html#1_Getting_started
http://bioconductor.org/packages/devel/bioc/vignettes/EBImage/inst/doc/EBImage-introduction.html#1_Getting_started
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installing it with RStudio in administrator mode. 

4.2 Setting the directory 

To be able to run these scripts, you need to set your directory by choosing the folder where your pictures 

(in .TIFF) are saved with the function setwd() or by following this path: Session >> Set Working 

Directory >> Choose Directory. 

4.3 Creating a list of pictures 

You need to create a list of pictures to work on (put all pictures to be linearized in the appropriate 

directory). Subfolders are needed if there are several pictures to process or if you have limited computing 

power (e.g., R may run out of memory). In our case, we were able to process about 10 pictures at a time. 

in.images<-list.files(path="images", pattern="DSC", full.names=FALSE, recursive=T
RUE) 
in.images 

## [1] "DSC_0022.tif" "DSC_0023.tif" 

This step allows the creation of an object containing a list of all the pictures found in the selected 

subfolder (path = “path to the folder where a subset of pictures is located”, and Recursive = TRUE 

allows access to the subfolders inside the directory selected). You do not need to write the entire path 

given that the directory is already set. The pattern argument indicates a common pattern of names in all 

pictures you want to open. In our case, we had a folder named images in our directory. All our pictures 

started with DSC, which was used as the pattern argument. This tutorial’s subfolder only includes two 

pictures: DSC_0022 and DSC_0023. All steps in the following section will be performed on these two 

pictures. 
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4.4 Converting pictures to arrays 

Creating a function that formats pictures correctly 

When a picture is uploaded in R, the different colour channels are not automatically accessible. Instead, 

the picture is represented as one matrix. Since you need to apply your linearization equations to the three 

channels of your pictures (Red, Green and Blue), you need to access each colour channel’s array. This 

function allows you to do so: 

Format.image <- function(y) { 
  list_array <- list() # creates an empty list 
  for (n in 1:length(y)) { 
    image <- paste("Array", y[n], sep = "") # transforms the name of the pictures 
    y2 <- image_read(y[n]) # read the .TIFF file 
    print(dim(y2)) 
    #print(y2) # this step can be activated by deleting the (#). This step allows 
you to see the picture in R-studio viewer (but it will take more time) 
    print(image_info(y2)) 
    y_array <- as.integer(y2[[1]]) # converts to an array to be able to change th
e colour values 
    y_array <- transpose(y_array) 
    y_array <- y_array / 255 # To get grey values instead of colours  
    print(y_array) 
    list_array[[image]] <- y_array  
     
  } 
  return(list_array) 
} 

Applying the previously created functions to the pictures 

picture_list <- Format.image(in.images) 

Make sure you can access the elements inside the list. In our case, we confirmed that the previous 

function worked by running the following code line, which looks at the reflectance values of picture #1 

of our list between pixel rows 5 and 10, and pixel columns 10 and 20 for the third matrix (blue). The 

first matrix is the red channel, the second is the green channel and the third one is the blue channel.  
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picture_list[[1]][5:10, 10:20, 3] 

##           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7] 
## [1,] 0.1490196 0.1490196 0.1490196 0.1411765 0.1333333 0.1333333 0.1372549 
## [2,] 0.1529412 0.1529412 0.1490196 0.1411765 0.1333333 0.1372549 0.1372549 
## [3,] 0.1529412 0.1529412 0.1490196 0.1450980 0.1372549 0.1372549 0.1372549 
## [4,] 0.1529412 0.1529412 0.1490196 0.1450980 0.1450980 0.1372549 0.1333333 
## [5,] 0.1490196 0.1490196 0.1490196 0.1450980 0.1450980 0.1411765 0.1372549 
## [6,] 0.1450980 0.1450980 0.1490196 0.1450980 0.1450980 0.1450980 0.1450980 
##           [,8]      [,9]     [,10]     [,11] 
## [1,] 0.1450980 0.1568627 0.1568627 0.1607843 
## [2,] 0.1529412 0.1686275 0.1607843 0.1490196 
## [3,] 0.1490196 0.1607843 0.1529412 0.1490196 
## [4,] 0.1411765 0.1490196 0.1490196 0.1490196 
## [5,] 0.1411765 0.1411765 0.1372549 0.1333333 
## [6,] 0.1372549 0.1333333 0.1254902 0.1176471 

We also checked if we could see the dimensions of picture #1 in our list. 

dim(picture_list[[1]]) 

## [1] 6034 4012    3 

You can see the width (6034 pixels), the height (4012 pixels), and the three matrices (3: Red, Green, 

Blue) of picture #1. 

You can also use the following function to see all reflectance values from all pixels of picture #1. The 

output is not shown here because it is too large. 

picture_list[1] 

4.5 Applying the linearization equations 

Here are the equations we obtained in section 3.7: 

fred = function(x) {0.141803 + (1.213138 * x)} # function to change RED pixel val
ues 
fgreen = function(x) {0.130617 + (1.242959 * x)} # function to change GREEN pixel 
values    
fblue = function(x) {0.118825 + (1.271826 * x)} # function to change BLUE pixel v
alues 

We created a function that will apply the different equations to their respective matrix. In other words, 
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the function will allow you to apply the linearization equation of the red channel to the red matrix, the 

green equation to the green matrix, and the blue equation to the blue matrix. 

change.image <- function(x) { 
  for(m in 1:length(x)){ 
    r <- apply(x[[m]][500:4500, 500:4000, 1], MARGIN = c(1, 2), FUN = fred) # app
ly the red linearization function to the red channel 
    g <- apply(x[[m]][500:4500, 500:4000, 2], MARGIN = c(1, 2), FUN = fgreen) # a
pply the green linearization function to the green channel 
    b <- apply(x[[m]][500:4500,500:4000, 3], MARGIN = c(1, 2), FUN = fblue) # app
ly the blue linearization function to the blue channel 
    z <- Image(array(dim = c(nrow(r), ncol(r), 3),data = cbind(r, g, b))) # this 
step allows to re-stack together the three matrices. The order of the three layer
s is important here: red, green and blue. 
    colorMode(z) <- Color #set to colour mode 
    writeImage(z, paste(names(x[m]), "_linearized", ".TIFF", sep="")) # save as a 
new picture that will use the origin name, but will add "_linearized" at the end 
and that will be saved in the .TIFF format.  
  } 
} 

Here, the pictures from the picture list are in their original dimensions, and are cropped by the 

change.image() function. However, it could be a good idea to crop the pictures beforehand to reduce 

computing time, especially if the zone of interest is relatively small compared to the rest of the picture. 

In our case, we did not crop the pictures prior to running the script. The cropping was done via the 

change.image() function. Thus, the resulting pictures are linearized and only include the area located 

between pixel rows 500 and 4500, and between pixel columns 500 and 4000 for the three matrices. This 

helps reduce computing time. If you decide to crop your pictures this way, you need to make sure that 

all pictures still include the whole area of interest, as well as the ruler (or at least part of it). Now, you 

can apply the function to the list of pictures: 

change.image(picture_list) 

This step can take several minutes. In our case, the linearization of two pictures took about 5 minutes. 

Once it is done, the newly linearized pictures (named ArrayDSC_0022.tif_linearized and 
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ArrayDSC_0023.tif_linearized) should be saved in the directory selected at the beginning. 

5. Rescaling pictures and selecting the area of interest 

5.1 Rescaling pictures 

Before going further, it is necessary to scale all pictures similarly. By doing this, you are ensuring that 

areas (in pixels) measured in one picture are comparable to that measured in other pictures. In ImageJ, 

you can scale the pictures previously linearized and cropped in section 4. In the following section, we 

used a different head picture compared to the previous section. 

 You can see the steps of section 5 in this video: https://youtu.be/IzjauL99_7Q 

First, you need to measure a line of known length (i.e., a section of the ruler included in all pictures) 

with the straight-line tool. 

 

Then, in Analyze >> Set Scale, the measured distance should appear in the first box (i.e., Distance in 

pixels). The Known distance should be changed to the appropriate value. In our case, we used a known 

https://youtu.be/IzjauL99_7Q
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distance of 1 cm. We thus changed Known distance to 1.00 and the Unit of length to cm. 

 

The scaling factor of the picture (i.e., Distance in pixels: 163.2680) needs to be noted in a new column 

of your spreadsheet file. It is also possible to create a new spreadsheet file with all the pictures that will 

be analyzed if you only analyzed a subset of your pictures to create the linearization equations. In our 

case, we added one column to enter the scaling factor (i.e., Scaling_factor_(pixels/cm)). We also added 

another column to compute the number of pixels in 10 cm (i.e., Number_of_pixels_in_10_cm). This 

column will later be used to uniformize the background size of all pictures (10 x 10 cm; see section 5.3 

Resizing pictures on a 10 cm X 10 cm background). This step is necessary because, to our knowledge, 

ImageJ only allows background rescaling in pixel units (and not in cm). 
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Note: To determine how many pixels were needed on the background so that it would work with all 

pictures, we first used a subset of 50 pictures. This step confirmed that a background of 10 x 10 cm was 

sufficient to avoid cropping any important portion of our pictures. With the spreadsheet file, we then 

computed the number of pixels that corresponded to 10 cm (e.g., 163.268 pixels/cm * 10 cm = 1632.68). 

Thus, the size of your background will depend on the size of your area of interest and on the size 

variation of this area between individuals. 

5.2 Selecting the area of interest 

You can delimit the area of interest with the freehand selection tool. The selection can then be adjusted 

by selecting Edit >> Selection >> Convex Hull. You can create a new knot by pressing Shift and 

clicking on a knot. If you want to delete a knot, you can do so by pressing Ctrl and clicking on a knot. 

Here is an example of the area of interest, selected with the freehand selection tool and adjusted 

manually afterwards: 
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Then, you can erase everything outside of your selection by using Edit >> Clear Outside 

 

You can then crop the picture by selecting Image >> Crop. 
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5.3 Resizing pictures on a 10 cm X 10 cm background 

Lastly, you can resize the black background to make it uniform between pictures by clicking on Image 

>> Adjust >> Canvas size. You will need to fill the width and height values with the ones you computed 

in the Number_of_pixels_in_10_cm column of your spreadsheet file for this specific picture. In our case, 

canvas width and height were changed to 1632.68 pixels. 
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Now that the picture is scaled and resized, it should look like this: 

 

The picture is ready to be used in the following steps. We recommend saving your modifications as a 

new picture with a name including as much information as possible. In our case, the following 

information was included in the picture’s name: 

− The individual’s ID ; 

− The first letter of Head or Neck (to indicate the region of interest in the picture) ; 



 

153 

 

− The mention that the picture was linearized, scaled and cropped, and that the background was 

uniformized to 10 cm. 

For example, AB_H_linearized_scale_cut_10.tif, for the head picture of the turtle identified as AB. 

6. Classifying pictures before standardization & binarization 

By now, all your pictures are linearized, scaled, resized, and saved in the same folder on your computer. 

Before proceeding to the standardization/binarization, you need to group all your cropped and linearized 

pictures in different folders according to the area of interest that you want to analyze (if you have 

multiple areas). These folders will then be used in the following R scripts. In our case, all head pictures 

were grouped in one folder and all neck pictures in another. We suggested using the first letter of the 

region of interest (H for Head or N for Neck) in the picture file names and this is where it becomes 

useful. It allows us to sort all pictures automatically. This is especially useful when dealing with a lot of 

pictures. When choosing a letter to group picture categories, be cautious of not using a letter or character 

that appears elsewhere in the filename. 

Note: This step is performed via the Windows command processor (also known as command prompt). 

An equivalent method should work under other operating systems such as Mac OS or Linux. 

Open the command prompt by pressing the windows key (WIN) + R. Then, write cmd in the new 

window. Be careful: the command prompt is sensitive to caps lock and spaces. 
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Now, specify the path of the directory where all the pictures are currently saved by using cd followed 

by a space and the directory path. Press enter. 

cd Your_directory_path 

Then, to create new folders where you will send your pictures (in our case, we needed two new folders: 

one for the head pictures and one of the neck pictures), enter md followed by a space and the new 

folder’s name. Separate each folder by a space and press enter. 

md Neck Head 

Finally, use the move command, followed by a space and the recurring pattern specified (in our case, 

_H_ or _N_) between two asterisks. Add a space and specify the name of the destination folder followed 

by “/” and press enter. 

move *_N_* Neck/ 

move *_H_* Head/ 
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The pictures will now be sorted in their respective new folders according to the region of interest that 

you want to analyze. 

7. Standardizing pictures before binarization 

In most cases, you will need to create a new picture which is standardized. This step is required to 

remove absolute variation in pixel values (i.e., variations in brightness). For more information on this 

step see: Teasdale et al. (2013). 

For each picture, the standardization is done on all three colour channels by dividing each pixel value 

by the total value from all colour channels (e.g., Standardized red = R/(R+G+B)). In our case, 

standardization made it too difficult to distinguish yellow from green during binarization. Thus, we did 

not standardize our pictures. If you need to standardize your pictures, you can follow the steps below. 

7.1 Loading R packages 

See note in section 3.1. 

library(imageviewer) 
library(magick) 
library(rsvg) 
library(beepr) 
library(hexView) 
library(tiff) 
library(EBImage) 
library(rio) 
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7.2 Setting the directory 

To be able to run these scripts, you need to set your directory to the folder where you saved your 

linearized, scaled, and cropped head pictures in .TIFF format with the function setwd() or by following 

this path Session >> Set Working Directory >> Choose Directory. 

7.3 Creating a list of pictures 

in.images <- list.files(path = "images", pattern = "_H_", full.names = F, recursi
ve = F) 
in.images 

## [1] "ID_H_linearized_scale_cut_10.tif" 

Here, again, you need to confirm that you can access the elements of the list. 

length(in.images) 

## [1] 1 

In our case, we have one picture in our list. 

7.4 Converting pictures to arrays 

Like in section 4, we created a function that formats the pictures correctly (i.e., import, convert to an 

array) and lists them. 

Format.image <- function(y) { 
  list_array <- list() # creates an empty list 
  for (n in 1:length(y)) { 
    image <- paste("standardized_", y[n], sep = "") # creates a new picture name 
where "standardized_" is added at the beginning of the name. 
    print(image) 
    y2 <- image_read(y[n]) # read .TIFF file 
    #print(y2) # this is to see the picture in R-studio viewer (takes more time) 
    print(image_info(y2)) 
     
    y_array <- as.integer(y2[[1]]) # converts to an array to be able to change th
e colour values 
    y_array <- transpose(y_array) 
    y_array <- y_array / 255  
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    #print(y_array) 
    list_array[[image]] <- y_array  
  } 
  return(list_array) 
} 

You can apply the function to your list of pictures: 

picture_list <- Format.image(in.images) 

## [1] "standardized_ID_H_linearized_scale_cut_10.tif" 
## # A tibble: 1 × 7 
##   format width height colorspace matte filesize density 
##   <chr>  <int>  <int> <chr>      <lgl>    <int> <chr>   
## 1 TIFF    1381   1381 sRGB       FALSE 11443455 138x138 

In our case, we can see that we have one picture of 1381 pixels (width) per 1381 pixels (height). Again, 

you want to ensure you can access the reflectance values from the first picture. You also need to make 

sure you select an area of your picture that is not black. In our case, we indicated that we wanted to see 

the reflectance values between the pixel rows 670 and 675, and between the pixel columns 662 and 667 

of the third colour channel (blue). 

picture_list[[1]][670:675, 662:667, 3] 

##           [,1]      [,2]      [,3]      [,4]      [,5]      [,6] 
## [1,] 0.2549020 0.2470588 0.2392157 0.2274510 0.2117647 0.1921569 
## [2,] 0.2549020 0.2392157 0.2392157 0.2352941 0.2196078 0.2000000 
## [3,] 0.2470588 0.2392157 0.2352941 0.2352941 0.2117647 0.2000000 
## [4,] 0.2431373 0.2352941 0.2352941 0.2274510 0.2117647 0.2000000 
## [5,] 0.2392157 0.2274510 0.2274510 0.2274510 0.2196078 0.2078431 
## [6,] 0.2352941 0.2235294 0.2235294 0.2235294 0.2235294 0.2235294 

7.5 Standardizing pictures 

We created a function that standardizes all three colour channels.  

change.image <- function(x) { 
   
    for(m in 1:length(x)){ 
    r <- x[[m]][, , 1] # name red layer  
    g <- x[[m]][, , 2] # name green layer 
    b <- x[[m]][, , 3] # name blue layer 
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    pr <- r / (r + g + b) # Standardize red channel 
    pg <- g / (r + g + b) # Standardize green channel 
    pb <- b / (r + g + b) # Standardize blue channel 
     
    # When divisions by 0 occur, R outputs NaN, we need to replace those NaN by 0 
(so that they are equal to the darkest pixel value) 
    pr[is.na(pr)] <- 0 
    pg[is.na(pg)] <- 0 
    pb[is.na(pb)] <- 0 
     
    z_norm <- Image(array(dim=c(nrow(pr), ncol(pr), 3), data=cbind(pr, pg, pb)))   
# stack and convert to image. Order is important in the three layers. # this imag
e is now standardized (colours might seem weird because of the standardization) 
    colorMode(z_norm) <- Color # set to colour mode 
    writeImage(z_norm, paste(names(x[m]), "_norm", ".TIFF", sep="")) # save as ne
w image (with "_norm" added at the end) in 16bit TIFF format 
  } 
  }   

change.image(picture_list) 

The standardized version of our head picture looks like this: 

 

8. Binarizing pictures 

The binarization allows us to isolate the colour of interest (yellow in this case because we are focusing 
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on head pictures in this example) from all other colours present in our picture. It will give a score of 0 

(black) to the colour of interest and a score of 1 (white) to the rest. Then, from the binarized pictures, it 

will compute the number of yellow pixels (black) and the number of pixels that are not considered 

yellow (white) allowing us to calculate the proportion of yellow pixels in the area of interest. The scripts 

can be adapted to any colour and area of interest. 

8.1 Loading R packages 

See note in section 3.1. 

library(imageviewer) 
library(magick) 
library(rsvg) 
library(beepr) 
library(hexView) 
library(tiff) 
library(EBImage) 
library(rio) 

8.2 Setting the directory 

To be able to run these scripts, you need to set your directory by choosing the folder where you saved 

your linearized, scaled, and cropped (and possibly standardized) pictures in .TIFF format with the 

function setwd() or by following this path Session >> Set Working Directory >> Choose Directory. 

8.3 Creating a list of pictures 

in.images <- list.files(path = "images", pattern = "_H_", full.names = F, recursi
ve = F) 
in.images 

## [1] "ID_H_linearized_scale_cut_10.tif" 

We can see that our file only included one picture named ID_H_linearized_cut_10.tif. 

8.4 Converting pictures to arrays 
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Again, we created a function that formats our images correctly (import, convert to an array) and lists 

them. This function is similar to the one in section 4. 

Format.image <- function(y) { 
  list_array <- list() # creates an empty list 
  for (n in 1:length(y)) { 
    image <- paste("10_", y[n], sep = "") # creates transformed names, you can re
place "10_" to something more meaningful for your own project. 
    print(image) 
    y2 <- image_read(y[n]) # read file 
    #print(y2) # this is to see picture in R-studio viewer (takes more time) 
    print(image_info(y2)) 
     
    y_array <- as.integer(y2[[1]]) # converts to an array to be able to change th
e colour values 
    y_array <- transpose(y_array) 
    y_array <- y_array / 255     #print(y_array) 
    list_array[[image]] <- y_array  
  } 
  return(list_array) 
} 

Then, you can apply the function created to your initial list of pictures and create a new list of arrays for 

all the pictures. 

picture_list <- Format.image(in.images) 

## [1] "10_ID_H_linearized_scale_cut_10.tif" 
## # A tibble: 1 × 7 
##   format width height colorspace matte filesize density 
##   <chr>  <int>  <int> <chr>      <lgl>    <int> <chr>   
## 1 TIFF    1381   1381 sRGB       FALSE 11443455 138x138 

You can see that we had one picture of 1381 pixels (width) per 1381 pixels (height). Again, you need 

to ensure you can access the reflectance values from the first picture. You also need to make sure you 

select an area in your picture that is not black. In our case, we wanted to see the reflectance values 

contained between the pixel rows 670 and 675, and between the pixel columns 662 and 667 on the third 

colour channel (blue). 

picture_list[[1]][670:675, 662:667, 3] 
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##           [,1]      [,2]      [,3]      [,4]      [,5]      [,6] 
## [1,] 0.2549020 0.2470588 0.2392157 0.2274510 0.2117647 0.1921569 
## [2,] 0.2549020 0.2392157 0.2392157 0.2352941 0.2196078 0.2000000 
## [3,] 0.2470588 0.2392157 0.2352941 0.2352941 0.2117647 0.2000000 
## [4,] 0.2431373 0.2352941 0.2352941 0.2274510 0.2117647 0.2000000 
## [5,] 0.2392157 0.2274510 0.2274510 0.2274510 0.2196078 0.2078431 
## [6,] 0.2352941 0.2235294 0.2235294 0.2235294 0.2235294 0.2235294 

8.5 Determining the colour threshold & binarizing the pictures 

We created a function that binarizes pictures according to the colour of interest. The function creates a 

new picture where all pixels of our colour of interest are black and all other colours are white. In our 

case, we wanted to compute the number of yellow pixels relative to the total number of pixels. We first 

needed to determine which reflectance value corresponded to what we call yellow in our pictures (i.e., 

what our eyes see as yellow). We identified a threshold of reflectance value that is included in our 

binarization function to determine which pixels are yellow. With this threshold, the function binarizes 

our pictures for the colour of interest: the colour of interest (i.e., yellow) will have a score of 0 (black) 

and the rest will have a score of 1 (white). To determine the threshold, we used the first part of the 

function that isolates the yellow component of the pictures by substracting the blue channel from the 

green channel. The equation to use to isolate the colour of interest will depend on the colour you want 

to isolate. For each picture, a new picture is saved in the directory by adding yellow_g-b at the end of 

the picture name. You can modify the new name as you wish. In our case, we performed this first step 

on 50 pictures to select the optimal threshold to binarize our pictures according to the colour of interest. 

change.image<-function(x) { 
   
  Prop_list_yellow_head <- NA # Creates an empty database to compile proportion o
f coloured pixels at the end 
   
  for(m in 1:length(x)){ 
    pr <- x[[m]][, , 1] # name red channel 
    pg <- x[[m]][, , 2] # name green channel 
    pb <- x[[m]][, , 3] # name blue channel 
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    ## To isolate the yellow component: this part is specific to the colour you w
ant to isolate  
     
    po_yellow <- pg - pb # To isolate yellow, we need to subtract the blue channe
l from the green channel.  
     
    z.cropped.norm.o_yellow <- Image(array(dim = c(nrow(po_yellow), ncol(po_yello
w), 1), data = po_yellow))  # stack and convert to image. Order is important. Thi
s is to create a new picture with the yellow component isolated.  
     
    writeImage(z.cropped.norm.o_yellow, paste(names(x[m]), "_yellow_g-b", ".TIFF"
,sep = "")) # save as a new picture in 16bit .TIFF format with "_yellow_g-b" adde
d at the end of the name in the directory selected at the beginning 
     
  } 
 
}  

change.image(picture_list) 

After running this function, you now have a picture that isolates the colour of interest and it should look 

like this (what you see in white are the yellow areas): 
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A subset of pictures must be used to determine the threshold that will be used to binarize your pictures. 

This can be done by opening the newly saved pictures with the colour of interest isolated in ImageJ and 

putting your cursor over a region of the colour of interest (yellow here) and noting the coordinates. 

Then, in R, you can find the reflectance value (between 0 and 1) that corresponds to the colour of 

interest. You can also use the version of the picture prior to the isolation of the colour of interest given 

that you will see the real colours and it can be easier to select the coordinates. Here, you can see our 

image representing the yellow component isolated from the other colours when we open it in ImageJ: 

 

In our case, we opened the picture in ImageJ prior to the isolation of the yellow component to select the 

coordinates: 
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ImageJ gives you the coordinates of the pixel where you put your cursor. Move your cursor over a region 

of your colour of interest to get its coordinates. In our case, we zoomed on a yellow spot of the head and 

put our cursor over it (red arrow). We then noted the coordinates of the pixel (located in the red box) in 

a spreadsheet file. 
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The coordinates of a yellow pixel in this picture were x = 691 and y = 828. You will need to do this for 

all your subset of pictures (one set of coordinates per colour of interest). You can then return in R to 

determine the reflectance values of these pixels. You can create a new spreadsheet file to i) keep all the 

coordinates obtained for each picture of the subset and ii) enter the reflectance values that you will later 

obtain in R. 

 

When all the coordinates are identified, you can return in R to a modified version of the previous 

function that will allow you to determine the reflectance values of the selected pixels coordinates. 

Be careful: If you apply the function to your previous picture list (instead of applying it only to the 
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picture from which you got the coordinates), it will determine the reflectance value of the coordinates 

selected for all the pictures in the list. Since yellow areas of different pictures are not all at the same 

coordinates, this will lead to incorrect thresholds.  

In this example, only one picture was included in our picture list, so we do not have to worry about this. 

Here is the modified function, make sure to change the coordinates according to what you obtained in 

ImageJ: 

change.image <- function(x) { 
   
  Prop_list_yellow_head <- NA  
   
  for(m in 1:length(x)){ 
    pr <- x[[m]][, , 1]  
    pg <- x[[m]][, , 2] 
    pb <- x[[m]][, , 3] 
     
    po_yellow <- pg - pb  
     
    z.cropped.norm.o_yellow <- Image(array(dim = c(nrow(po_yellow), ncol(po_yello
w), 1), data = po_yellow))   
    writeImage(z.cropped.norm.o_yellow, paste(names(x[m]), "_yellow_g-b", ".TIFF"
, sep = "")) 
     
    ## this is the section that you need to modify according the coordinates obta
ined in ImageJ to determine the reflectance value of this selected pixel. In our 
case x = 691 and y = 828. 
     
  print(c(z.cropped.norm.o_yellow[691, 828, 1], paste("Reflectance values - Yello
w pixel"))) 
     
      } 
  return(Prop_list_yellow_head) 
}   

Now, you can run the new version of the function to have the reflectance value of the coordinates 

selected: 

Reflectance_value_yellow <- change.image(picture_list) 
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## [1] "0.133333333333333"                 "Reflectance values - Yellow pixel" 

You can see that the pixel selected (coordinates in ImageJ: x = 691 and y = 828) has a reflectance value 

of 0.13. The function can now be modified to binarize (black/white) the pictures according to this 

reflectance threshold. For now, we will only show you how the function works and how a binarized 

picture looks like based on the reflectance value that we just computed. 

change.image <- function(x) { 
   
  Prop_list_yellow_head <- NA  
  list_black_head <- NA 
  list_white_head <- NA 
   
  for(m in 1:length(x)){ 
    pr <- x[[m]][, , 1] 
    pg <- x[[m]][, , 2] 
    pb <- x[[m]][, , 3] 
     
    po_yellow <- pg - pb 
     
    z.cropped.norm.o_yellow <- Image(array(dim = c(nrow(po_yellow), ncol(po_yello
w), 1), data = po_yellow))   
     
    #writeImage(z.cropped.norm.o_yellow, paste(names(x[m]), "_yellow_g-b", ".TIFF
", sep="")) 
    
    ## You need to modify this function according to the reflectance value obtain
ed. In this example, our threshold is 0.13. Let us select only regions >0.13 for 
yellow and create a new binarized picture to see the result. 
     
    z.cropped.norm.o_yellow[which(z.cropped.norm.o_yellow[] <= 0.13)] <-1 # All y
ellow pixels will be black (0) and all other pixels will be white (1). 
    z.cropped.norm.o_yellow[which(z.cropped.norm.o_yellow[] > 0.13 & z.cropped.no
rm.o_yellow[] != 1)] <-0  
     
    White_yellow <- print(length(z.cropped.norm.o_yellow[which(z.cropped.norm.o_y
ellow[] == 1)])) # Number of pixels that are not considered yellow. 
    Black_yellow <- print(length(z.cropped.norm.o_yellow[which(z.cropped.norm.o_y
ellow[] == 0)])) # Number of yellow pixels. 
    Prop_yellow <- Black_yellow / (White_yellow + Black_yellow) # Proportion of y
ellow pixels. 
     
    print(c(Prop_yellow, paste("Proportion of yellow pixels")))  
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    writeImage(z.cropped.norm.o_yellow, paste(names(x[m]), "yellow_0.13_g-b", ".T
IFF", sep = "")) # save as new picture in 16bit .TIFF with the "yellow_0.13_g-b" 
at the end of the name. 
     
    # Add the proportion of yellow pixels (and the count of black and white pixel
s) to the empty table created at the beginning of the function. 
     
    Prop_list_yellow_head[[m]] <- Prop_yellow  
     
    list_black_head[[m]] <- Black_yellow 
    list_white_head[[m]] <- White_yellow 
     
  } 
  return_list <- list(Prop_list_yellow_head, list_black_head, list_white_head) 
   
  return(return_list) 
}   

Proportion_list_head <- change.image(picture_list) 

## [1] 1905941 
## [1] 1220 
## [1] "0.000639694289050584"        "Proportion of yellow pixels" 

The output gives you the following information: 

− The first row is the number of pixels that are not considered yellow according to the threshold 

selected (i.e., number of white pixels in the binarized picture). 

− The second row is the number of yellow pixels according to the threshold selected (i.e., 

number of black pixels in the binarized picture). 

− The third row is the proportion of yellow on the head.  

Here is the picture binarized with this threshold: 
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You can notice that the threshold selected here (0.13) is too restrictive (i.e., we are losing areas of the 

colour of interest (represented in black) according to the original picture). In other words, there should 

be more black pixels in the binarized picture since the area covered by yellow in the original picture is 

bigger than what we see in the binarized picture. By running the previous function with several pictures, 

you will find an optimal value allowing you to keep only the regions of interest, without losing too much 

of them. Some trial and error may be required. The black areas in the binarized pictures should only be 

present where your colour of interest is. You can try different thresholds on several pictures and select 

the one that keeps most areas of your colours of interest without including too much noise (i.e., areas 

that do not appear similar visually to your colour of interest). 

In the following example, the first picture has a threshold of 0.01. This leads to most of the picture being 

black (not only the yellow patches), which is not restrictive enough. On the other hand, you do not want 

your threshold to be too restrictive, which would lead to losing your colour of interest (i.e., yellow 

patches (or parts of them) would be white while they should be black). 
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In our case, we used 50 pictures to determine visually the optimal threshold value to use. We selected a 

threshold of 0.08 for our shades of yellow. When the optimal threshold is selected, you can save the 

proportion of yellow pixels calculated for all your pictures in a database and export it to a spreadsheet 

file. We added a new column with the picture name alongside the proportion of yellow calculated. The 

number of black and white pixels used to calculate the proportion of yellow pixels is also available in 

the data frame. 

Proportion_list_head <- as.data.frame(Proportion_list_head) 
 
Proportion_list_head["picture"] <- names(picture_list) 
 
colnames(Proportion_list_head)[1] = "Proportion of yellow pixels (black/[black+wh
ite])" 
colnames(Proportion_list_head)[2] = "Number of black pixels" 
colnames(Proportion_list_head)[3] = "Number of white pixels" 
 
Proportion_list_head 

##   Proportion of yellow pixels (black/[black+white]) Number of black pixels 
## 1                                      0.0006396943                   1220 
##   Number of white pixels                             picture 
## 1                1905941 10_ID_H_linearized_scale_cut_10.tif 
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export(Proportion_list_head, "Head_Picture.xlsx") 

You should now have your colouration data extracted and ready for further analyses.  



 

172 

 

Chapter 3 

 

Exploring the effect of 195 years-old locks on species movement: Landscape genetics of painted 

turtles in the Rideau Canal, Canada 

 

This chapter is a slightly modified version of the manuscript published in Conservation Genetics: 

Turcotte, A., Blouin-Demers, G., & Garant, D. (2022). Exploring the effect of 195 years-old locks on 

species movement: landscape genetics of painted turtles in the Rideau Canal, Canada. Conservation 

Genetics, 0123456789. https://doi.org/10.1007/s10592-022-01431-z
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Abstract 

Aquatic systems have been extensively altered by human structures (e.g., construction of 

dams/canals) and these have major impacts on the connectivity of wildlife populations through the loss 

and isolation of suitable habitats. Habitat loss and isolation affect gene flow and influence the 

persistence of populations in time and space by restricting movements. Isolation can result in higher 

inbreeding, lower genetic diversity, and greater genetic structure, which may render populations more 

vulnerable to environmental changes, and thus to extinction. Given the ubiquity and the persistence of 

dams and canals in space and time, it is crucial to understand their effects on the population genetics of 

aquatic species. Here, we documented the genetic diversity and structure of painted turtle (Chrysemys 

picta) populations in the Rideau Canal, Ontario, Canada. More specifically, we used 13 microsatellites 

to evaluate the influence of locks on genetic variation in 822 painted turtles from 22 sites evenly 

distributed along the 202-km canal. Overall, we found low, but significant, genetic differentiation 

suggesting that some dispersal is occurring throughout the canal. In addition, we showed that locks 

contribute to the genetic differentiation observed in the system. Clustering analysis revealed two distinct 

genetic groups whose boundary is associated with a series of six locks. Our results illustrate how 

artificial waterways, such as canal systems, can influence population genetic structure. We highlight the 

importance of adopting management plans that can mitigate the impacts of human infrastructure and 

preserve gene flow across the landscape to maintain viable populations. 
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Introduction 

Increase and expansion of human activities have led to the loss and isolation of natural habitats 

which, in turn, have resulted in the loss of biodiversity worldwide (Haddad et al., 2015; Su et al., 2021; 

WWF, 2018). Habitat loss and isolation have major impacts on the distribution, abundance and 

connectivity of wildlife populations that are often reflected in their population genetic diversity and 

structure (Fahrig, 2003; Schlaepfer et al., 2018). Alterations of natural habitats by human activities 

reduce the area and connectivity of suitable habitats for wildlife, restricting movements of individuals 

that are necessary to maintain gene flow (Fahrig, 2003; Lowe & Allendorf, 2010; Schlaepfer et al., 

2018). By reducing population size and increasing genetic drift, loss of connectivity results in higher 

inbreeding and lower genetic diversity, leading to greater population genetic differentiation between 

isolated populations (Schmidt et al., 2020). A reduction of dispersal may also limit the exchange of 

alleles that are potentially important for individuals to adapt to their environment (Lenormand, 2002; 

Morjan & Rieseberg, 2004). In the long term, fitness of individuals from isolated populations can 

decrease and populations may become more vulnerable to environmental changes and, thus, to 

extinction (Leigh et al., 2019; Reed & Frankham, 2003; Willi et al., 2006). Therefore, to maintain gene 

flow and ensure the persistence of small and isolated populations in space and time, it is crucial to 

identify the factors that limit gene flow among these populations, especially in highly modified 

environments. 

Freshwater habitats have been extensively altered by humans (e.g., construction of dams/canals) 

to sustain diverse economic activities (e.g., transportation, energy and water use) (Grill et al., 2015; 

Nilsson, 2005). Worldwide, water flow and connectivity of almost half of all rivers have been modified 

by dam construction (Grill et al., 2015). These alterations have drastically affected habitat quality and 
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connectivity for aquatic species and, thus, the ecological integrity of ecosystems (Barbarossa et al., 

2020; Lin et al., 2020; Su et al., 2021). Reduction of the natural connectivity of ecosystems can impede 

the life cycles of freshwater species and represents a major cause of the decline of freshwater 

biodiversity worldwide (Carvajal-Quintero et al., 2017; Fuller et al., 2015; Jansson et al., 2000; Perkin 

& Gido, 2012). In comparison to dams, canals are more complex systems where both barriers (e.g., 

dams and locks) and new connections (e.g., excavated channels) are created (Lin et al., 2020). This 

duality makes it difficult to predict the long-term ecological effects of canals on aquatic ecosystems (Lin 

et al., 2020). The balance between possible negative and positive effects of canals on connectivity can 

also depend on their design and permeability (i.e., length and number of locks and dams), the original 

characteristics of the aquatic and surrounding terrestrial habitats, the intensity of changes made, and the 

management history of the canal (Lin et al., 2020). There is currently a lack of research on how genetic 

population structure of aquatic species is affected by artificial waterways, such as canal systems, 

especially at large spatial scales (Bergman et al., 2021; Koschorreck et al., 2020; Lin et al., 2020).  

To determine how freshwater species are affected by anthropogenic changes, it is crucial to assess 

how their genetic structure is related to human-made barriers in these artificial systems (Selkoe et al., 

2015). To do so, a landscape genetics approach can be used to determine the permeability to gene flow 

and the occurrence of genetic discontinuities in artificial waterways (Selkoe et al., 2015). In particular, 

by using landscape genetics modelling, one can quantify the relationship between genetic differentiation 

(e.g., genetic distance such as FST) and landscape features (e.g., number of barriers) (Row et al., 2017; 

Van Strien et al., 2012). Landscape genetics can also inform management decisions for vulnerable 

species by identifying areas of conservation concern (e.g., populations with low genetic diversity and 

high genetic structure, and identification of barriers responsible for the evolution of distinct genetic 
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groups; Holderegger & Wagner, 2008; Manel et al., 2003) 

Turtles are among the most vulnerable taxa to anthropogenic changes (Böhm et al., 2013; 

Buhlmann et al., 2009; Gibbons et al., 2000) given their life-history traits (e.g., late sexual maturity, low 

juvenile survival) that make populations less resilient to reductions in adult survival (Brooks et al., 1991; 

Congdon et al., 1994; Midwood et al., 2015). In Canada, six out of 10 native freshwater turtles are 

considered at risk by the Committee on the Status of Endangered Wildlife in Canada (Species at risk 

public registry: www.canada.ca/en/environment-climate-change/services/species-risk-public-registry). 

Previous studies have evaluated the impact of landscape changes (e.g., expansion of road networks and 

agricultural/urban conversion of natural habitats) on genetic patterns of turtle populations (see Laporte 

et al., 2013; Reid et al., 2017; Reid & Peery, 2014; Willoughby et al., 2013 for examples). While some 

studies found no genetic effects of landscape changes (Laporte et al., 2013; Willoughby et al., 2013), 

others indicated that anthropogenic changes were associated with higher genetic differentiation and 

lower genetic diversity (Reid et al., 2017; Reid & Peery, 2014). To our knowledge, however, no study 

to date has assessed the effects of large-scale aquatic landscape alterations (e.g., constructions of canals) 

on genetic population structure of freshwater turtles (see Bennett et al. (2010) for a study at a small 

spatial scale). 

In this study, we characterize the genetic diversity and genetic population structure of painted 

turtles (Chrysemys picta) in the Rideau Canal, Ontario, Canada. More specifically, we assess how 

landscape features, especially the presence of locks, are related to genetic differentiation throughout the 

system. We hypothesize that the construction of locks for the Rideau Canal has impeded movements of 

painted turtles and thus reduced gene flow between populations. Specifically, we predict that: i) the 

number of locks will be a better predictor of genetic structure than other landscape features (i.e., 
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historical features of the landscape prior to canal construction and geographic distance) and ii) 

populations isolated by many locks will be more genetically distant than populations separated by few 

or no locks. Our study provides a rare example of how a canal system can influence the landscape 

genetics of a long-lived species.  

The Rideau Canal is a slackwater canal located in southeastern Ontario, Canada, that connects the 

Ottawa River to Lake Ontario. This 202-km continuous waterway is a network of rivers, lakes, and 

excavated channels that were connected through the construction of 23 lockstations (45 locks), many of 

which were built with water-control dams (Legget, 1986). Construction started in 1826 and the canal 

officially opened in 1832. The main purpose of this canal was to provide a supply route for military 

activities to protect Canadian British colonies against the United States (Tulloch, 1981). Since its 

construction, however, the Rideau Canal has been mainly used for economic and recreational activities 

(Parks Canada, 2006). Given that the Rideau Canal is the oldest continuously operated canal in North 

America and that the effect of its construction on landscape connectivity remains completely 

unexplored, it is a valuable study system to evaluate the long-term effects of such constructions on 

genetic composition of turtle populations. 

Methods 

Study species 

The painted turtle is a long-lived generalist species (i.e., generation time ~ 30-45 years; 

COSEWIC, 2018) widely distributed across North America that lives in various aquatic habitats (e.g., 

swamps, marshes, rivers and lakes; Ernst & Lovich, 2009). Painted turtles can disperse overland 

between wetlands and colonize new and artificial wetlands (Bowne, 2008; Dupuis-Desormeaux et al., 

2018). Even if painted turtles are considered stable over their range by the IUCN (van Dijk, 2011), 
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populations in southeastern Ontario are considered of Special Concern by the Committee on the Status 

of Endangered Wildlife in Canada (COSEWIC, 2018). 

Study system and sample collection 

We sampled painted turtles at 22 sites distributed approximately every 10 km along the entire 

Rideau Canal in Ontario, Canada (Figure 3-1a, Table 3-1). There was wide variation in the number of 

locks between pairs of sites (range = 0–33, mean = 11.3, SE = 0.5). We sampled in suitable habitats for 

painted turtles characterized by shallow water, weak current, abundant aquatic vegetation, and presence 

of structures for basking (e.g., rocks and stumps). 

We captured painted turtles with fyke nets between May and August in 2018–2020. We deployed 

fyke nets for one week at each site and checked them every 24 hours. We sampled some sites for more 

than one year to evaluate their temporal genetic stability (10/22 sites; Table 3-1; see Genetic diversity 

and differentiation section). Each painted turtle we captured was marked with the North American code 

(Nagle et al., 2017) to ensure unique sampling. We took blood samples from the coccygeal, jugular, or 

supracarapacial vein using a U-100 insulin syringe with 28 G x 12.7 mm microfine needle (BD 

Medical). We dried the blood samples on a qualitative P8 grade filter paper (Thermo Fisher Scientific) 

prior to DNA extraction.  

DNA extraction and amplification 

We extracted DNA from a  7-mm punch of a blood-soaked filter paper with an overnight 

proteinase K digestion followed by a salt extraction (Aljanabi & Martinez, 1997). We assessed 

extraction quality by running extraction products on 1% agarose gels (stained with ethidium bromide) 

and revealing the band under UV light. We then normalized each DNA sample to a final concentration 

of 10 ng/μl prior to PCR amplification. We genotyped all DNA samples using 15 microsatellite loci 
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previously described and tested on painted turtles (Supporting Information 1 – Table S3-1). We 

optimized PCR conditions by adapting original PCR protocols and by examining amplified products on 

2% agarose gels (Supporting Information 1 – Table S3-2 and S3-3). All forward primers were labelled 

with a fluorescent dye (Supporting Information 1 – Table S3-1). We ran amplified products using three 

multiplexes with an AB3500 Genetic Analyzer and using GeneScan™ 600 LIZ as a size standard 

(Applied Biosystems). We scored all alleles twice manually with GeneMapper™ v.6 (Applied 

Biosystems). We assessed genotyping error rate for each locus from repeated genotyping of 38 painted 

turtles (= 4.6% of samples) that were sampled more than once between years. 

Genetic diversity and differentiation 

We obtained population genetic statistics using different packages in R 3.6.2 (R Core Team, 

2019). We tested for deviations from Hardy-Weinberg equilibrium (HWE) for each locus, and for each 

combination of sampling sites and locus, using Chi-squared tests (Chisq) and exact tests based on 10,000 

Monte Carlo (MC) permutations with the R package pegas (Paradis, 2010). We estimated the proportion 

of loci that deviated from HWE for each sampling site and estimated the proportion of sites out of HWE 

for each locus using a false discovery rate correction based on the significant deviations previously 

tested (based on MC and Chisq tests with and without Bonferroni correction; Benjamini & Yekutieli, 

2001). We tested all loci for linkage disequilibrium with the R package poppr (Kamvar et al. 2014). We 

also assessed the frequency of null alleles for each locus with the R package PopGenReport (Adamack 

& Gruber, 2014). We excluded loci with i) a high frequency of null alleles (i.e., >10%), ii) a significant 

deviation from HWE across several sampling sites, or iii) a high genotyping error rate (i.e., >10%) from 

further analyses (see Sample collection and genotyping in Results section).  

From the dataset with the remaining loci, we estimated observed and expected heterozygosity (HO 
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and HE), allelic richness (AR) and inbreeding coefficients (FIS) for each locus and sampling site using 

the R package diveRsity (Keenan et al., 2013). We then determined the number of private alleles (PA) 

for each sampling site with the PopGenReport package (Adamack & Gruber, 2014). We also used the 

diveRsity package to calculate the global value of FIS, FST, and GST and the pairwise FST (Weir & 

Cockerham, 1984) and GST (Hedrick, 2005) values between each pair of sites. We estimated confidence 

intervals at 95% (95% CI) for AR, FIS, FST, and GST with a bias-corrected bootstrapping method 

implemented in the DiveRsity package (10,000 bootstraps). We also estimated HO, HE, AR, FIS, and FST 

values by grouping data according to the genetic cluster identified in the clustering analysis (see Genetic 

clustering analysis sections). We calculated the probability of identity (PI) and PI among siblings 

(PISibs) with the Excel extension of GenAlEx (Peakall & Smouse, 2012) to assess if our genetic 

parameters were biased by the sampling of close relatives. We performed a hierarchical AMOVA on 

data from 10 sites sampled in 2019 and 2020 (Table 3-1) by grouping sampling sites per year of sampling 

to determine the temporal stability of genetic diversity with the ade4 package (10,000 permutations; 

Thioulouse et al., 2018). We estimated the presence, degree, and direction of asymmetric gene flow 

among sampling sites using the relative migration network method developed by Sundqvist et al. (2016) 

and implemented in the diveRsity package. We calculated estimates of significant relative migration 

rates with GST and Nm (i.e., effective number of migrants based on a statistic that incorporates 

information from Nei’s GST and Jost’s D; (Alcala et al., 2014)) based on a bootstrap method with 50,000 

replications. 

Genetic clustering analysis 

We used STRUCTURE v 2.3.4 (Pritchard et al., 2000) to estimate the most likely number of 

genetic clusters (K) in the system. We performed 10 runs for each number of potential clusters (K = 1–
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22) by assuming an admixture model with correlated allele frequencies (length of burn-in period set to 

100,000 repetitions; number of MCMC replicates: 250,000; sufficient for each run to converge). We 

evaluated the most likely number of clusters with two metrics: the mean log likelihood probability 

(LnP(K)) of the data for each K (Pritchard et al., 2000) and the delta K based on the rate of change in 

probability between successive K values (Evanno et al., 2005). We used CLUMPAK to compile and 

combine all runs for each K and to visualize the likelihood values (Kopelman et al., 2015). We then 

performed 10 additional runs with the selected most likely number of K applying the LOCPRIOR 

function that uses sampling sites as additional information in the analysis. The LOCPRIOR parameter 

provides a more definite distinction between clusters previously determined by the unsupervised model 

when population structure is relatively weak (Porras-Hurtado et al., 2013).  

Landscape genetic analyses 

We used maximum likelihood population effect models (MLPE models; Van Strien et al., 2012) 

with the R lme4 package (Bates et al., 2015) to assess how genetic differentiation was influenced by 

landscape features that could act as barriers to turtle movement. This approach allows to consider the 

non-independence of pairwise data by using a residual covariance structure with a mixed modelling 

approach (Clarke et al., 2002). We used pairwise FST measures previously calculated between each pair 

of sampling sites as the genetic distance matrix and different types of landscape features as pairwise 

predictor matrices. We considered four landscape features that were calculated between each pair of 

sampling sites: i) the shortest aquatic distance (in meters) based on the geographic location of each 

sampling site, to represent a scenario of isolation by distance, ii) the number of locks, iii) the number of 

human-made constructions (e.g., mill dams) between 1783 (i.e., beginning of European settlement in 

the Rideau Canal region) and 1826 (i.e., beginning of Rideau Canal construction), and iv) the sum of 
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permeability values of historical features (i.e., waterfalls, rapids, and land barriers based on the work of 

Watson (2006)) previously located on the current path of the canal before any human-made alterations 

were made (Figure 3-2a; Supporting Information 2 of Chapter 3). We included the number of human-

made constructions between 1783 and 1826, and historical features to disentangle the genetic effects of 

the canal construction from those of the original (prior to canal construction) landscape features. We 

also included the identity of sampling site pairs, used to calculate the genetic distance and landscape 

features matrices, in all models as a random effect. 

We generated different combinations of permeability values for each historical feature (see 

Supporting Information 2 of Chapter 3) given that each feature may not have the same permeability to 

turtle movement. We compared the influence of each combination of permeability values on the genetic 

distance matrix by generating a set of univariate MLPE models. We used information criteria metrics 

(i.e., AICc) to identify the best model from the set of candidate models. We retained the combination of 

permeability values with the lowest AICc, among the set of candidate models, for further analyses 

(Supporting Information 2 of Chapter 3).  

We fitted MLPE models for the different combinations of landscape features and the model with 

the lowest AICc (and ΔAICc < 2) was considered as the model that best fitted the genetic structure 

observed in the system (Supporting Information 1 – Table S3-4). Given that most landscape variables 

were highly correlated with each other (r > 0.8), we could not use them in the same model (Supporting 

Information 1 – Table S3-5). Following the results from STRUCTURE, we performed MLPE analyses 

separately for each genetic cluster identified to assess the role of landscape features on the genetic 

structure within each cluster (see Genetic clustering analysis in Results section). We verified model 

assumptions for each candidate model and calculated confidence intervals (95%) of estimates from the 
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best models. R codes used for MLPE models were adapted from codes available in R LandGenCourse 

package (Wagner, 2018) We obtained model predictions and built figures with the R ggeffects 

(Wickham, 2016) and ggplot2 packages (Lüdecke, 2018). We only present results from FST pairwise 

values given that analyses conducted with pairwise GST values and with Slatkin's linearized FST (FST/[1- 

FST]) gave similar results (Supporting Information 1 – Table S3-6).  

Results 

Sample collection and genotyping 

We collected blood samples from 822 painted turtles across the Rideau Canal (mean = 37 

individuals/site, SE = 2.3; Figure 3-1a, Table 3-1). We excluded two microsatellites from the analyses 

(Supporting Information 1 – Table S3-1): GmuD87 had a high genotyping error rate (14%; Supporting 

Information 1 – Table S3-7), a high frequency of null alleles (11%; Supporting Information 1 – Table 

S3-8), and deviated from HWE in 14% of the sampling sites (Supporting Information 1 – Table S3-9); 

CpGT124 had a high genotyping error rate (18%; Supporting Information 1 – Table S3-7). We found 

no evidence of linkage disequilibrium among the 13 retained loci. PI and PIsibs were under 0.01 when 

a minimum of 2 loci and of 6 loci, respectively, were combined (Supporting Information 1 – Table S3-

10). For the 13 retained loci, the missing data were 0.21% and the mean genotyping error rate was 2.3%. 

Genetic diversity and differentiation 

Population genetic statistics indicated a relatively high variability for the 13 retained loci (e.g., HO 

ranging from 0.28 to 0.93; see Supporting Information 1 – Table S3-1) and a homogenous genetic 

diversity between sampling sites with AR values ranging from 8.2 to 9.7 with overlapping 95% 

confidence intervals (Table 3-1). Overall, we found a low, but significant, genetic differentiation 
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throughout the canal (FST = 0.007, 95% CI = 0.005 – 0.009) and a relatively low inbreeding level (FIS = 

0.018, 95% CI = 0.009 – 0.027) (Table 3-1, Supporting Information 1 – Table S3-11). 

The hierarchical AMOVA revealed that the majority of genetic variance occurred within samples 

(97.6%; p < 0.001) with the remaining variance partitioned between samples within sampling sites 

(1.6%; p = 0.01) and between sampling sites (0.8%; p < 0.001). We detected no significant genetic 

variance between years within sampling sites (p = 0.31) and no significant asymmetric migration rates 

between sampling sites. 

Genetic clustering analysis 

STRUCTURE analyses identified two genetic clusters throughout the Rideau Canal (Figure 3-1b, 

Supporting Information 1 – Table S3-12). The probability of having a single genetic cluster (K = 1), 

however, is close second (mean LnP(k) for K = 1: -43164.93; K = 2: -43159.16; Supporting Information 

1 – Table S3-12). The split between the two clusters occurred between sites RR7 and RR8 (Figure 3-

1a). We estimated that individuals from sites in the northern section of the canal (i.e., sites RR1, RR2, 

RR3, RR4, RR5, RR6 and RR7) had a likelihood of membership of 64% to cluster 1, while individuals 

from sites in the southern section (i.e., sites RR8, RR9, RR10, LR1, BR1, BR2, UP6, NB3, CL2, CL3, 

SA1, WF1, C1, RS1, CB1) had a likelihood of membership of 83% to cluster 2 (Figure 3-1b, 3-1c). 

Probability of assignment was stronger in the southern section of the canal where individuals from five 

sampling sites had a likelihood of membership over 90% to cluster 2 (i.e., UP6, CL2, CL3, C1, CB1; 

Figure 3-1b). A few sites were characterized by a lack of definitive assignment to a specific cluster 

(mean membership to each cluster  50%, e.g., sites RR1, RR2, RR7, RR8, Figure 3-1b). 

Comparison between genetic clusters 

We found a pairwise FST of 0.004 (95% CI = 0.002 – 0.005) between the two identified genetic 
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clusters. We observed a lower AR in the northern cluster (AR = 16.7, 95% CI = 16.2 – 17.0; N = 278) 

than in the southern cluster (AR = 18.4, 95% CI = 17.4 – 19.0; N = 544; Table 3-1). The mean number 

of PA per site was also lower in the northern cluster (mean = 1.43, SE = 0.30) than in the southern cluster 

(mean = 1.73, SE = 0.37; Table 3-1). On the other hand, FIS was 0.021 (95% CI = 0.007 – 0.033) in the 

southern cluster, while in the northern cluster the 95% CI overlapped with zero (FIS = 0.008, 95% CI = -

0.012 – 0.024; Table 3-1). Finally, while we detected high relative migration rate among the two clusters 

(GST and Nm: North to South = 0.84; South to North = 1.00), we found significant asymmetric gene 

flow only from the southern cluster to the northern cluster based on a bootstrap method with 50,000 

replications.  

Landscape genetic analyses 

Across the Rideau Canal, the number of locks between pairs of sampling sites was the best 

predictor of the observed genetic structure (Table 3-2, Supporting Information 1 – Table S3-4). The 

genetic distance between pairs of sampling sites increased with the number of locks that separated them 

(Figure 3-2b, Table 3-2). In the northern cluster, historical features were the best predictors of the 

genetic differentiation observed; the presence of historical features increased the genetic distance 

between sites (Figure 3-2c, Table 3-2). In the southern cluster, models with historical features, number 

of locks, and geographic distance were the best models; the genetic distance increased with the presence 

of historical features, the number of locks, and the geographic distance between sites (Figure 3-2d, Table 

3-2, Supporting Information 1 – Table S3-4 ). 

Discussion 

Understanding how lasting human infrastructure can affect the genetic structure of aquatic wildlife 

is crucial to develop effective management plans for vulnerable species. This understanding is necessary 
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to reconcile the heritage and economic value of infrastructure, such as the Rideau Canal, and the 

maintenance of gene flow between freshwater species populations. The main goal of this study was to 

assess the impact of landscape features, especially the presence of locks, on the genetic structure of 

painted turtle populations. We found that, while locks seem partly permeable to turtle gene flow, the 

number of locks was still the best predictor of the genetic differentiation between sites in the Rideau 

Canal. To our knowledge, this is the first documentation that locks can potentially modulate gene flow 

in a long-lived species. 

Canal construction did not stop gene flow in the aquatic landscape 

We found weak genetic structure and homogeneous genetic diversity throughout the canal 

suggesting that locks are at least partly permeable to turtle gene flow and, thus, rendering this system 

much closer to panmixia than to complete isolation. Partial permeability to gene flow was also supported 

by the lack of definitive assignment to a specific cluster in clustering analysis for 50% of individuals 

(i.e., cluster assignment below 0.8) (Porras-Hurtado et al., 2013). A previous study by Reid et al. (2008) 

also detected weak genetic differentiation and low level of assignment of individuals to potential source 

populations for freshwater fishes in a canal system, suggesting that locks facilitated species movement. 

The use of a slackwater system (i.e., use of dams to flood the rapids rather than canal cuts to bypass 

them) in the Rideau Canal may have avoided major alterations to aquatic connectivity (Watson, 2006). 

By building locks “in the dry” (i.e., above pre-canal water level), only 10% of the length of the canal 

required alterations, such as excavated channels and locks, while the rest of the canal followed existing 

waterways or flooded lakes, which may have maintained gene flow in the system. It is also possible that 

the large population size (over 10,000 individuals in the Rideau Canal based on the Lincoln-Petersen 

index; see Supporting Information 1 – Table S3-13 and Supporting Information 1- Table S2-2 (Chapter 
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2)) and the limited time scale (in terms of number of painted turtle generations) since canal construction 

have limited our ability to detect a decline of genetic diversity and/or an increase in genetic structure 

(Frankham, 1996; Kuo & Janzen, 2004). As it was observed in previous studies, the detection of genetic 

isolation caused by recent anthropogenic changes can be hampered by long generation times (Hailer et 

al., 2006; Lippé et al., 2006; Su et al., 2018).  

Terrestrial movements and dispersal at any life stage, such as female exploration to find nestling 

sites and post-hatching dispersal of juveniles, could also have contributed to the maintenance of gene 

flow throughout the system. Terrestrial movements of painted turtles are, however, typically short: 

female movements and nest sites further than 1 km from aquatic habitats are rare (Semlitsch & Bodie, 

2003; Steen et al., 2012). Terrestrial dispersal (e.g., movements between ponds/wetlands) is usually 

shorter than 3 km (Bowne, 2002, 2008; Bowne & White, 2004), but longer movements are possible over 

longer time periods (e.g., 11.5 km straight-line distance over approximately 10 years; COSEWIC, 

2018).  

A series of six locks may cause population isolation 

The clustering analysis revealed two genetic clusters within the canal. The boundary between 

genetic clusters occurred in the canal section with the highest number of locks per kilometer (i.e., 6 

locks over 9.2 km; Supporting Information 1 – Table S3-14), suggesting that numerous locks in 

proximity can impede turtle gene flow. Previous studies in aquatic species have linked the presence of 

genetic clusters to permanent artificial barriers, such as dams (Fraik et al., 2021; Liu et al., 2020; Roberts 

et al., 2013). To our knowledge, however, our study is the first to suggest that several consecutive locks 

in proximity can have a similar impact on the genetic structure of an aquatic species. 

We detected that gene flow between the two clusters was stronger from south to north, indicating 
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a possible source-sink dynamic in which the southern cluster may act as a source (Sundqvist et al., 

2016). The possibility of source-sink dynamic is also supported by the lower genetic diversity (i.e., 

lower AR and PA) in the northern cluster (Gustafson et al., 2019; Sundqvist et al., 2016). The direction 

of water flow is from south to north where the split between genetic clusters occurs and flow may have 

facilitated migration in this direction, as observed in other aquatic species (Alp et al., 2012; Jonsson, 

1991; Junker et al., 2012). To our knowledge, however, there are no studies indicating a role for the 

direction of water flow in driving gene flow in freshwater turtles. 

Locks may act as barriers to movement 

We found that genetic differentiation of painted turtles in the canal increased with the number of 

locks and that the number of locks was a better predictor of genetic structure than other landscape 

features. Although recent anthropogenic changes do not always cause genetic isolation (Bennett et al., 

2010; Su et al., 2018), our results suggest a relatively rapid effect of locks on genetic differentiation. 

Despite genetic differentiation possibly being underestimated because of the large population size, long 

generation time, and slow mutation rate of turtles (Avise et al., 1992; Shaffer et al., 2013), it was not 

sufficient to limit our detection capacity. 

It is important to acknowledge the difficulty in disentangling the effects of individual landscape 

features given their interconnectedness. Locks were built to overcome navigational barriers. Thus, locks 

were usually built where waterfalls and rapids were located prior to canal construction (Watson, 2006; 

see Figure 3-2a). Therefore, we cannot exclude the possibility that the genetic structuring we observed 

along the canal may represent an effect of historical barriers that was exacerbated by the construction 

of locks.  

Previous studies in migrating diadromous fishes showed that locks can impede their dispersal 
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across waterways by reducing the number of passages (Vergeynst et al., 2019; Verhelst et al., 2018). In 

the Rideau Canal, lock activity varies both temporally (May to October, mean = 8.6 lockages/day, 

May = 2.7, June = 6.4, July = 15.4, August = 15.6, September = 7.3, October = 3.3; Supporting 

Information 1 – Table S3-15) and spatially (min = 2.7 for Ottawa locks, max = 19.3 for Newboro lock; 

Supporting Information 1 – Table S3-15). Thus, lock passage can be particularly difficult at certain 

times of the turtle active season and at certain locations. Even if turtles are able to enter locks (see 

Bennett et al., 2010), the time window to pass through the locks can be short. Also, even if the timing 

is right, the use of locks could lead to disorientation, physical stress, injuries (e.g., impact by boat 

propellers; Bulté et al., 2010), and even mortality, as it was observed in migrating diadromous fishes 

(Vergeynst et al., 2019; Verhelst et al., 2018). Finally, if lock water filling is in the opposite direction 

to turtle movement, it can reduce the ability of turtles to disperse in the desired direction. Therefore, 

considering all these factors together, the probability to disperse through locks in the aquatic landscape 

can be low, especially where there is a close succession of locks.  

The weaker effect of locks when we analysed the northern and southern clusters separately 

suggests an important role for the series of six locks on the overall genetic effect of locks we observed 

in the system. In the southern cluster, we were unable to distinguish the effect of locks from that of other 

landscape features, while in the northern cluster the best predictor of genetic structure was the historical 

features. In addition, the northern section of the canal contains the longest continuous section without 

locks (41 km without locks in the 69 km of the northern section; mean across the canal = 8 km), 

suggesting again that numerous locks in proximity impede more gene flow compared to distanced locks. 

What can be done to maintain gene flow in the system? 

Given the low genetic differentiation and the homogenous genetic diversity observed in painted 
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turtles in the Rideau Canal, turtles in this system appear resilient to the effects of locks. The detection 

of two genetic clusters within the canal, however, calls to consider conservation and management 

actions to maintain aquatic connectivity between the southern and the northern clusters and to ensure 

the maintenance of gene flow. Increased connectivity could be achieved by modifying the structure or 

operation of the locks between sites RR7 and RR8. For example, building wildlife passages adapted for 

turtles (e.g., curved concrete ramp with a variety of textures: logs, rocks, and heterogeneous aquatic 

vegetation, resting pools along the ramp with refuges, low water flow and limited vertical drop, as it 

was designed for the Gympie weir biopassage, Australia; see Sutherland, 2017) on the lands around the 

locks and changing the timing of lock operations (e.g., leave lock valves or doors opened as often as 

possible) could facilitate turtle dispersal and, thus, increase gene flow. The positive impact of any 

potential change to canal management on turtle movement, however, needs to be carefully weighed 

against the increased risk of invasion by non-native species (Lin et al., 2020), such as the red-eared 

slider (Trachemys scripta) already detected in southeastern Ontario (Seburn, 2015; Spear et al., 2018). 

Conclusion 

Overall, our study showed that locks are partly permeable to gene flow between painted turtle 

populations and can lead to genetic discontinuities where they are numerous and in proximity. 

Therefore, the effect of locks on the genetic integrity of aquatic species should be considered in 

conservation management plans. To our knowledge, our study is the first in the Rideau Canal, or any 

other similar canal system, to show how the construction of a canal can influence the genetic structure 

of a freshwater turtle. There is a need for additional studies on other aquatic species in the Rideau Canal 

and comparable canal systems, such as the Trent-Severn Waterway (386 km; connecting Lake Ontario 

to Georgian Bay in Canada; see Bennett et al. (2010) for a partial study) and the Erie Canal (843 km; 
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connecting Lake Erie to Hudson River in the USA) for a more comprehensive understanding of the 

long-term effects of artificial waterways on the connectivity between populations of long-lived 

freshwater species. 

Data availability  

All R codes used for this study are available in the Zenodo Digital Repository: 

https://doi.org/10.5281/zenodo.5826150 
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Tables 

Table 3-1 Population genetic statistics for each of the 22 sampling sites (Site) of the Rideau Canal, 

Canada: Number of painted turtles sampled (N), the number of private alleles (PA), observed 

heterozygosity (HO), expected heterozygosity (HE), allelic richness (AR) and inbreeding coefficient (FIS) 

averaged over all loci with 95% confidence intervals [95% CI]. Mean value ± SE for overall PA, AR, 

HO, HE. *Sites used for the hierarchical AMOVA
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Site Sampling year N PA AR [95% CI] HO HE FIS [95% CI] 

RR1* 2019 and 2020 27 2 8.15 [7.23 – 8.92] 0.721 0.737 0.026 [-0.071 – 0.089] 

RR2 2020 29 2 8.89 [8.00 – 9.69] 0.759 0.745 0.002 [-0.076 – 0.045] 

RR3* 2019 and 2020 33 1 9.20 [8.23 – 10.08] 0.774 0.752 -0.044 [-0.106 – -0.014] 

RR4 2019 32 2 8.86 [8.00 – 9.62] 0.765 0.736 -0.042 [-0.108 – -0.008] 

RR5 2019 43 0 9.19 [8.39 – 9.92]  0.719 0.74 0.017 [-0.040 – 0.051] 

RR6* 2019 and 2020 60 2 9.56 [8.69 – 10.39] 0.765 0.75 -0.029 [-0.068 – -0.006] 

RR7* 2019 and 2020 54 1 9.45 [8.54 – 10.31] 0.719 0.739 0.014 [-0.031 – 0.041] 

Northern cluster – 278 12 16.65 [16.15 – 17.08] 0.745 0.756 0.008 [-0.012 – 0.024] 

RR8 2019 35 0 9.43 [8.46 – 10.31] 0.731 0.757 0.029 [-0.043 – 0.074] 

RR9* 2019 and 2020 34 0 8.87 [7.92 – 9.69] 0.726 0.745 0.03 [-0.034 – 0.063] 

RR10 2019 31 0 8.86 [7.92 – 9.69] 0.759 0.744 -0.028 [-0.094 – 0.004] 

LR1 2019 47 2 9.48 [8.54 – 10.31] 0.738 0.733 -0.019 [-0.066 – 0.008] 

BR1* 2019 and 2020 54 1 9.18 [8.23 – 10.00] 0.712 0.727 0.024 [-0.029 – 0.059] 

BR2 2020 25 0 8.79 [7.85 – 9.62] 0.711 0.739 0.077 [-0.045 – 0.126] 

UP6 2018 and 2019 48 1 9.57 [8.54 – 10.46] 0.759 0.761 -0.009 [-0.061 – 0.023] 

NB3 2018 36 4 9.35 [8.31 – 10.31] 0.718 0.744 0.029 [-0.043 – 0.076] 

CL2 2018 and 2020 43 3 9.65 [8.69 – 10.54] 0.744 0.745 -0.014 [-0.071 – 0.022] 

CL3 2018 22 3 8.22 [7.31 – 9.00] 0.721 0.728 0.006 [-0.085 – 0.046] 

SA1 2018 and 2019 27 1 9.15 [8.15 – 10.08] 0.707 0.713 0.000 [-0.062 – 0.029] 

WF1* 2019 and 2020 35 3 8.70 [7.69 – 9.62] 0.716 0.721 0.006 [-0.058 – 0.043] 

C1* 2019 and 2020 26 2 8.98 [8.08 – 9.77] 0.751 0.759 0.008 [-0.071 – 0.048] 

RS1* 2019 and 2020 29 2 8.88 [8.00 – 9.69] 0.772 0.741 -0.058 [-0.121 – -0.025] 

CB1* 2019 and 2020 52 4 9.44 [8.54 – 10.23] 0.75 0.752  -0.003 [-0.056 – 0.029] 

Southern cluster – 544 50 18.37 [17.37 – 19.00] 0.735 0.755  0.021 [0.007 – 0.033] 

Overall 2018 to 2020 822 1.63 ± 0.27 9.08 ± 0.09 0.738 ± 0.005 0.741 ± 0.003 0.018 [0.009 – 0.027] 



 

194 

 

Table 3-2 Summary statistics for the best MLPE (maximum likelihood population effect) models 

selected for each section of the Rideau Canal: the entire system, northern cluster (RR1, RR2, RR3, RR4, 

RR5, RR6, RR7), southern cluster (RR8, RR9, RR10, LR1, BR1, BR2, UP6, NB3, CL2, CL3, SA1, 

WF1, C1, RS1, CB1). In these models, pairwise FST values were used as a response matrix and different 

landscape features as predictor matrices. For each model, we provide the estimates, the standard error 

(SE), t value, and 95% confidence intervals [95% CI] 

 

 

Variables Estimate SE t value 95% CI 

Entire system     

Number of locks 0.000226 0.000026 8.85 [0.000176 – 0.000277] 

     

Northern cluster 

Historical features 0.000334 0.000042 7.97 [0.000252 – 0.000427] 

     

Southern cluster 

Number of locks 0.000218 0.000067 3.23 [0.000086 – 0.000350] 

Historical features 0.000011 0.000004 3.13 [0.000004 – 0.000018] 

Geographic distance 0.000884 0.000306 2.89 [0.000284 – 0.001483] 
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Figures 

 

Figure 3-1 (a) Map of the Rideau Canal, Ontario, Canada and the 22 sites (dots) sampled from 2018 to 

2020: Dark dots (purple) represent the sampling sites of the northern cluster, light dots (green) represent 

the sampling sites of the southern cluster. Solid bars (dark blue) along the waterway indicate the location 

of the lockstations. The map was built using ArcGIS® software by Esri (www.esri.com). (b) Major and 

minor modes obtained from STRUCTURE analyses using K = 2 with the LOCPRIOR function for 822 

painted turtles (Chrysemys picta) sampled throughout the canal. Vertical lines show the proportional 

membership for individuals to each cluster. Figures were generated with CLUMPAK (Kopelman et al., 

2015). (c) Percentage of membership to each cluster identified by STRUCTURE for each section of the 

canal, based on cluster assignment of individuals 
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Figure 3-2 (a) Map of the Rideau Canal, Ontario, Canada with the locations of lockstations (solid black 

bars), human-made constructions prior to Rideau Canal construction (e.g., mill dams; asterisks), and 

historical features (rapids: gray diamond bars; waterfalls: white diamond bars; land barriers: gray zones) 

in relation to sampling sites (dots). Dark dots (purple) represent the sampling sites from the northern 

cluster, light dots (green) represent the sampling sites from the southern cluster. (b-d) Relationship 
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between the genetic distance (pairwise FST) and landscape features in painted turtles (Chrysemys picta) 

from the best selected MLPE (maximum likelihood population effect) models of each section of the 

Rideau Canal: (b) entire system, (c) northern cluster, (d) southern cluster. Black dots are observed 

genetic distances. Grey areas represent the 95% confidence intervals of predictions (black line) 
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Supplementary information for Chapter 3 

Supporting Information 1 – Table S3-1 to S3-15 

Table S3-1 Microsatellite characteristics of the 15 microsatellite loci used for painted turtle population 

genetic analyses: Number of painted turtles genotyped per microsatellite (N), number of alleles 

identified (No. of alleles), fluorescent dye used, repeat structure of the locus, primer sequence, size 

range in number of base pairs (bp), annealing temperature of the PCR cycling protocol (Ta), expected 

heterozygosity (HE), observed heterozygosity (HO), access number to Genebank, and the reference to 

the original paper. Overall values of No. of alleles, HE and HO represent mean ± standard error. Loci 

were divided in 3 multiplexes for analysis. *microsatellite removed from final analysis 
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Locus N 
No. of 

alleles 

Fluorescent 

dye 

Repeat 

structure 
Primer sequence (5' to 3') 

Size 

range 

(bp) 

Ta 

(°C) 
HE HO 

No. 

Genebank 
Reference 

MPX1 

CP3 819 25 FAM Dinucleotide ATCTTTAAGTCTGTGAACTTCAGGG 

CTGTCTCATGCAAAGCTGGTAG 

129-

192 

52 0.65 0.83 ― Pearse et 

al., 2001 

CpGT124* 807 54 VIC (GT)31(GC)5 TCGGGGAGCACACTATACC 

CTCAGCCCCAAAATGAAC 

152-

242 

59-

51 

0.92 0.90 GQ902944 da Silva et 

al., 2010 

TerpSH3 820 17 FAM (CAAA)14 TCCCCCAATGCACAC 

CTGCCCAATCCATTTAGA 

164-

313 

59-

51 

0.84 0.78 AY156711 Hauswaldt 

& Glenn, 

2003 

TerpSH2 821 26 PET (AGAT)12 TGGCCAGCAGGAGTAATG 

CTATTAGGGCAGAGACGAG 

135-

233 

59-

51 

0.91 0.89 AY156710 Hauswaldt 

& Glenn, 

2003 

TerpSH5 822 26 NED (CTAT)12 TTGCTGCTATATGCTTAAT 

CCTCCCTGCCTATTGA 

129-

210 

59-

51 

0.91 0.83 AY156713 Hauswaldt 

& Glenn, 

2003 

MPX2 

GmuD21 822 15 FAM (ATCT)15 GCAGTTAGGCATTACTCAACATC 

AGGGTATGAATACAGGGGTGTC 

139-

204 

58 0.65 0.65 AF517236 King & 

Julian, 

2004 

GmuD79 820 18 PET (ATCT)10 GCCCTGTTCCATTCTTATTCTG 

ATCCCCTTAGTCGTCTCTTTTC 

165-

217 

58 0.90 0.90 AF517243 King & 

Julian, 

2004 

GmuD87* 810 27 NED (ATCT)22 AAACCCTAAGACATCAGACAGG 

CAAATCCAGTACCCAGAAAGTC 

207-

298 

58 0.93 0.74 AF517244 King & 

Julian, 

2004 

GmuD70 820 71 VIC (ATCT)8 AGTGTAGTCATGGCATAGAGAGG 

ATCAAATTCTTCCAACCCTACC 

170-

488 

58 0.97 0.93 AF517242 King & 

Julian, 

2004 

BTGA3 820 9 VIC (GA)11 CCTAGATTTTGTCTGGCTATTA 

 TATCTCAGTAATAATCCCCTTAG 

98-

116 

48 0.76 0.75 AY335792 Libants et 

al., 2004 
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MPX3 

BTCA5 821 3 FAM (GA)11 GCTGCTTAGCACAACTCATAA 

CTTTTGTATTTAATCCATGATGAA 

134-

138 

46 0.38 0.38 AY335788 Libants et 

al., 2004 

CP2 820 23 FAM Dinucleotide CTCTAAGGGTTGCACTTCTCAAA 

GAGGTGGCATCAAAACATCAT 

171-

248 

52 0.86 0.83 ― Pearse et 

al., 2001 

BTCA9 819 4 VIC (CA)9 TACTCAAGATTTGAAGCAGATACA  

GGCTTGATTCTACTGTCACTTAC 

132-

145 

46 0.27 0.28 AY335790 Libants et 

al., 2004 

BTCA7 820 7 PET (CA)12 TGGAATTAGATGTTTTGCAGTT  

TCATTTCTGTTTTCCACACTG 

148-

170 

48 0.71 0.72 AY335789 Libants et 

al., 2004 

CpGT108 820 36 VIC (CA)4CT(CA)11 CCTAGAAAGTAAGAACCAATTTCAG 

CCACCAACAGAAGGAAGTTAGTG 

200-

290 

59-

51 

0.85 0.83 GQ902943 da Silva et 

al., 2010 

Overall ― 21.5±4.9 ― ― ― ― ― 0.75±0.06 0.73±0.05 ― ― 
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Table S3-2 PCR components and protocol reactions of the 15 microsatellite loci used for painted turtle population genetic analyses. ABI: 

Applied Biosystems. BSA: Albumin bovine serum 

  
MPX1 

  
CP3 TerpSH2 TerpSH3 CpGT124 TerpSH5 

Components Stock solution concentration per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl 

H2Odd ― ― 4.7 μl ― 4.44 μl ― 4.41 μl ― 2.71 μl ― 4.49 μl 

MgCl2 ABI 25 mM 1.5 mM 0.6 μl 2 mM 0.8 μl 2 mM 0.8 μl 2.5 mM 1 μl 2 mM 0.8 μl 

dNTPs 1 mM 0.1 mM 1 μl 0.15 mM 1.5 μl 0.15 mM 1.5 μl 0.2 mM 2 μl 0.15 mM 1.5 μl 

Gold Buffer ABI 10X 

(150 mM Tris HCl; 500 mM KCl) 

1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 

BSA 8 mg/ml 0.4 mg/ml 0.5 μl 0.2 mg/ml 0.25 μl 0.2 mg/ml 0.25 μl 0.4 mg/ml 0.5 μl 0.2 mg/ml 0.25 μl 

 R primer 10 mM 0.5 mM 0.5 μl 0.4 mM 0.4 μl 0.4 mM 0.4 μl 0.8 mM 0.8 μl 0.4 mM 0.4 μl 

F primer 10 mM 0.5 mM 0.5 μl 0.4 mM 0.4 μl 0.4 mM 0.4 μl 0.8 mM 0.8 μl 0.4 mM 0.4 μl 

Taq ABI 5 U/µl 0.1 U/µl 0.2 μl 0.105 U/µl 0.21 μl 0.12 U/µl 0.24 μl 0.095 U/µl 0.19 μl 0.08 U/µl 0.16 μl 

ADN 10 ng/μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 
  

MPX2 
  

BTGA3 GmuD21 GmuD79 GmuD70 GmuD87 

Components Stock solution concentration per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl 

H2Odd ― ― 4.03 μl ― 3.1 μl ― 3.1 μl ― 3.1 μl ― 3.1 μl 

MgCl2 ABI 25 mM 2.5 mM 1 μl 2 mM 0.8 μl 2 mM 0.8 μl 2 mM 0.8 μl 2 mM 0.8 μl 

dNTPs 1 mM 0.16 mM 1.6 μl 0.25 mM 2.5 μl 0.25 mM 2.5 μl 0.25 mM 2.5 μl 0.25 mM 2.5 μl 

Gold Buffer ABI 10X 

(150 mM Tris HCl; 500 mM KCl) 

1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 

BSA 8 mg/ml 0.2 mg/ml 0.25 μl 0.4 mg/ml 0.5 μl 0.4 mg/ml 0.5 μl 0.4 mg/ml 0.5 μl 0.4 mg/ml 0.5 μl 

R primer 10 mM 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 

F primer 10 mM 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 

Taq ABI 5 U/µl 0.06 U/µl 0.12 μl 0.05 U/µl 0.1 μl 0.05 U/µl 0.1 μl 0.05 U/µl 0.1 μl 0.05 U/µl 0.1 μl 

ADN 10 ng/μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 
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MPX3 

  
BTCA5 BTCA7 CpGT108 BTCA9 CP2 

Components Stock solution concentration per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl per reaction for 10 μl 

H2Odd ― ― 4 μl ― 3.97 μl ― 2.7 μl ― 4 μl ― 4.6 μl 

MgCl2 ABI 25 mM 2.5 mM 1 μl 2.5 mM 1 μl 2.5 mM 1 μl 2.5 mM 1 μl 1.5 mM 0.6 μl 

dNTPs 1 mM 0.16 mM 1.6 μl 0.16 mM 1.6 μl 0.2 mM 2 μl 0.16 mM 1.6 μl 0.1 mM 1 μl 

Gold Buffer ABI 10X 

(150 mM Tris HCl; 500 mM KCl) 

1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 1X 1 μl 

BSA 8 mg/ml 0.2 mg/ml 0.25 μl 0.2 mg/ml 0.25 μl 0.4 mg/ml 0.5 μl 0.2 mg/ml 0.25 μl 0.4 mg/ml 0.5 μl 

R primer 10 mM 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.8 mM 0.8 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 

F primer 10 mM 0.5 mM 0.5 μl 0.5 mM 0.5 μl 0.8 mM 0.8 μl 0.5 mM 0.5 μl 0.5 mM 0.5 μl 

Taq ABI 5 U/µl 0.075 U/µl 0.15 μl 0.09 U/µl 0.18 μl 0.1 U/µl 0.2 μl 0.075 U/µl 0.15 μl 0.15 U/µl 0.3 μl 

ADN 10 ng/μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 10 ng 1 μl 
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Table S3-3 PCR cycling protocol of the 15 microsatellite loci used for painted turtle population genetic analyses. The PCR cycling 

protocol for TerpSH2, TerpSH3 and TerpSH5 is a touchdown PCR protocol where there are several steps of cycles with different 

annealing temperatures 

Locus Temperature and Time 

GmuD21, GmuD79, GmuD70, 

GmuD87 

Denaturation 
35 cycles 

Extension 
Denaturation Annealing Extension 

2 min at 94°C 45 s at 94°C 45 s at 58°C 1.5 min at 72°C 5 min at 72 °C 

CP2, CP3 
Denaturation 

30 cycles 
Extension 

Denaturation Annealing Extension 

2 min at 94°C 50 s at 94°C 50 s at 52°C 50 s at 72°C ― 

CpGT108, CpGT124 

Denaturation 
30 cycles 

Extension 
Denaturation Annealing Extension 

10 min at 95°C 30 s at 95°C 

30 s at [59-51°C] 

decrease by 1°C 

per cycle and the 

remaining cycles at 

51°C 

1 min at 72°C 1 min at 72°C 

BTCA5, BTCA9 
Denaturation 

30 cycles 
Extension 

Denaturation Annealing Extension 

2 min at 94°C 1 min at 94°C 1 min at 46°C 1 min at 72°C ― 

BTCA7, BTGA3 
Denaturation 

30 cycles 
Extension 

Denaturation Annealing Extension 

2 min at 94°C 1 min at 94°C 1 min at 48°C 1 min at 72°C ― 

TerpSH2, TerpSH3, TerpSH5 

Denaturation 
Step 1: 5 cycles 

Extension 
Denaturation Annealing Extension 

― 
20 s at 96°C 30 s at 60°C 1 min at 72°C 

― 
Step 2: 30 cycles 



 

204 

 

Denaturation Annealing Extension 

30 s at 96°C 

30 s at 60°C 

decrease by 0.5 °C 

per cycle 

1 min at 72°C 

Step 3: 10 cycles 

Denaturation Annealing Extension 

30 s at 96°C 30 s at 50.5°C 1 min at 72°C 

Step 4: 20 cycles 

Denaturation Annealing Extension 

30 s at 96°C 30 s at 50°C 1 min at 72°C 
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Table S3-4 Model selection summary with information criteria metrics of MLPE models using genetic 

distance (FST) as response variable and different landscape features as predictors for three different 

sections of the canal: Entire system, northern cluster and southern cluster. Four landscape features that 

were calculated between each pair of sampling sites were used in these models: 1) the shortest aquatic 

distance (Geo), 2) the number of locks (Lock), 3) the number of human-made constructions (e.g., mill 

dams) between 1783 (i.e., beginning of European settlement in the Rideau region) and 1826 (i.e., official 

beginning of Rideau Canal construction) (Post1783), and 4) the historical features (i.e., waterfalls, 

rapids and land barriers) previously located on the current path of the canal before any human-made 

alterations were made on the original landscape (Hist; codes in Supporting Information 2 of Chapter 3). 

*Top models (ΔAICc < 2) 
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Landscape features k AIC AICc ΔAICc 

Entire system 

Lock* 4 -2015.65 -2014.72 0 

Lock + Post1783 5 -2013.89 -2012.46 2.26 

Hist 8 4 -2013.29 -2012.36 2.36 

Hist 8 + Post1783 5 -2011.66 -2010.23 4.49 

Geo 4 -2002.4 -2001.47 13.25 

Geo + Post1783 5 -2000.91 -1999.48 15.24 

Post1783 4 -1978.5 -1977.57 37.15 

Null 3 -1949.84 -1949.29 65.43 

Northern cluster 

Hist 6* 4 -189.31 -188.38 0 

Hist 7* 4 -188.91 -187.98 0.40 

Lock 4 -174.17 -173.24 15.13 

Null 3 -171.91 -171.36 17.01 

Hist 8 4 -171.90 -170.97 17.40 

Geo 4 -169.98 -169.05 19.32 

Southern cluster 

Lock* 4 -911.15 -910.22 0 

Hist 8* 4 -910.26 -909.33 0.90 

Hist 7* 4 -910.09 -909.16 1.06 

Hist 3* 4 -909.99 -909.06 1.17 

Geo* 4 -909.26 -908.33 1.90 

Lock + Post1783 5 -909.38 -907.96 2.27 

Hist 3 + Post1783 5 -908.98 -907.55 2.68 

Hist 8 + Post1783 5 -908.88 -907.45 2.78 

Hist 7 + Post1783 5 -908.72 -907.30 2.93 

Geo + Post1783 5 -907.30 -905.87 4.36 

Post1783 4 -905.10 -904.19 6.03 

null 3 -903.62 -903.07 7.15 
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Table S3-5 Pearson coefficient correlations between 1) landscape features and 2) different combinations of resistance values for historical 

landscape features for the entire system. For the landscape features table, Hist 4 was used for historical features (see Supporting 

Information 2 of Chapter 3) 

1) Landscape features          

 Historical 

features 

Construction 

1783-1826 

Geographic 

distance 
       

Number of locks 0.99 0.64 0.95        

Historical features ― 0.69 0.93        

Construction 

1783-1826 
― ― 0.62        

           

2) Historical landscape features (see Supporting Information 2 of Chapter 3 for the codes) 

 Binary 

additive 
Hist 1 Hist 2 Hist 3 Hist 4 Hist 5 Hist 6 Hist 7 Hist 8 Hist 9 

Binary 0.39 0.38 0.32 0.37 0.38 0.38 0.30 0.35 0.38 0.38 

Binary additive ― 0.99 0.89 0.97 0.96 0.94 0.85 0.94 0.97 0.96 

Hist 1 ― ― 0.88 0.96 0.97 0.97 0.85 0.94 0.98 0.98 

Hist 2 ― ― ― 0.95 0.75 0.73 1 0.97 0.78 0.77 

Hist 3 ― ― ― ― 0.91 0.88 0.93 0.99 0.92 0.91 

Hist 4 ― ― ― ― ― 0.99 0.71 0.87 1 1 

Hist 5 ― ― ― ― ― ― 0.69 0.83 0.99 1 

Hist 6 ― ― ― ― ― ― ― 0.96 0.75 0.74 

Hist 7 ― ― ― ― ― ― ― ― 0.88 0.87 

Hist 8 ― ― ― ― ― ― ― ― ― 1 
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Table S3-6 Model selection with information criteria metrics of MLPE models using genetic distance 

(pairwise GST values) as response variable and different landscape features as predictors for three 

different sections of the canal: Entire system, northern cluster and southern cluster. Four landscape 

features that were calculated between each pair of sampling sites were used in these models: 1) the 

shortest aquatic distance (Geo), 2) the number of locks (Lock), 3) the number of human-made 

constructions (e.g., mill dams) between 1783 (i.e., beginning of European settlement in the Rideau 

region) and 1826 (i.e., official beginning of Rideau Canal construction) (Post1783), and 4) the historical 

features (i.e., waterfalls, rapids and land barriers) previously located on the current path of the canal 

before any human-made alterations were made on the original landscape (Hist; see Supporting 

Information 2 of Chapter 3 for the codes). Summary statistics available for the best MLPE models 

(ΔAICc < 2) 
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Models Estimate  95% CI k AIC AICc ΔAICc 

Entire system 

Lock* 0.0008 0.0006 ― 0.001 4 -1432.24 -1431.31 0 

Lock + Post1783 ― ― 5 -1430.54 -1429.11 2.20 

Hist 8 ― ― 4 -1429.62 -1428.69 2.62 

Hist 8 + Post1783 ― ― 5 -1428.04 -1426.61 4.70 

Geo ― ― 4 -1419.25 -1418.32 13.00 

Geo + Post1783 ― ― 5 -1417.67 -1416.24 15.07 

Post1783 ― ― 4 -1394.46 -1393.53 37.79 

Null ― ― 3 -1365.93 -1365.38 65.93 

Northern section 

Hist 6* 0.0012 0.0009 ― 0.0015 4 -135.27 -134.34 0 

Hist 7* 0.0014 0.0011― 0.0018 4 -134.88 -133.95 0.40 

Lock ― ― 4 -119.45 -118.52 15.83 

Null ― ― 3 -117.31 -116.76 17.58 

Hist8 ― ― 4 -117.13 -116.20 18.15 

Geo ― ― 4 -115.42 -114.49 19.86 

Southern section 

Lock* 0.0007 0.0003 ― 0.001 4 -648.88 -647.95 0 

Hist 8* 0.00003 0.00001 ― 0.00006 4 -647.71 -646.78 1.17 

Hist 7* 0.00006 0.00002 ― 0.0001 4 -647.61 -646.68 1.26 

Hist 3* 0.0002 0.00007 ― 0.0003 4 -647.51 -646.58 1.37 

Geo* 0.003 0.001 ― 0.005 4 -647.14 -646.21 1.74 

Lock + Post1783 ― ― 5 -647.26 -645.83 2.12 

Hist 3 + Post1783 ― ― 5 -646.83 -645.40 2.55 

Hist 8 + Post1783 ― ― 5 -646.53 -645.10 2.84 

Hist 7 + Post1783 ― ― 5 -646.50 -645.07 2.88 

Geo + Post1783 ― ― 5 -645.14 -643.71 4.24 

Post1783 ― ― 4 -642.29 -641.36 6.59 

Null ― ― 3 -641.09 -640.54 7.40 
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Table S3-7 Genotyping error rate (Error rate) for each locus: number of error (Error number) on the 

total number of alleles (Total alleles) successfully genotyped 

Locus Error number Total alleles Error rate 

GmuD21 0 76 0 

GmuD79 0 76 0 

GmuD87 11 76 0.14 

GmuD70 2 76 0.03 

BTGA3 1 76 0.01 

BTCA5 0 76 0 

CP2 4 76 0.05 

BTCA9 0 76 0 

BTCA7 0 76 0 

CpGT108 1 76 0.01 

CP3 6 76 0.08 

TerpSH3 2 76 0.03 

CpGT124 13 74 0.18 

TerpSH2 5 74 0.07 

TerpSH5 2 76 0.03 

    Global rate 0.04 
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Table S3-8 Observed frequency of null alleles for each locus with the 95% confidence intervals (95% 

CI). Frequency estimated with the Brookfield (1996) method 

Locus Observed frequency 95% CI 

GmuD21 0 [-0.02 ― 0.02] 

GmuD79 0 [-0.01 ― 0.01] 

GmuD87 0.11 [0.09 ― 0.13] 

GmuD70 0.02 [0.01 ― 0.03] 

BGTA3 0 [-0.02 ― 0.02] 

BTCA5 0 [-0.02 ― 0.02] 

CP2 0.01 [0 ― 0.03] 

BTCA9 -0.01 [-0.02 ― 0.01] 

BTCA7 -0.01 [-0.02 ― 0.01] 

CpGT108 0.01 [0 ― 0.03] 

CP3 0 [-0.01 ― 0.02] 

TerpSH3 0.03 [0.02 ― 0.05] 

CpGT124 0.01 [0 ― 0.02] 

TerpSH2 0.01 [0 ― 0.02] 

TerpSH5 0.04 [0.03 ― 0.05] 
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Table S3-9 The significant proportion (according to a p < 0.05) of loci out of Hardy-Weinberg equilibrium (HWE) for each population 

and the proportion of populations out of HWE for each locus based on the chi-squared test statistic (Chisq) and Monte Carlo permutations 

(MC; 10,000 permutations). BF: significant proportion adjusted with a Bonferroni correction. fdr: significant proportion adjusted with a 

false discovery rate correction based on Benjamini and Yekutieli (2001) 

Proportion of loci out of HWE for each population 

Site Chisq MC Chisq.fdr MC.fdr Chisq.BF MC.BF Chisq.BF.fdr MC.BF.fdr 

BR1 0.07 0.07 0.07 0 0.07 0 0.07 0 

BR2 0.20 0.20 0.13 0 0 0 0 0 

C1 0.07 0.13 0.07 0 0 0 0 0 

CB1 0.20 0.27 0.13 0.07 0.13 0 0.13 0 

CL2 0.13 0.20 0.13 0.07 0.07 0 0 0 

CL3 0.20 0.07 0 0 0 0 0 0 

LR1 0.13 0.07 0.07 0.07 0 0 0 0 

NB3 0.33 0.13 0.27 0.07 0.07 0 0 0 

RR1 0.20 0.27 0.07 0.07 0 0 0 0 

RR10 0.07 0.13 0.07 0.07 0 0.07 0 0 

RR2 0.13 0.13 0.07 0.07 0 0 0 0 

RR3 0.20 0.13 0.13 0.07 0.07 0 0 0 

RR4 0.07 0.07 0.07 0 0 0 0 0 

RR5 0.27 0.13 0.27 0.13 0.07 0.13 0.07 0.13 

RR6 0.07 0.07 0.07 0.07 0.07 0 0.07 0 

RR7 0.33 0.40 0.33 0.27 0.20 0.13 0.13 0.13 

RR8 0.20 0.13 0.07 0.13 0 0 0 0 

RR9 0.07 0.07 0.07 0 0.07 0 0 0 

RS1 0.07 0.07 0.07 0 0.07 0 0 0 

SA1 0.07 0 0 0 0 0 0 0 

UP6 0.33 0.13 0.20 0.07 0.13 0.07 0.13 0.07 

WF1 0.13 0.07 0.07 0 0.07 0 0.07 0 
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Proportion of populations out of HWE for each locus 

Locus Chisq MC Chisq.fdr MC.fdr Chisq.BF MC.BF Chisq.BF.fdr MC.BF.fdr 

GmuD21 0.14 0.09 0.09 0 0.09 0 0.09 0 

GmuD79 0 0 0 0 0 0 0 0 

GmuD87 0.32 0.73 0.23 0.45 0.14 0.14 0.14 0.14 

GmuD70 0.23 0.23 0.14 0.09 0.05 0 0.05 0 

BGTA3 0.18 0.14 0.06 0 0.05 0 0.05 0 

BTCA5 0 0 0 0 0 0 0 0 

CP2 0.23 0.14 0.18 0.06 0.09 0 0.05 0 

BTCA9 0.06 0 0.06 0 0 0 0 0 

BTCA7 0 0 0 0 0 0 0 0 

CpGT108 0.32 0 0.27 0 0.05 0 0 0 

CP3 0.06 0.06 0 0 0 0 0 0 

TerpSH3 0.18 0.14 0.18 0.09 0.09 0.05 0.05 0.05 

CpGT124 0.23 0.14 0.09 0.09 0 0.05 0 0.05 

TerpSH2 0.09 0.06 0.06 0 0 0 0 0 

TerpSH5 0.41 0.32 0.32 0.06 0.18 0.05 0.05 0 
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Table S3-10 Probability of identity (PI) and probability of identity among siblings (PIsibs) according to the number of locus combinations 

with the 13 remained loci. N = number of individuals sampled per site 

Probability of identity (PI) 

Site N 1 locus 2 loci 3 loci 4 loci 5 loci 6 loci 7 loci 8 loci 9 loci 10 loci 11 loci 12 loci 13 loci 

BR1 54 0.223 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

BR2 25 0.176 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

C1 26 0.208 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CB1 52 0.208 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CL2 43 0.13 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CL3 22 0.193 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

LR1 47 0.178 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

NB3 36 0.172 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR1 27 0.182 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR10 31 0.250 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR2 29 0.181 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR3 33 0.144 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR4 32 0.221 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR5 43 0.207 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR6 60 0.184 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR7 54 0.176 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR8 35 0.224 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR9 34 0.098 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RS1 29 0.214 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

SA1 27 0.240 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

UP6 48 0.216 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

WF1 35 0.299 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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Probability of identity among siblings (PIsibs) 

Site N 1 locus 2 loci 3 loci 4 loci 5 loci 6 loci 7 loci 8 loci 9 loci 10 loci 11 loci 12 loci 13 loci 

BR1 54 0.506 0.162 0.044 0.018 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

BR2 25 0.467 0.145 0.041 0.017 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

C1 26 0.488 0.149 0.041 0.017 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CB1 52 0.488 0.151 0.041 0.016 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CL2 43 0.435 0.134 0.037 0.014 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

CL3 22 0.484 0.156 0.045 0.018 0.013 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

LR1 47 0.467 0.144 0.039 0.016 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

NB3 36 0.465 0.146 0.039 0.016 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR1 27 0.469 0.145 0.042 0.017 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR10 31 0.523 0.167 0.046 0.018 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR2 29 0.466 0.149 0.041 0.016 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR3 33 0.442 0.139 0.040 0.017 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR4 32 0.510 0.166 0.046 0.019 0.014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR5 43 0.489 0.150 0.041 0.018 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR6 60 0.479 0.153 0.042 0.016 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR7 54 0.470 0.148 0.040 0.016 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR8 35 0.500 0.161 0.044 0.017 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RR9 34 0.400 0.133 0.037 0.014 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

RS1 29 0.501 0.158 0.045 0.017 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

SA1 27 0.521 0.164 0.045 0.020 0.016 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

UP6 48 0.493 0.147 0.040 0.017 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

WF1 35 0.548 0.176 0.050 0.021 0.016 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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Table S3-11 Pairwise FST (Lower panel) and GST (Upper panel; Hedrick (2005)) values between each pair of sampling sites. Values in 

bold are significant (95% confidence intervals do not overlap with zero) 

Site BR1 BR2 C1 CB1 CL2 CL3 LR1 NB3 RR1 RR10 RR2 

BR1 ― 0.0051 0.0198 0.0094 0.0198 0.0415 0.0160 0.0003 0.0728 0.0377 0.0307 

BR2 0.0010 ― 0.0132 0.0090 0.0064 0.0291 0.0055 -0.0032 0.0754 0.0133 0.0164 

C1 0.0053 0.0027 ― -0.0073 0.0017 0.0206 0.0196 0.0044 0.0476 0.0187 0.0184 

CB1 0.0025 0.0021 -0.0022 ― 0.0125 0.0226 0.0228 0.0082 0.0585 0.0271 0.0179 

CL2 0.0056 0.0013 0.0002 0.0033 ― 0.0112 0.0096 0.0020 0.0587 0.0149 0.0233 

CL3 0.0120 0.0073 0.0049 0.0060 0.0028 ― 0.0282 0.0212 0.0751 0.0410 0.0315 

LR1 0.0047 0.0013 0.0053 0.0064 0.0027 0.0081 ― -0.003 0.0488 0.0111 0.0237 

NB3 -0.0003 -0.0018 0.0005 0.0019 0.0002 0.0052 -0.0012 ― 0.0480 0.0262 0.0071 

RR1 0.0210 0.0202 0.0121 0.0158 0.0161 0.0207 0.0139 0.0127 ― 0.0714 0.0549 

RR10 0.0108 0.0032 0.0048 0.0073 0.0041 0.0113 0.0032 0.0069 0.0196 ― 0.0268 

RR2 0.0087 0.0040 0.0046 0.0048 0.0064 0.0086 0.0068 0.0015 0.0149 0.0074 ― 

RR3 0.0110 0.0067 0.0092 0.0072 0.0060 0.0154 0.0063 0.0038 0.0198 0.0060 0.0082 

RR4 0.0121 0.0083 0.0116 0.0118 0.0072 0.0160 0.0109 0.0032 0.0190 0.0099 0.0040 

RR5 0.0138 0.0071 0.0079 0.0118 0.0124 0.0220 0.0100 0.0063 0.0143 0.0069 0.0062 

RR6 0.0078 0.0055 0.0105 0.0099 0.0062 0.0122 0.0055 0.0039 0.0139 0.0037 0.0046 

RR7 0.0049 0.0031 0.0075 0.0068 0.0048 0.0146 0.0016 0.0029 0.0114 0.0039 0.0046 

RR8 0.0028 0.0029 -0.0016 0.0001 0.0037 0.0026 0.0032 0.0014 0.0109 0.0014 0.0040 

RR9 0.0103 0.0031 0.0049 0.0060 0.0033 0.0092 0.0031 0.0045 0.0111 0.0012 0.0056 

RS1 0.0097 0.0055 -0.0007 0.0006 0.0064 0.0030 0.0053 0.0059 0.0181 0.0086 0.0062 

SA1 0.0065 0.0119 0.0052 0.0139 0.0062 0.0143 0.0033 0.0035 0.0110 0.0083 0.0123 

UP6 0.0090 0.0054 0.0004 0.0035 0.0051 0.0065 0.0091 0.0027 0.0143 0.0105 0.0051 

WF1 0.0106 0.0128 0.0026 0.0062 0.0061 0.0074 0.0058 0.0058 0.0148 0.0078 0.0098 
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Site RR3 RR4 RR5 RR6 RR7 RR8 RR9 RS1 SA1 UP6 WF1 

BR1 0.0385 0.0411 0.0478 0.0270 0.0174 0.0112 0.0365 0.0334 0.0224 0.0325 0.0356 

BR2 0.0257 0.0298 0.0274 0.0203 0.0132 0.0142 0.0142 0.0205 0.0428 0.0218 0.0455 

C1 0.0357 0.0428 0.0310 0.0392 0.0289 -0.0037 0.0206 -0.0024 0.0201 0.0025 0.0103 

CB1 0.0267 0.0424 0.0433 0.0362 0.0249 0.0015 0.0228 0.0023 0.0489 0.0135 0.0222 

CL2 0.0220 0.0251 0.0450 0.0222 0.0179 0.0150 0.0131 0.0227 0.0221 0.0196 0.0215 

CL3 0.0561 0.0553 0.0790 0.0435 0.0527 0.0126 0.0353 0.0107 0.0493 0.0253 0.0260 

LR1 0.0221 0.0371 0.0351 0.0191 0.0062 0.0122 0.0117 0.0179 0.0117 0.0330 0.0197 

NB3 0.0147 0.0120 0.0243 0.0147 0.0118 0.0077 0.0185 0.0221 0.0143 0.0114 0.0213 

RR1 0.0731 0.0673 0.0524 0.0501 0.0415 0.0427 0.0421 0.0649 0.0392 0.0545 0.0515 

RR10 0.0214 0.0343 0.0254 0.0131 0.0148 0.0065 0.0054 0.0301 0.0289 0.0399 0.0270 

RR2 0.0299 0.0134 0.0232 0.0165 0.0174 0.0163 0.0217 0.0215 0.0426 0.0196 0.0339 

RR3 ― 0.0103 0.0185 0.0159 0.0120 0.0156 0.0250 0.0438 0.0489 0.0336 0.0485 

RR4 0.0031 ― 0.0318 0.0173 0.0207 0.0264 0.0247 0.0571 0.0309 0.0327 0.0454 

RR5 0.0049 0.0089 ― 0.0104 0.0135 0.0203 0.0390 0.0529 0.0388 0.0370 0.0414 

RR6 0.0045 0.0050 0.0028 ― 0.0091 0.0153 0.0275 0.0393 0.0291 0.0377 0.0422 

RR7 0.0032 0.0058 0.0035 0.0025 ― 0.0070 0.0081 0.0501 0.0134 0.0373 0.0234 

RR8 0.0039 0.0070 0.0050 0.0040 0.0015 ― 0.0018 0.0063 0.0299 0.0079 0.0106 

RR9 0.0066 0.0068 0.0104 0.0075 0.0019 -0.0002 ― 0.0305 0.0301 0.0359 0.0182 

RS1 0.0122 0.0165 0.0148 0.0111 0.0140 0.0015 0.0083 ― 0.0468 0.0219 0.0223 

SA1 0.0140 0.0093 0.0110 0.0084 0.0035 0.0079 0.0082 0.0138 ― 0.0457 0.0107 

UP6 0.0088 0.0089 0.0098 0.0101 0.0100 0.0017 0.0093 0.0059 0.0126 ― 0.0379 

WF1 0.0139 0.0136 0.0119 0.0122 0.0066 0.0025 0.0049 0.0066 0.0030 0.0105 ― 
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Table S3-12 Mean log likelihood probability (Mean LnP(K)) for each K (K=1–22) and the delta K 

based on the rate of changes in probability between successive K values. 10 runs were performed for 

each K 

K Mean LnP(K) delta K 

1 -43164.93 ― 

2 -43159.16 71.69 

3 -45032.68 1.58 

4 -45955.50 1.40 

5 -44737.40 2.22 

6 -45059.55 1.68 

7 -46429.89 0.55 

8 -46475.46 1.16 

9 -48258.63 0.30 

10 -49227.85 0.26 

11 -49774.33 0.31 

12 -49651.82 0.61 

13 -50489.30 0.54 

14 -52299.12 0.51 

15 -52952.60 0.44 

16 -52249.89 0.80 

17 -53696.34 0.65 

18 -52733.71 0.78 

19 -53374.62 0.03 

20 -54098.24 6.51 

21 -78818.30 0.61 

22 -54472.73 — 
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Table S3-13 Estimation of the population size (N) of painted turtles of the Rideau Canal Waterway based on the Lincoln-Petersen Index 

(N=(M*C)/R). We used data from sampling sites where we had data from sampling sessions in different years. Three sampling sites (i.e., 

BR1, RS1, and SA1) were excluded from the calculation of total mean density because we had no recaptures which prevented us from 

estimating the population size. M = the number of individuals captured and marked during the first sampling session (M - Year: year of 

the first sampling session). C = Number of individuals captured during the second sampling session (C - Year: year of the second sampling 

session). R = Number of individuals captured in the second sampling session that were marked during the first sampling session. 

Calculation of density is based on mean painted turtle home range area found in the literature (203,800 m2; see Supporting Information 1 

– Table S2-2 (Chapter2)). 

Site M M - Year C C - Year R N Variance Density (turtle/m2) 

RR1 21 2019 20 2020 15 28 3.18 0.000137 

RR3 11 2019 9 2020 4 24.75 28.00 0.000121 

RR6 22 2019 42 2020 3 308 9160.61 0.001511 

RR7 29 2019 27 2020 2 391.50 15750.00 0.001921 

RR9 13 2019 24 2020 3 104 918.75 0.000510 

BR1 13 2019 40 2020 0 NA NA NA 

WF1 7 2019 29 2020 1 203 3360.00 0.000996 

C1 12 2019 15 2020 1 180 2669.33 0.000883 

RS1 16 2019 13 2020 0 NA NA NA 

CB1 16 2019 38 2020 2 304 9282.00 0.001492 

UP6 10 2018 40 2019 2 200 3808.44 0.000981 

CL2 24 2018 21 2020 2 252 6386.11 0.001237 

SA1 7 2018 20 2019 0 NA NA NA 

       Mean density 0.000979 
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Table S3-13 (continued) 

Mean density (turtle/m2) = 0.000979 

Rideau Canal area (m2) = 195,194,686.74 

Proportion of Rideau Canal consisting of suitable habitat for painted turtles = 20% (38,999,898.40 m2) 

Approximate population size = 38,180.90 

 

Minimum density (turtle/m2) = 0.00012 

Minimum population size = 4,679.99 

 

Maximum density (turtle/m2) = 0.00192 

Maximum population size =74,879.80 

 

References for Lincoln-Petersen index: 

Lincoln, F.C. (1930). Calculating waterfowl abundance on the basis of banding returns. Washington: 

U.S. Department of Agriculture, pp. 1-8. Circular, no. 118. 

Petersen, C.G.J. (1896). The yearly immigration of young plaice into Limfjord from the German sea. 

Report of the Danish Biological Station, vol. 6, pp. 1-48. 

 



 

221 

 

Table S3-14 Number of locks per kilometer (locks/km) for each Rideau Canal section between sampling 

sites from Ottawa River (RR1) to Ontario Lake (CB1) 

Section locks/km 

RR1-RR2 0.56 

RR2-RR3 0.32 

RR3-RR4 0 

RR4-RR5 0 

RR5-RR6 0 

RR6-RR7 0.01 

RR7-RR8 0.65 

RR8-RR9 0 

RR9-RR10 0.12 

RR10-LR1 0.56 

LR1-BR1 0 

BR1-BR2 0 

BR2-UP6 0.06 

UP6-NB3 0.22 

NB3-CL2 0 

CL2-CL3 0 

CL3-SA1 0.15 

SA1-WF1 0.36 

WF1-C1 0 

C1-RS1 0.28 

RS1-CB1 0 
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Table S3-15 Mean daily number of lockages for each lockstation in the Rideau Canal Waterway between 2018 and 2020. Lockstations are 

in order from Ottawa River (Ottawa) to Ontario Lake (Kingston) 

 May  June  July 

Lockstations 2018 2019 2020 Mean   2018 2019 2020 Mean   2018 2019 2020 Mean  

Ottawa locks 1.64 0.07 0 0.57  NA 2.23 1.13 1.68  5.65 5.26 4.26 5.05 

Hartwells 2.71 1.60 0 1.44  NA 4.50 2.77 3.63  10.94 10.81 7.65 9.80 

Hogs Back 2.36 2.73 0 1.70  NA 7.27 2.83 5.05  11.58 17.03 7.90 12.17 

Black Rapids 3.07 1.20 0 1.42  NA 5.53 5.67 5.60  12.61 11.55 12.97 12.38 

Long Island 3.21 1.67 0 1.63  NA 5.40 3.03 4.22  10.16 10.13 7.32 9.20 

Burritts Rapids 4.07 3.87 0 2.65  NA 8.63 4.93 6.78  17.23 18.48 15.52 17.07 

Nicholsons 3.36 2.73 0 2.03  NA 7.50 3.43 5.47  16.77 16.42 13.61 15.60 

Clowes 3.36 2.73 0 2.03  NA 7.87 3.53 5.70  17.16 16.58 13.71 15.82 

Merrickville 3.57 3.20 0 2.26  NA 6.80 3.67 5.23  11.84 14.32 10.97 12.38 

Northern cluster 3.04 2.20 0 1.75   NA 6.19 3.44 4.82   12.66 13.40 10.43 12.16 

Kilmarnock 3.64 4.93 0 2.86  NA 7.73 3.57 5.65  17.03 10.68 14.84 14.18 

Edmonds 4.36 5.40 0 3.25  NA 8.03 3.37 5.70  15.00 15.87 13.42 14.76 

Old Slys 4.07 4.13 0 2.73  NA 6.40 2.57 4.48  15.35 14.16 11.68 13.73 

Combined 0 5.60 0 1.87  NA 8.47 4.20 6.33  18.26 17.68 14.55 16.83 

Detached 5.86 5.73 0 3.86  NA 8.77 6.40 7.58  19.29 18.29 16.26 17.95 

Poonamalie 6.64 7.07 0 4.57  NA 10.93 7.13 9.03  20.87 20.81 20.23 20.63 

Narrows 13.57 9.87 0 7.81  NA 18.73 16.57 17.65  30.23 32.97 30.68 31.29 

Newboro 10.43 9.53 0 6.65  NA 21.57 12.73 17.15  36.32 35.77 31.10 34.40 

Chaffeys 9.29 7.73 0 5.67  NA 16.20 7.43 11.82  26.42 26.71 20.74 24.62 

Davis 7.50 7.27 0 4.92  NA 14.83 5.73 10.28  26.29 27.06 19.48 24.28 

Jones Falls 2.93 3.13 0 2.02  NA 5.97 1.13 3.55  9.48 10.68 9.68 9.95 

Upper Brewers 4.00 2.73 0 2.24  NA 8,00 1.73 4.87  15.55 15.81 12.71 14.69 

Lower Brewers 3.43 3.13 0 2.19  NA 7.40 1.40 4.40  14.71 15.48 12.29 14.16 

Kingston Mills 2.57 1.60 0 1.39  NA 6.17 1.17 3.67  12.00 11.16 8.61 10.59 

Southern cluster 5.59 5.56 0 3.72   NA 10.66 5.37 8.01   19.77 19.51 16.88 18.72 

Mean  4.32 3.88 0 2.73   NA 8.42 4.40 6.42   16.22 16.45 13.65 15.44 
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 August  September  October  

Lockstations 2018 2019 2020 Mean    2018 2019 2020 Mean   2018 2019 2020 Mean Mean 

Ottawa locks 5.87 5.87 4.61 5.45  2.37 2.33 1.80 2.17  1.00 1.00 1.00 1.00 2.71 

Hartwells 11.32 11.48 9.39 10.73  4.40 4.47 4.03 4.30  1.75 1.50 1.75 1.67 5.36 

Hogs Back 11.35 16.52 9.94 12.60  4.77 7.00 4.27 5.34  1.63 2.14 1.67 1.81 6.53 

Black Rapids 12.26 11.45 15.23 12.98  5.33 5.07 7.60 6.00  2.13 1.00 3.67 2.26 6.84 

Long Island 9.90 10.10 8.39 9.46  3.97 4.73 3.83 4.18  0.25 2.07 1.92 1.41 5.06 

Burritts Rapids 17.58 18.03 15.84 17.15  6.40 6.80 6.00 6.40  1.38 2.36 3.50 2.41 8.86 

Nicholsons 15.84 16.26 13.90 15.33  7.03 5.87 6.27 6.39  2.13 2.29 2.25 2.22 7.98 

Clowes 16.26 16.97 14.26 15.83  7.17 5.87 6.27 6.43  2.13 2.79 2.25 2.39 8.17 

Merrickville 11.10 14.19 11.87 12.39  5.13 5.53 6.13 5.60  2.00 3.00 3.00 2.67 6.84 

Northern cluster 12.39 13.43 11.49 12.44  5.17 5.30 5.13 5.20   1.60 2.02 2.33 1.98 6.48 

Kilmarnock 16.71 18.52 15.42 16.88  7.37 8.67 6.50 7.51  3.75 3.57 3.83 3.72 8.63 

Edmonds 14.26 16.39 14.19 14.95  6.60 7.13 6.23 6.66  3.50 4.14 4.50 4.05 8.38 

Old Slys 14.52 15.26 12.94 14.24  6.87 6.33 5.77 6.32  3.38 2.43 3.42 3.07 7.60 

Combined 18.97 20.58 16.84 18.80  8.07 8.53 8.20 8.27  5.75 4.71 5.83 5.43 9.78 

Detached 17.71 18.58 18.42 18.24  9.30 9.27 9.63 9.40  4.38 4.71 7.42 5.50 10.59 

Poonamalie 20.97 22.65 22.35 21.99  12.23 11.23 11.90 11.79  4.75 5.50 9.67 6.64 12.64 

Narrows 30.16 32.06 30.55 30.92  16.80 16.13 17.00 16.64  10.63 9.64 12.00 10.76 19.27 

Newboro 35.00 34.10 29.26 32.78  18.87 17.70 15.07 17.21  6.25 6.36 8.17 6.92 19.31 

Chaffeys 23.71 26.84 20.87 23.81  13.37 13.27 11.27 12.63  4.50 5.57 4.33 4.80 14.01 

Davis 22.87 26.65 19.52 23.01  13.30 12.70 11.00 12.33  5.88 6.14 5.00 5.67 13.60 

Jones Falls 8.77 10.87 8.81 9.48  5.83 5.50 4.57 5.30  2.75 2.36 1.50 2.20 5.53 

Upper Brewers 15.48 15.65 12.74 14.62  7.73 6.80 6.27 6.93  3.50 2.14 2.00 2.55 7.81 

Lower Brewers 14.97 15.32 12.16 14.15  7.20 6.57 6.27 6.68  2.75 2.14 1.75 2.21 7.47 

Kingston Mills 11.52 10.84 8.84 10.40  5.30 4.80 4.40 4.83  2.63 2.00 1.33 1.99 5.58 

Southern cluster 18.97 20.31 17.35 18.88  9.92 9.62 8.86 9.46   4.60 4.39 5.05 4.68 10.73 

Mean  15.68 16.87 14.42 15.66  7.54 7.46 7.00 7.33   3.10 3.20 3.69 3.33 8.60 
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Supporting Information 2 – Selection of permeability values for the historical features 

1. Context and problem 

Based on the work of Watson (2006), we identified the positions of historical features such as 

rapids, waterfalls, and land barriers located on the path of the Rideau Canal before any human-made 

alterations (Figure S3-1).  
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Figure S3-1 Map of the Rideau Canal, Ontario, Canada (light blue) with the locations of the historical 

features (rapids: gray diamond bars; waterfalls: white diamond bars; land barriers: gray zones) in 

relation to sampling sites (black dots). 

Our objective was to build a distance matrix from the historical features, similar to the lock matrix 

that calculated the number of locks between each pair of sites. In the latter case, the same value was 

given to each lock (i.e., 1) because all locks in the system are identical and should have the same level 

of permeability. In contrast, we expected that rapids, waterfalls, and land barriers in the landscape prior 

to canal construction would not have the same level of permeability to turtle movement. Therefore, 

although the exact levels of permeability of these landscape features to turtle movement are unknown, 

we could not give the same permeability value to each historical feature. An additional challenge was 

that we worked in a linear system that does not allow to compute resistance distances from a varied 

landscape surface (e.g., raster map). To our knowledge, no studies previously assessed how rapids and 

waterfalls affect turtle dispersal or gene flow.  

2. Conception of combinations of permeability values 

We built multiple scenarios using different permeability values for each historical feature by 

altering the level of difficulty to cross and, in some cases, by adjusting the permeability values according 

to the feature length (Table S3-16; see Figure S3-2 for an example of permeability values used for each 

feature on the map of the Rideau Canal). We did not use large differences in permeability values because 

we considered the historical features to be similar barriers to movement, but with slight differences. For 

each combination, we built a distance matrix that consisted of the sum of permeability values of the 

historical features between each pair of sites (Table S3-17; see red numbers on Figure S3-2). 
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Table S3-16 Combinations of permeability values for each historical landscape features. *Models with 

permeability values adjusted for the length of the feature: same value for the waterfalls because all 

waterfalls had a similar length (between 1100 and 1600 m; including the rapids generally just upstream) 

and similar total drop (rapids and waterfalls together) between 8 and 20 m. 

 

Table S3-17 Example of a distance matrix of historical features based on the combination from the Hist 

4 model (see Table S3-16) with a sub-sample of four sampling sites. 

 

 

Models Rapids Waterfalls Land barriers 

Hist 1 (Additive) 1 1 1 

Hist 2 1 5 10 

Hist 3 1 10 5 

Hist 4 5 10 1 

Hist 5 10 5 1 

Hist 6* 1: <1000 m; 5: 1000-2000 m 10 15 to 35: +5 for each 1000 m 

Hist 7* 1: <1000 m; 5: 1000-2000 m 35 10 to 30: +5 for each 1000 m 

Hist 8* 25: <1000 m; 30: 1000-2000 m 35 1 to 20: +5 for each 1000 m 

Hist 9* 30: <1000 m; 35: 1000-2000 m 25 1 to 20: +5 for each 1000 m 

Binary 1: if there is at least one barrier between the pair of sites; 0: no barrier 

Binary additive Additive model based on the binary score between each pair of sites.  

Sites RR1 RR2 RR3 RR4 

RR1 ― 6 26 26 

RR2 6 ― 20 20 

RR3 26 20 ― 0 

RR4 26 20 0 ― 
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Figure S3-2 Map of the Rideau Canal, Ontario, Canada (light blue) with the location of historical 

features (rapids: gray diamond bars; waterfalls: white diamond bars; land barriers: gray zones) in 

relation to sampling sites (black dots). The permeability values (in red) of each historical feature based 

on the Hist 4 model (Table S3-16) used to build the distance matrix are shown beside each historical 

feature.  

3. Selection of the permeability values for the historical features 

We built a univariate maximum likelihood population effect (MLPE) model for each distance 
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matrix of historical features based on each model of permeability levels as predictor variable (Table S3-

16), with FST pairwise measures between each pair of sampling sites as the genetic distance matrix 

(response variable), and the identity of sampling site pairs as a random effect. We used the combination 

of permeability levels from the model with the best fit based on information criteria metrics (i.e., AICc) 

as the distance matrix of historical features for further analyses (see Table S3-18). We made this 

selection with the sampling sites from the entire system, with sites from the northern cluster (i.e., RR1, 

RR2, RR3. RR4. RR5, RR6, RR7 sites; Figure S3-1), and with sites from the southern cluster (i.e., RR8, 

RR9, RR10, LR1, BR1, BR2, UP6, NB3, CL2, CL3, SA1, WF1, C1, RS1, CB1; Figure S3-1) 
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Table S3-18 Model selection summary with information criteria metrics of MLPE models using genetic 

distance (FST) as the response variable and different combinations of permeability values for historical 

landscape features as predictors for three sections of the canal: entire system, northern cluster, and 

southern cluster. 

Models k AIC AICc ΔAICc 

Entire system 

Hist 8 4 -2013.29 -2012.36 0 

Hist 4 4 -2012.41 -2011.48 0.89 

Hist 9 4 -2011.99 -2011.06 1.30 

Hist 1 4 -2011.71 -2010.78 1.58 

Hist 3 4 -2011.39 -2010.46 1.91 

Hist 7 4 -2011.21 -2010.28 2.09 

Hist 5 4 -2010.07 -2009.14 3.23 

Binary additive 4 -2010.05 -2009.12 3.24 

Hist 2 4 -1995.39 -1994.46 17.90 

Hist 6 4 -1993.88 -1992.95 19.41 

Binary 4 -1965.79 -1964.86 47.50 

Null 3 -1949.84 -1949.29 63.07 

Northern cluster 

Hist 6 4 -189.31 -188.38 0 

Hist 7 4 -188.91 -187.98 0.40 

Hist 2 4 -184.31 -183.38 4.99 

Hist 3 4 -177.77 -176.84 11.53 

Binary additive 4 -172.49 -171.56 16.82 

Null 3 -171.91 -171.36 17.01 

Binary 4 -172.19 -171.26 17.12 

Hist 1 4 -172.17 -171.24 17.13 

Hist 8 4 -171.90 -170.97 17.40 

Hist 9 4 -171.84 -170.91 17.47 

Hist 4 4 -171.66 -170.73 17.65 

Hist 5 4 -171.60 -170.67 17.71 

Southern cluster 

Hist 8 4 -910.26 -909.33 0 

Hist 7 4 -910.09 -909.16 0.17 

Hist 3 4 -909.99 -909.06 0.27 

Hist 4 4 -909.90 -908.97 0.36 

Hist 9 4 -909.50 -908.57 0.76 

Hist 1 4 -909.43 -908.50 0.83 
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 Hist 5 4 -908.82 -907.89 1.43 

Hist 6 4 -908.68 -907.74 1.58 

Hist 2 4 -908.59 -907.66 1.67 

Binary additive 4 -908.33 -907.40 1.93 

Null 3 -903.62 -903.07 6.26 

Binary 4 -903.33 -902.40 6.93 
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General Conclusion 

Overall, I found that human activities and human-made barriers impacted different components 

of the biology of painted turtles, from influencing their propensity to take risks, to inducing 

physiological changes and causing genetic substructuring. These findings indicate that human-induced 

perturbations and environmental changes have consequences on animals at different time scales: 

behavioural and physiological changes are generally the initial response to human activity reflecting the 

short-term and prolonged effects, especially when the perturbations persist over time, while genetic 

structuring caused by human-made barriers, which take more time to be detected, reflect long-term 

effects (Buchanan, 2000; Landguth et al., 2010). By observing variations in turtle physiological 

responsiveness according to their propensity to take risks, my thesis also highlights the importance of 

considering that biological processes are intertwined and should not be evaluated separately. Finally, 

my thesis provides information that could contribute to better protect species that are vulnerable to the 

growing pressures caused by humans, such as turtles, where the research is increasing but is still limited. 

I summarize the findings of my thesis in Figure 4-1. 

In chapter one, I reported that painted turtles are consistent in their propensity to take risks which 

is related to the levels of recreational boating occurring in their environment. Painted turtles in proximity 

to lockstations with more daily vessel crossings used more active defensive behaviours indicating that 

these spatial differences in risk taking propensity potentially allow painted turtles to co-exist with human 

presence and to persist in disturbed landscapes. By documenting the consistency of risk-taking 

behaviours within painted turtles and associating spatial variation in risk-taking propensity to human 

disturbance, I bridged a gap in the literature and brought the field of behavioural research in turtles, a 

group of conservation concern, a step forward.  
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In chapter two, I found no changes in physiological response according to the levels of recreational 

boating, but turtles sampled during the first year of COVID-19 restrictions had lower H/L ratios 

illustrating how limiting human outdoor activities has the potential to reduce human pressures on 

wildlife. In addition, physiological responsiveness is influenced by individual risk-taking propensity 

where risk-prone males, but not females, exhibited higher H/L ratios than risk-averse males indicating 

a potential additional cost of taking risks when exposed to challenging conditions. I also observed that 

males and females exhibited different colour patterns, which indicates sexual colour dimorphism in 

painted turtles. However, these differences in colouration were not related to any physiological and 

behavioural processes indicating that colour patterns may not signal fitness-related information, but 

potentially share information used in mate and species recognition or facilitate crypsis. By evaluating 

the impact of human disturbance on the relationships between colouration, risk-taking behaviour, and 

physiological response in painted turtles with structural equation modelling, I generated new knowledge 

using a hypothesis-driven approach, which is different compared to other approaches that focus on each 

causal relationship individually.  

In chapter three, I found that the number of locks was the best predictor of the genetic 

differentiation detected among painted turtle groups of the Rideau Canal. By being partially permeable 

to gene flow, the locks have the potential to dictate the population genetic structure of turtles, especially 

where they are numerous and clustered in space. With this study, I provide a rare example of how canal 

systems can influence the genetic population structure of a long-lived species at large spatial scales, 

which could set the baseline and open the door for other studies in artificial waterways.  
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Figure 4-1 Summary of the findings of my thesis evaluating the consequences of human activities and 

human-made barriers on different components of painted turtle’s biology: the behaviour, the physiology 

and the population genetic structure within the Rideau Canal.  

Conservation implications 

Beside generating fundamental knowledge on the consequences of human disturbance on animal 

populations, my thesis provides information that could be used to guide management decisions. My 

findings are relevant to other species which are impacted by human activities, and especially for half of 

the turtle species that are currently facing high risks of extinction (Stanford et al., 2020). My thesis 

highlights the importance of integrating different disciplines in the management of conservation issues, 

despite the additional challenges of using such an approach. By knowing how animals behaviourally 

respond to human disturbance, behaviour can be monitored where specific behavioural changes can 
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trigger immediate conservation interventions (Cooke et al., 2014). For instance, more frequent risk-

averse behaviours (e.g., lower flight distance) or habitat use changes in areas highly disturbed by human 

activities could indicate that animals are sensitive to human presence and specific measures could be 

applied to attenuate the consequences (Blumstein, 2016; Rebelo & Rainho, 2009). However, it would 

be necessary to determine the consequence of these changes on species’ persistence before triggering 

interventions (see Next steps section of the general discussion). In addition, long-term monitoring of 

physiological biomarkers, such as H/L ratio, can be used to record the physiological state of wildlife 

populations and then be utilised by conservation practitioners to flag rapidly potential population 

declines (Cooke & O’Connor, 2010; Walls & Gabor, 2019). Genetic analyses can be used to prioritize 

conservation actions by identifying specific areas that need to be protected to maintain gene flow in the 

landscape, such as areas already used as dispersal corridors by animals or areas where gene flow is 

restricted by the presence of barriers (Shaffer et al., 2015). To build the ultimate conservation tool kit, 

there is a need to adjust conservation actions by merging the knowledge generated by multiple 

disciplines, given that each one has weaknesses that can be compensated by the strength of others 

(Cooke et al., 2014; Walls & Gabor, 2019). For instance, animal behaviour can be relatively easily 

measured and monitored in a population, but it does not provide direct information on their health 

condition, but that can be estimated using physiological biomarkers (Cooke et al., 2014). Finally, 

merging disciplines can help to better understand the consequences of human disturbance by uncovering 

possible interactions between different components of species’ biology and, thus, avoid the implantation 

of poorly adapted management plans (Walls & Gabor, 2019).  

In the next decades, Parks Canada will invest billions of dollars to modernize the Rideau Canal 

infrastructure, giving them the opportunity to consider the results of this thesis to improve or conserve 
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the health of turtle populations and other aquatic species living in the canal. Thus, there is a great 

opportunity to integrate the findings of my thesis to develop efficient management policies, while 

maintaining the recreational use of the Rideau Canal. Several conservation strategies, such as the 

creation of freshwater sanctuaries, the limitation of vessel speed, and the restoration of connectivity 

using wildlife passages, have already proven to be efficient to reduce human pressures on aquatic 

wildlife and could be implemented in the Rideau Canal (Conn & Silber, 2013; Mcrae et al., 2012; 

Zolderdo et al., 2023).  

Next steps 

One of the main limitations of my thesis is that I did not evaluate how the 

behavioural/physiological changes and the genetic discontinuities occurring in this system are related 

to any fitness-related activities, survival and/or population-level processes, which limit the capacity to 

fully evaluate the conservation issues that turtles are potentially facing (Cooke & O’Connor, 2010). 

Several studies showed that high physiological stress response and limited gene flow caused by human 

activities can have important fitness consequences and threaten animal populations (Acevedo-

Whitehouse & Duffus, 2009; Reed & Frankham, 2003), thus a logical next step would be to assess these 

potential consequences in the study system. In particular, the quantification of important population-

level parameters (e.g., population growth rates, effective population size) should be prioritized since 

changes in these parameters clearly affect population persistence (Anthony & Blumstein, 2000). For 

instance, I found that risk-prone painted turtles are more frequent in areas with higher levels of boat 

activity which seem to allow them to persist in a human-altered landscape, but identifying how this 

behavioural response is related to population-level parameters will allow to determine if being risk-

prone is maladaptive and how it could potentially threaten population persistence. Making links between 
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the biological changes observed and population-level processes will be necessary to obtain a more 

complete portrait of possible conservation problems.   
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