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Abstract  
 

Behavioural ecology and population dynamics of freshwater turtles at their northern 

range limit 

Anne-Christine Auge 

 

Species are faced with a variety of challenges in the environment, including natural 

challenges, such as variability in ambient temperature, and anthropogenic threats, such 

as habitat transformation associated with urbanisation. Understanding how animals 

respond to these kinds of challenges can advance the field of behavioural ecology and 

guide management decisions for wild species. Yet, we still have limited understanding of 

the extent of natural and human-caused impacts on animal behaviour and population 

dynamics, and lack robust assessment of behaviour in free-ranging animals. Using novel 

miniaturised biologging technologies, I characterised and validated behaviour in two 

freshwater turtle species: Blanding’s turtles (Emydoidea blandingii) and Painted turtles 

(Chrysemys picta). Further, I investigated how these two ectothermic species navigate a 

thermally heterogeneous landscape near their northern range limit, by comparing 

selected and available ambient temperatures. I showed that turtles preferred locations 

that were, on average, warmer and less variable in temperature than the available 

environment, and that this thermal sensitivity was greatest early in the year, and at fine 

spatial scales that likely matched the species' perception of the environment. Lastly, I 

assessed whether urban development was compatible with long-term viability of a 
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Blanding’s turtle population, by monitoring habitat change and turtle survival over one 

decade of ongoing residential and road development. I found that Blanding’s turtle 

habitat quantity and connectivity declined in the area, which coincided with high road 

mortality and severe declines in turtle survival and population size, especially in adult 

females. I concluded that urban development and current road mortality rates are 

incompatible with the long-term viability of this at-risk turtle population. Overall, my 

findings demonstrate the importance of variation in the thermal environment and 

anthropogenic impacts on habitat in shaping the behaviour and population dynamics of 

this species-at-risk.  

 

 

Keywords: animal behaviour, accelerometer, biologging, habitat selection, 

ectotherms, temperature, urbanisation 
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Preface 
 

This thesis was written in manuscript format, as each chapter will be published in 

the peer-reviewed literature. Chapter 2 is in revision for PLOS ONE. Chapter 3 is in 

preparation for submission to Oecologia. Chapter 4 is in preparation for submission to 

Biological Conservation. Each chapter is therefore written as a stand-alone manuscript 

and is written in the style of the journal to which it was submitted to or prepared for. I 

am first author on all the manuscripts, but all of my research has been in collaboration 

with others, therefore the plural “we” is used throughout the text of the research 

chapters. Each chapter also presents the list of people whose contribution was sufficient 

to merit authorship. 
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Chapter 1: General Introduction 

 

Free-ranging animals are often faced with a variety of challenges in the 

environment, including abiotic, natural stressors such as extremes in temperature (e.g. 

Angilletta, 2009), precipitation (e.g. Farooq et al., 2012), or solar radiation (e.g. Sevi et 

al., 2001). Additional challenges can be of anthropogenic origin, including loss of habitat 

due to agriculture and urban expansion (Baillie et al., 2004; Purvis et al., 2000; Sala et 

al., 2000). All challenges may elicit responses at the level of the individual, population, 

or community, depending on the intensity of exposure and whether core functions are 

affected (Danchin 2008). Ultimately, the effects of natural and human-caused variation 

in the environment depend on the ability of animals to respond to these changes 

through behavioural plasticity, and potentially, adaptation (Deutsch et al., 2008; 

Kearney et al., 2009; Moiron et al., 2020). Understanding how animal behaviour can 

shape population dynamics in response to challenges is important, as it not only 

advances the field of behavioural ecology but it also guides management decisions for 

free-ranging animals (e.g. Attum and Cutshall, 2015; Tetzlaff et al., 2019). Yet, our 

understanding of how and when threats can be impactful to animals still remains in its 

infancy. To accurately predict responses to environmental and anthropogenic threats, 

robust assessments of behaviour and demographics in wild animals are necessary, and 

advancements in bio-logging technologies are extremely valuable in this pursuit, 

provided that they are appropriately tested and validated (Brown et al., 2013; Wilson et 

al., 2015).  
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Quantifying behaviour and activity with bio-loggers   

Novel, miniaturised bio-loggers such as accelerometers are particularly useful in 

monitoring fine-scale behaviour and activity, especially among cryptic species and in 

inaccessible habitats (Brown et al., 2013; Wilson et al., 2015). These devices are now 

commonly deployed in animal behaviour studies (e.g. Hertel et al., 2021; Shuert et al., 

2019; Wilson et al., 2019), and robust classification of data is necessary to reliably 

interpret behaviour and activity states (Patterson et al., 2019a; Shepard et al., 2010). 

However, many accelerometer-based behavioural studies do not objectively assess data 

or neglect validation of models or decision trees for classifying animal behaviour (Bidder 

et al., 2015; Collins et al., 2015). Moreover, while the need for species-specific 

classification is often highlighted in the literature (e.g. Halsey, 2013), over-arching 

models that describe behaviour based on accelerometer data in more than one species 

could streamline the classification process. Yet, how transferable behavioural 

classification models are between closely-related species is still largely unknown. 

Considering the increased use of accelerometers in animal studies, effectively 

scheduling these devices to ensure uninterrupted and efficient deployment in the field 

should be a priority. For example, recording acceleration at a low frequency would allow 

longer battery life, longer field deployment and lower computational processing power 

(Khan et al., 2016). In this thesis, I used accelerometers and water sensors to 

characterise and validate activity states in free-ranging freshwater turtles and I 

investigated inter-species transferability (or generality) and the effect of low sampling 

frequencies on classification accuracy.  
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Responses to environmental temperature heterogeneity  

Environmental temperature has wide-ranging impacts on organisms by 

influencing their distribution (e.g. Lembrechts et al., 2019) or home ranges (e.g. van 

Beest et al., 2011), shaping movement (e.g. Gibert et al., 2016), activity patterns (e.g. 

Attias et al., 2018), or habitat preferences (e.g. Alston et al., 2020). In ectothermic 

species, ambient temperature is considered the most important environmental 

resource, because it directly affects body temperature and physiological processes, and 

over the long term, can determine their survival, productivity and fitness (Huey, 1991; 

Huey and Stevenson, 1979). Ectothermic animals can control their body temperature 

through thermoregulatory behaviour (i.e. by adjusting activity time, posture or selecting 

thermally suitable locations), thereby making environmental temperature a key driver in 

ectotherm resource use and behaviour (Christian and Tracy, 1981; Cunnington et al., 

2008; Huey, 1982; Huey and Kingsolver, 1989). Hence, for many species we should 

expect a strong link between the thermal environment and habitat selection (Fitzgerald 

and Nelson, 2011; Huey, 1991). In heterogeneous landscapes animals are exposed to a 

variety of thermal conditions and should demonstrate plastic behaviour to maximise 

thermoregulatory performance (Sears and Angilletta, 2015; Sears et al., 2016a). 

Theoretical models show that absolute and relative ambient temperatures are equally 

important in influencing behaviour (Sears and Angilletta, 2015; Sears et al., 2011), but 

how free-ranging animals navigate heterogeneous thermal landscapes is still unclear 

(Sears and Angilletta, 2015).  
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When investigating animal responses to environmental resources or threats, it is 

necessary to assess landscape characteristics at a spatial scale that is appropriate to the 

biology of the organism (Morin et al., 2005; Sears et al., 2011). Because different 

selection pressures vary across space, and because animal perception of their 

surroundings can vary depending on their body size, mobility and other life-history 

traits, rigorous animal behaviour assessment may require a multi-scale analysis (Luck, 

2002; Morin et al., 2005). However, ecological research often fails to address the multi-

scalar nature of animal responses to their environment (McGarigal et al., 2016). Habitat 

selection behaviour not only depends on the availability and distribution of thermal 

resources, but also on thermal properties of the habitat or the animals themselves 

(Seebacher et al., 1999; Turner, 1987). For example, thermal sensitivity should vary 

depending on animal body size and mass, as well as the surrounding environment 

(water vs. air) due to differences in thermal inertia (Turner, 1987; Turner and Tracy, 

1985). Moreover, resource availability and biological needs of animals often vary over 

time (Arnall et al., 2019; Grgurovic and Sievert, 2005; Helm et al., 2017). For example, 

activities related to foraging, growth and reproduction are highly seasonal in many 

species. This seasonality can affect energetic demands and influence thermal responses 

of animals (Congdon and Tinkle, 1982; Schofield et al., 2007). Thus, to gain a deeper 

understanding of thermal ecology, it is necessary to investigate the role of the thermal 

landscape in shaping animal behaviour in a framework that considers multiple factors. In 

this thesis, I tested the hypothesis that ectotherms at their northern range limit navigate 

the thermal landscape by selecting warmer and less thermally variable locations. I also 



5 
 

expected that their thermal sensitivity will vary depending on the spatial scale of 

analysis, season and species.  

Demographic impacts of urbanisation  

Human influences on the environment can lead to changes in microclimates (e.g. 

Cai et al., 2019), introduction of new species (e.g. Bertelsmeier, 2021), or diseases (e.g. 

Connolly et al., 2021), but the main consequences of anthropogenic land-use change are 

arguably loss of habitat quality, quantity and connectivity (Olejniczak et al., 2018; 

Shochat et al., 2006). Habitat transformation due to agricultural and urban expansion is 

considered one of the most immediate threats to biodiversity (Sala et al., 2000), 

contributing to reduced resource availability (e.g. Shochat et al., 2006), changes in 

population structure (e.g. Bowne et al., 2018), and over the long term, potential 

reduction in recruitment and population extirpation (Gibbons et al., 2000). When 

landscapes are developed for human use, it is often assumed that impacts on the 

environment and wildlife can be avoided if habitat changes are offset by mitigation 

measures (Bull et al., 2016; Maron et al., 2012). However, the effectiveness of mitigation 

measures associated with urban development projects is a much-debated concern 

(Theis et al., 2020). Measures to reduce development impacts often lack testing and 

long-term monitoring and may thus provide only limited benefits for target species (van 

der Grift et al., 2013). If retaining biodiversity and healthy ecosystems in urbanised 

landscapes remains a priority (e.g. Green et al. 2016; Aronson et al. 2017), a robust 

understanding of the effects of urban growth on population viability of native species is 

crucial. 
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Some species may be able to respond to changes in the environment through 

adaption (Rees et al., 2009; Roe et al., 2011) or behavioural plasticity (e.g. Scheun et al., 

2019; Thomas et al., 2018). But when urbanisation is occurring at a rapid rate and/or 

due to multiple threats, such as when habitat loss and road mortality interact, 

adaptation or plasticity do not necessarily ensure population persistence (Jenssen et al., 

2015; Paterson et al., 2021; Piczak et al., 2019). Ultimately, the effects of anthropogenic 

disturbance on population viability depend on the severity and duration of disturbance 

(e.g. Piczak et al., 2019), the effectiveness of mitigation measures (e.g. Glista et al., 

2009), animal behavioural flexibility (e.g. Tuomainen and Candolin, 2011), and species 

life-history traits, such as generation time or recruitment rate (Peñaranda and 

Simonetti, 2015; Richards et al., 2021). Long-lived species, for example, often lack the 

ability to respond favourably to rapid changes in the landscape (e.g. Edwards et al., 

2019; Howell et al., 2019), and their persistence is often highly dependent on the 

survival of adult females (Enneson and Litzgus, 2008; Heppell, 1998). However, we still 

have limited understanding of the demographic changes or the rate at which 

populations of long-lived species decline following urbanisation. Therefore, to assess 

population viability in urbanised landscapes, long-term monitoring of populations is 

crucial to track their susceptibility to increased mortality within vulnerable age and 

reproductive classes. In this thesis, I tested the hypothesis that urban and road 

development and associated habitat loss impacted an endangered freshwater turtle 

population by altering demographics and causing direct mortality, thus decreasing long-

term population viability. 
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Study system 

Blanding’s turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta) 

are long-lived, freshwater turtles with similar habitat requirements, inhabiting wetlands 

across eastern North America (Ernst and Lovich, 2009; Standing et al., 1999). The two 

species mostly use aquatic habitats for foraging and basking, and terrestrial habitats to 

varying degrees for inter-wetland travel or search for nesting or overwintering sites 

(Bowne et al., 2006; Hartwig and Kiviat, 2007). Both are relatively elusive species, 

making animal-borne bio-loggers particularly useful for behavioural studies.  

Our study populations occur at their northern range limits where temperatures 

are generally colder and more temporally heterogeneous than in more temperate parts 

of their ranges, which can constitute an important constraint on physiological function 

and performance (Addo-Bediako et al., 2002; Huey and Slatkin, 1976). These northern 

environments offer semi-aquatic reptiles a diversity of microclimate choices, making it 

an ideal system to investigate thermal habitat selection. Turtles at their northern range 

margin have a short active period (April to October) during which they have to acquire 

sufficient energy for reproductive and foraging activities (Congdon, 1989; Huey, 1991). 

This active season can be divided into three distinct behavioural periods (Beaudry et al., 

2009; Congdon, 1989; Rasmussen and Litzgus, 2010): pre-nesting season (April-May) 

and nesting season (June-July), when turtles are more active and bask often (Edwards 

and Blouin-Demers, 2007; Krawchuk and Brooks, 1998), and post-nesting season (July-

October), when turtles reduce activity in advance of hibernation (Christensen, 2013). 

Like many freshwater turtles, Blanding’s turtles are considered at-risk in most 
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jurisdictions across their range, mainly due to habitat loss and road mortality 

(NatureServe 2009). As species with long generation times and a limited ability to 

withstand additional mortality or threats, e.g. due to environmental changes (Congdon 

et al., 1993, 1994; Enneson and Litzgus, 2008, 2009), assessing impacts of urbanisation 

on population persistence is necessary and could contribute to management plans for 

this and other species at risk.  

 

Thesis goals  

The overall objective of my thesis is to examine the relationships among 

environmental and anthropogenic challenges, freshwater turtle behaviour, and 

population viability. My research contributes to our understanding of the complex 

interaction between environmental temperature and animal behaviour, and of 

population responses to anthropogenic threats, challenging the assumption that urban 

development with mitigation and population persistence can be compatible. In Chapter 

2, I developed and validated classification models to characterise activity states in 

Blanding’s and Painted turtles, using accelerometers and water sensors, and used these 

models to describe activity-budgets of the two species. In Chapter 3, I examined the 

effects of temperature variation on habitat selection across multiple spatial scales, and 

depending on season and species, I predicted that: (1) turtles select warmer and less 

variable microclimates; and expected this selection to be stronger (2) during spring; (3) 

at finer spatial scales; and (4) in the smaller Painted turtle. In Chapter 4, I investigated 
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turtle habitat change, population structure and viability in response to ongoing 

residential and road development, using turtle capture-mark-recapture data spanning 

one decade. I hypothesized that urban development led to habitat loss and 

unsustainable rates of road mortality in the population, and specifically predicted: (1) 

loss of natural habitat; and (2) reduced habitat connectivity between turtle sub-

populations in the area; leading to (3) decline of the turtle population; with a (4) more a 

pronounced decline in the female cohort. Finally, I synthesized my findings in Chapter 5.  
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Chapter 2: Using accelerometers and water sensors to classify 

activity in two species of freshwater turtles 
 

Anne-Christine Auge, Gabriel Blouin-Demers, Dennis Murray 

 

 

 

A version of this chapter is submitted to PLoS ONE 

 

 

Auge, A.-C., Blouin-Demers, G., and Murray, D.  Using accelerometers and water sensors 

to classify activity in two species of freshwater turtles. Submitted to PLoS ONE on 

January 19, 2022. MS # PONE-D-22-01862. In revision.  
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Abstract  

 

The success of research in animal ecology and evolution often depends on robust 

assessment and classification of activity in free-ranging animals. While traditional 

observations can be biased and time-consuming, new miniaturised bio-logging 

technologies are powerful tools to record activity. Using accelerometers to collect 

reliable activity data usually requires species-specific validation of classification models, 

but such validations often are neglected, and model transferability across closely-

related species and habitat types is unknown. Here, we validated accelerometer 

signatures and water sensor data to classify activity states in two free-ranging 

freshwater turtle species (Blanding’s turtle, Emydoidea blandingii, and Painted turtle, 

Chrysemys picta). First, using only accelerometer data, we developed a decision tree to 

distinguish motion from motionless states, and second, we included water sensor data 

to classify the animal as motionless or in motion on land or in water. We found that 

accelerometers separated in-motion from motionless behaviour with >83% accuracy, 

whereas models also including water sensor data predicted states in terrestrial and 

aquatic locations with >77% accuracy. Despite differences in thresholds between the 

two species, we found high model generality allowing cross-species application of these 

classification models. Reducing sampling frequency did not affect the predictive 

accuracy of our models up to a sampling frequency of 0.0625 Hz. For illustrative 

purposes, we provide novel activity-budgets for the two species, derived from our 

models. Finally, we highlight the need for similar studies validating the reliability of new 
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bio-logging tools for tracking free-living animals, and also stress the importance of cross-

species assessments to obtain generalizable models.  

 

Introduction 

Advances in behavioural ecology often depend on effectively quantifying activity 

and behaviours in free-ranging animals (Danchin et al., 2008; Gosling and Sutherland, 

2000). For example, closely-related species with overlapping ranges may co-exist 

through a variety of mechanisms including resource partitioning through differing 

activity patterns or space use (Giller, 2012; Schoener, 1974). Behavioural syndromes 

(e.g., bold/shy classification) can help explain factors such as individual behavioural 

responses to anthropogenic or environmental stressors, and often require quantification 

of behavioural response across a stress gradient (e.g. Buchholz et al., 2019). Likewise, 

knowledge of behavioural responses of individuals of species-at-risk can guide 

management decisions such as design of dispersal corridors (e.g. Balbi et al., 2019) or 

establishment of captive breeding programs (e.g. Allard et al., 2019). Accordingly, 

collecting robust, fine-scale activity and behavioural data should be a high priority in 

ecology and conservation biology. 

Traditionally, activity and behavioural data are collected via direct observation of 

captive (e.g. Kiik et al., 2016) and wild (e.g. Wittig and Boesch, 2003) animals, or via a 

variety of remote-monitoring technologies such as radio or acoustic telemetry (Bégout 

and Lagardère, 2004; Crofoot et al., 2010). These traditional methods, however, can be 

imprecise and possibly biased due to coarse or inaccurate data (Cagnacci et al., 2010; 



13 
 

Samuni et al., 2014). For elusive species, traditional measurements may also yield 

fragmented data and thus be of limited use for quantifying sources of variation in 

behaviour. However, new miniaturized bio-logging technologies may be particularly 

useful for monitoring activity and behaviour of cryptic species or those living in 

inaccessible habitats if they can characterize activity and behaviours at a scale and level 

of precision that is commensurate with contemporary research questions. In particular, 

modern bio-loggers record information about animal location, body position, or 

physiology continuously and at a very fine scale (e.g. Kemp et al. 1998; Rattenborg et al. 

2008; Williams et al. 2020). Global positioning system (GPS) devices and accelerometers 

are now commonly deployed on wild animals and are often coupled with different 

environmental sensors such as thermometers or magnetometers (Gutowsky et al., 2016; 

Nathan et al., 2012). In the last two decades, accelerometry has become increasingly 

popular for studying animal activity, behaviour, and energy expenditure (Wilson et al., 

2006) by recording high-resolution body acceleration in three dimensions and thereby 

providing information about animal posture and activity levels (Gleiss et al., 2011; Yoda 

et al., 1999). Acceleration data, either alone or in combination with data from other 

devices such as temperature or acoustic sensors, can precisely distinguish between 

behaviours in a variety of animals and settings (Graf et al. 2015; Studd et al. 2019).  

Accelerometers are highly miniaturized and are included as a standard add-on in 

many radio-telemetry packages. It follows that large amounts of accelerometry data can 

be collected (e.g. Dickinson et al., 2020; Ward et al., 2019), but a priori validation is 

essential for assessing the effectiveness of this technology in capturing activity and 
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behaviours and testing classification success (Patterson et al., 2019b). Yet, many 

research studies using accelerometers only involve subjective assessment of the data 

and omit proper validation (Bidder et al., 2014; Collins et al., 2015). This shortcoming 

could be due to difficulties in obtaining sources to validate an accelerometer-based 

behavioural classification, such as direct observations or video recordings of (often 

elusive) animals in the wild  (Dickinson et al., 2020). Regardless, it is generally not 

appropriate to use accelerometry data for behavioural assessment without validation, 

but the extent of validation needed and the generality of models or statistical decision 

trees used to classify and assign behaviours across species or populations are largely 

unknown. Indeed, because accelerometer signatures are influenced by species-specific 

body sizes, shapes and movement patterns, validation of behavioural classification 

across groups is often recommended (Brown et al., 2013). However, it is generally 

unknown how transferable these classifications are when derived from accelerometers 

deployed on similar species or in different environments (Collins et al., 2015; but see 

Ferdinandy et al., 2020). It follows that if species- and habitat-specific classifications are 

not necessary, then accelerometers can be deployed broadly across closely-related 

species with limited need for species-specific validation. These conditions could improve 

efficiencies while also encouraging broader adoption of accelerometers to support 

animal behaviour studies. Finally, as a framework for collecting reliable activity and 

behavioural data from accelerometers, it is important to use device programming 

schedules in accordance with the ecology of target species (Moreau et al. 2009; 

Dickinson et al. 2020), with slower-moving animals or those with simpler behavioural 
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repertoires potentially receiving accelerometers programmed with a lower sampling 

frequency to extend battery life and monitoring period (Khan et al., 2016).  

In this study, we used accelerometers and water sensors to characterize activity 

and assess time budgets of two free-ranging, sympatric freshwater turtles: Blanding’s 

turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta). These turtles have 

similar life history and habitat requirements, and co-occur in shallow ponds and 

marshes across eastern North America (Ernst and Lovich, 2009; Standing et al., 1999). 

Both species spend considerable time basking or under water, and use terrestrial 

habitats to varying degrees when travelling between wetlands and for nesting (Hartwig 

and Kiviat, 2007). First, we manually developed and validated a decision tree (or 

‘classification model’) to classify Blanding’s and Painted turtles as in motion or 

motionless while in water or on land (Figure 1). Second, we compared performance of 

behavioural classification models for each species, based on acceleration signatures. 

Third, we tested the generality of our species-specific classification via cross-species 

comparison. Fourth, we investigated the effect of sampling frequency on classification 

accuracy by rarefying our data from 1 Hz (1 reading per second) to 0.0625 Hz (1 per 

16 seconds). Finally, we used our classification models to describe daily activity-budgets 

of our two turtle species. Thus, our study, which is the first to develop a robust 

accelerometer-based activity calibration and validation method for freshwater turtles, 

serves as a template for similar approaches in other species.   
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Figure 1: Two-step decision tree for classifying the main activities of freshwater turtles. 

Acceleration data are first binned according to activity level (Step 1) based on visual 

observation and acceleration thresholds, and then further classified according to habitat 

type (Step 2) based on a water conductivity sensor deployed in tandem with the 

accelerometer. The same process was used to classify activity in both turtle species, 

resulting in four categories. 
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Methods 

Field methods and data collection 

We studied Blanding’s and Painted turtles in the South March Highlands 

Conservation Forest in Ottawa, Ontario, Canada (45°20ˈ N, 75°56’ W) in the summers 

2018-2020. Turtles (Blanding’s [n = 16]; Painted [n = 23]) were captured using baited 

hoop-nets or by hand and each was fitted with a GPS/tri-axial accelerometer data logger 

(model AxyTrek, Technosmart, Rome, Italy) and VHF transmitter (model SI-2, Holohil, 

Carp, Canada) bolted to the carapace margin (9th to 11th scute), respectively (Appendix 

A, Figure 1). Both units comprised <10% of turtle body mass and position of loggers was 

kept constant to ensure comparability. Data loggers recorded water conductivity and 

acceleration at a frequency of 1 Hz (10 bit resolution, ± 2 gforce). For activity classification 

and validation, videos of 8 Blanding’s and 9 Painted turtles were recorded with a 

Smartphone camera (Motorola Moto G6) after being released at the capture site until 

they were out of sight (range: 1 min 57 s to 23 min 38 s). During recordings, we 

remained distant from the animals to avoid disturbing natural behaviour and censored 

observations that were notably influenced by our activities. All turtles were re-captured 

at the end of each summer to retrieve data loggers. 

Activity annotation and time synchronisation 

Using video footage recorded in the field, we categorized turtle activity per 

second. Locomotion (walking and swimming, hereafter referred to as “in-motion”) was 

defined as forward movement lasting longer than 2 s. Terrestrial-motionless were 

turtles immobile out of water, whereas aquatic-motionless included sitting or floating in 
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water. Annotating acceleration data with activity using video and external time devices 

introduces potential time synchronisation errors (Studd et al., 2019a). We synchronised 

start and end time of videos with accelerometer time (received from satellite systems) 

and time noted on an Android GPS app (GPS test, Chartcross Limited). Additionally, we 

compared time-specific repetitive motion signatures on accelerometers we recorded 

before deployment to the GPS time app. These signatures consisted of 30 s shaking and 

30 s lying still on the ground and are visualised by plotting acceleration data. Finally, to 

confirm that activity annotation based on videos aligned with accelerometer time, we 

investigated abrupt transition in observed movement (e.g., motionless to in-motion) in 

each individual and corrected the time, if necessary (Studd et al., 2019a). To avoid time 

synchronisation uncertainty, we excluded the first and last second of each activity bout 

from analysis, and also censored bouts <2 s. 

Calculation of acceleration metrics   

From raw tri-axial acceleration data, we calculated six metrics of dynamic body 

acceleration (DBA) known to be relevant to activity and behavioural classification (e.g. 

Qasem et al. 2012; Studd et al. 2019a; Hounslow et al. 2019):  

1)  Total overall dynamic body acceleration (ODBA), as: 

𝑇𝑂𝐷𝐵𝐴 =  ∑ |𝑋𝑑,𝑖 + 𝑌𝑑,𝑖 + 𝑍𝑑,𝑖|

𝑡

𝑖=1
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2) Total vectorial dynamic body acceleration (VeDBA), as:  

𝑇𝑉𝑒𝐷𝐵𝐴 =  ∑ √(𝑋𝑑,𝑖
2 + 𝑌𝑑,𝑖

2 + 𝑍𝑑,𝑖
2 )

𝑡

𝑖=1

 

3) Delta ODBA, as:  

∆𝑂𝐷𝐵𝐴 =  ∑|(𝑋𝑑,𝑖+1 − 𝑋𝑑,𝑖 ) + (𝑌𝑑,𝑖+1 − 𝑌𝑑,𝑖) + (𝑍𝑑,𝑖+1− 𝑍𝑑,𝑖)|

𝑡

𝑖=1

 

4) Delta VeDBA, as: 

∆𝑉𝑒𝐷𝐵𝐴 =  ∑ √(𝑋𝑑,𝑖+1 − 𝑋𝑑,𝑖)2  + (𝑌𝑑,𝑖+1 − 𝑌𝑑,𝑖)2  + (𝑍𝑑,𝑖+1− 𝑍𝑑,𝑖)2

𝑡

𝑖=1

 

5) Standard deviation of ODBA, as:  

𝑆𝐷𝑂𝐷𝐵𝐴 = 𝜎(|𝑋𝑑,𝑖 + 𝑌𝑑,𝑖 + 𝑍𝑑,𝑖|)𝑖=1
𝑡  

 

6) Standard deviation of VeDBA, as:  

𝑆𝑉𝑒𝐷𝐵𝐴 =  𝜎(√(𝑋𝑑,𝑖
2 + 𝑌𝑑,𝑖

2 + 𝑍𝑑,𝑖
2 ))𝑖=1 ,

𝑡  

 

where Xd,i, Yd,i and Zd,i are dynamic accelerations in each direction at time i, t is 

the sampling window and 𝜎 is standard deviation. The sampling window of 10 s was 

based on the shortest mean duration of each natural activity bout, ensuring sufficient 

resolution (see Studd et al., 2019).  
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Smoothing window sensitivity analysis 

DBA represents average raw acceleration in each axis over time, resulting in 

static acceleration, which is subtracted from raw acceleration, yielding the dynamic 

portion caused by movement (Wilson et al., 2006). The averaging window is dependent 

on stroke duration, and DBA sensitivity should be assessed relative to the duration of 

the smoothing window (Shepard et al., 2008). We investigated ODBA variation derived 

from running median durations ranging from 3 to 131 s using data from video-recorded 

trials for each activity mode and species separately (Shepard et al., 2008). We visually 

inspected ODBA plots and selected the smoothing window with the lowest ODBA 

variability (Shepard et al., 2008). We then calculated the greatest mean ODBA value 

within 95% of the maximum and chose the corresponding smoothing window. A two-

tailed paired t-test (Shepard et al., 2008) served to determine if ODBA values differed 

between selected windows and the next longest window.  

Metric and threshold value selection 

We randomly divided the dataset into training (70%) and testing (30%) (see Liu 

and Cocea 2017). In the training data set, all six DBA metrics were calculated per 

individual using the selected smoothing window. For each species, accelerometer data 

were used to distinguish in-motion and motionless states (Figure 1). We plotted 

histograms of each DBA metric for each pair of states (terrestrial in-motion vs. 

motionless; aquatic in-motion vs. motionless) and calculated percent overlap between 

states (Collins et al. 2015). The appropriate metric was chosen based on how clearly it 

separated target states. Based on histograms of the chosen metric, we calculated 
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classification accuracy, sensitivity and specificity using a range of possible thresholds 

across overlapping ranges, in 0.1 increments (Collins et al., 2015). The point where all 

three evaluation metrics were highest was chosen as the threshold to separate state 

pairs. As a second step, we included water sensor data to determine if activity occurred 

in terrestrial (water sensor >500 V) or aquatic habitat (≤500 V). The 500 V threshold was 

determined by separate trials involving leaving transmitters in and out of water (A. 

Auge, unpubl.). Finally, from a decision tree that combined the two steps (Figure 1), we 

calculated confusion matrices as well as accuracy, sensitivity and specificity of state 

classification to the test data set based on threshold DBA values and water sensor data, 

and to evaluate classification performance (Figure 1) (Chakravarty et al., 2019). 

Confusion matrices and accuracy, sensitivity and specificity measures were calculated 

using the R package carat (Kuhn, 2020).  

Species comparison 

We assessed the transferability of our classification system by testing 

performance measures from the Blanding’s turtle classification tree on Painted turtle 

data, and vice versa. We used the smoothing window from one species to calculate 

acceleration metrics and find optimal threshold values for the other species, and then 

used threshold values from one species to determine accuracy, sensitivity and specificity 

in classifying activity for the other species.  

Effect of sampling frequency  

We assessed how recording frequency affects the classification tree by rarefying 

the original acceleration data set and selecting every 2nd, 4th, 8th and 16th datum point to 
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simulate a sampling frequency of 0.5, 0.25, 0.125 and 0.0625 Hz, respectively. We then 

repeated the steps described previously for 1 Hz: selecting the appropriate smoothing 

window, determining the best DBA metric and thresholds via histogram separation, and 

calculating accuracy measurements.  

Activity-budgets 

To illustrate the type of inference possible from accelerometry modeling in 

freshwater turtles, we calculated average daily activity-budgets for each turtle during its 

entire monitoring period (summers 2018-2020). We compared activity-budgets between 

species using a Dirichlet regression, which accounts for the compositional characteristics 

of the activity-budgets (Maier, 2014) using the DirichletReg package (Maier, 2014b) in R, 

where proportion of time spent in each state and species were the response and 

predictor variables, respectively. Note that we also performed this analysis using a non-

parametric PERMANOVA, which yielded qualitatively similar results; herein we report 

exclusively the parametric results. All analyses were performed using R version 4.0.2 (R 

Development Core Team, Vienna, Austria, 2020). 

 

Results 

Turtle video observations 

After censoring accelerometer data, we had totals of 47 min 8 s (range: 57 s – 

19 min 18 s per individual) and 73 min 3 s (range: 54 s – 16 min 52 s per individual) of 

activity data from Blanding’s and Painted turtles, respectively. All four pre-defined 
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activity categories were recorded during the video trials, with Blanding’s turtle 

terrestrial in-motion and terrestrial-motionless being observed most frequently (55.3% 

and 28.5% of video minutes, respectively), followed by aquatic-motionless (9.8%) and 

aquatic in-motion (6.4%). In Painted turtles, terrestrial-motionless was observed most 

frequently (85.1%), followed by aquatic-motionless (7.1%), terrestrial in-motion (4.4%), 

and aquatic in-motion (3.4%) (Appendix A, Figure 2).  

Smoothing window  

For Blanding’s turtles, 91 s was the threshold at which ODBA stabilised for 

terrestrial and aquatic in-motion, whereas for Painted turtles, ODBA stabilised at 91 s 

and 51 s for terrestrial and aquatic in-motion, respectively (Figure 2). After selecting the 

appropriate ODBA value (within 95% of the maximum value which was comparable to 

the next longest running mean duration), we found that for Blanding’s turtles 91 s was 

the best smoothing duration for both terrestrial and aquatic in-motion. For Painted 

turtles, we found that 71 s and 31 s were the best smoothing windows for terrestrial 

and aquatic in-motion, respectively (Figure 2), of which we selected 71 s to smooth 

acceleration data in Painted turtles.  
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Figure 2: Mean overall dynamic body acceleration (ODBA) as a function of the duration 

of the smoothing window for Blanding’s and Painted turtle terrestrial and aquatic 

motion, using accelerometer data sampled at 1 Hz. Maximum ODBA value (solid line) 

and 95% of the maximum ODBA value (dashed) are indicated. 
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Acceleration metrics and threshold values 

Original dataset 

The six acceleration metrics were all highly correlated (mean Pearson’s 

correlation coefficient r = 0.83, range = 0.63-1.00, Appendix A, Table 2). Histogram 

separation of terrestrial and aquatic states indicated that generally ΔODBA and ΔVeDBA 

most clearly separated states in both species. Notably, ΔODBA was the summary 

statistic that separated aquatic states with the least overlap in both species (Appendix A, 

Table 1; Appendix A, Figure 3), which justified selection of this metric over all others. 

Within overlapping regions of the histograms, we tested performance of ΔODBA in 

assigning known activity and found that 0.6 was the best threshold separating terrestrial 

in-motion from motionless in Blanding’s turtles (accuracy, sensitivity, specificity: all 

>98%, see Figure 3). In Blanding’s turtles, a 1.3 threshold separated aquatic in-motion 

from motionless (accuracy, sensitivity, specificity: all >98%). For Painted turtles, a 0.3 

threshold separated terrestrial activity (accuracy, sensitivity, specificity: >93%, see 

Figure 3). We found that threshold values of 1.4 and 1.5 were comparable in separating 

aquatic activity for Painted turtles (accuracy, sensitivity, specificity: all 100%). We chose 

the more conservative threshold (1.4) because of its higher overall accuracy, sensitivity, 

and specificity (Figure 3).  
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Figure 3: Qualitative selection of the most suitable threshold value (vertical line) relative 

to accuracy, sensitivity and specificity for Blanding’s turtles and Painted turtles, using 

accelerometer data sampled at 1 Hz. 
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Cross-species comparison 

Using a smoothing window of 71 s and 91 s for Blanding’s and Painted turtles, 

respectively, and assessing histogram separation, ΔODBA was chosen to distinguish 

terrestrial in-motion from motionless and aquatic in-motion from motionless. In 

Blanding’s turtles, ΔODBA and ΔVeDBA best distinguished terrestrial activity, while 

aquatic activity was distinguished using ΔODBA. In Painted turtles, ΔODBA, ΔVeDBA and 

SDVeDBA all distinguished terrestrial activity comparably, with ΔODBA separating 

aquatic activity with the least overlap (Appendix A, Table 1). Threshold values with 

highest accuracy were identical to those calculated with the original smoothing 

windows: in Blanding’s turtles, threshold of 0.6 distinguished terrestrial activity (all 

metrics >98%) and 1.3 separated aquatic activity (all metrics >98%, Appendix A, Figure 

4). In Painted turtles, threshold of 0.3 was selected to distinguish terrestrial activity (all 

metrics >93%) and threshold of 1.4 best distinguished aquatic activity, albeit comparably 

to the 1.5 threshold (all metrics >99%, Appendix A, Figure 4). 

Performance of threshold values  

Original dataset 

Using our selected threshold values, terrestrial and aquatic activity were 

distinguished in Blanding’s turtles with 99% and 84% accuracy, respectively, and in 

Painted turtles with 97% and 92% accuracy (Table 1). The main sources of error were 

misclassifying aquatic-motionless as aquatic in-motion in Blanding’s turtles and Painted 

turtles (22/83 and 11/100 events, respectively), and terrestrial-motionless as terrestrial 
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in-motion in Painted turtles (42/1136 events). Accuracy was slightly reduced with the 

inclusion of water sensor data (Blanding’s turtles: 92%; Painted turtles: 77%). Errors in 

assigning Blanding’s turtle state mainly arose from misclassifying aquatic-motionless as 

either terrestrial-motionless (18/83 events), aquatic in-motion (22/83 events) or 

terrestrial in-motion (10/83 events). Aquatic in-motion was falsely classified as 

terrestrial in-motion in a few instances (13/54 events) (Table 2). Errors in assigning 

Painted turtle state mainly arose from misclassifying terrestrial-motionless as aquatic-

motionless (233/1136 events) or terrestrial in-motion (42/1136 events), as well as 

classifying terrestrial in-motion as aquatic in-motion (19/61 events) and aquatic-

motionless as aquatic in-motion (11/100 events) (Table 2).  
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Table 1: Assignment accuracy for the testing data used to classify Blanding’s turtle and 

Painted turtle activity based on accelerometry data, sampled at 1 Hz. 

Species  Separation of 
in-motion vs. 
motionless  

Thresh-

old 

Accuracy (%)  
(95% CI) 

Sensitivity 
(%) 

Specificity 
(%) 

Blanding’s Terrestrial  0.6 99.3 (98.4, 99.7) 99.6 99.2 

Aquatic 1.3 83.9 (76.7, 89.7) 73.5 100 

Painted Terrestrial 0.3 96.5 (95.3, 97.5) 96.3 100 

Aquatic 1.4 91.8 (85.8, 95.8) 89.0 100 
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Table 2: Confusion matrix and assignment accuracy for the testing data used to classify 

Blanding’s turtle and Painted turtle activity based on accelerometry and water sensor 

data sampled at 1 Hz. 

B
la

n
d

in
g`

s 

 Observed 

P
re

d
ic

te
d

 

 Motionless 
(aquatic)  

Motionless 
(terrestrial)  

In-motion 
(aquatic)  

In-motion 
(terrestrial)  

Motionless 
(aquatic) 

33 0 0 0 

Motionless 
(terrestrial) 

18 242 0 4 

In-motion 
(aquatic) 

22 0 41 0 

In-motion 
(terrestrial) 

10 1 13 464 

 Sensitivity (%) 39.8 99.6 75.9 99.2 

 Specificity (%) 100 96.4 97.2 93.7 

 

Overall accuracy (%):    92.0 (95% CI: 89.9, 93.7%) 

P
ai

n
te

d
 

 

 Motionless 
(aquatic)  

Motionless 
(terrestrial)  

In-motion 
(aquatic)  

In-motion 
(terrestrial)  

P
re

d
ic

te
d

 

Motionless 
(aquatic) 

89 233 0 0 

Motionless 
(terrestrial) 

0 861 0 0 

In-motion 
(aquatic) 

11 0 34 19 

In-motion 
(terrestrial) 

0 42 0 42 

 
Sensitivity (%) 89.0 75.8 100 68.9 

 
Specificity (%) 81.1 100 97.7 96.7 

 
Overall accuracy (%):    77.1 (95% CI: 74.7, 79.3%) 
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Cross-species comparison 

Cross-species comparison of activity state classification revealed high generality 

in our classification system. Painted turtle thresholds classified Blanding’s turtle 

terrestrial and aquatic activity with 99% and 85% accuracy, respectively. Blanding’s 

turtle thresholds distinguished Painted turtle terrestrial and aquatic activity with 98% 

and 91% accuracy, respectively (Table 3). When including water sensor data in the 

model, overall accuracy of Blanding’s turtle classification using Painted turtle thresholds 

was 93%, with errors due to misclassification of aquatic-motionless as either terrestrial-

motionless (6/83 events) or aquatic in-motion (20/83). Painted turtle decision tree 

accuracy when using Blanding’s turtle thresholds was 78%, with main misclassifications 

due to assigning aquatic-motionless to terrestrial-motionless (233/1136), terrestrial in-

motion to terrestrial-motionless (25/1136) and aquatic in-motion to aquatic-motionless 

(12/100) (Appendix A, Table 3).  
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Table 3: Assignment accuracy for the testing data used to classify Blanding’s turtle and 

Painted turtle activity into states of in-motion vs. motionless in both habitat types based 

on accelerometry data, using the other species’ threshold values. 

Species  Habitat Thresh-
old 

Accuracy (%)  
(95% CI) 

Sensitivity 
(%) 

Specificity 
(%) 

Blanding’s Terrestrial  0.3 99.4 (98.6, 99.9) 99.6 99.4 

Aquatic 1.4 85.2 (78.4, 91.0) 75.9 100 

Painted Terrestrial 0.6 97.9 (96.9, 98.6) 97.8 100 

Aquatic 1.3 91.0 (84.8, 95.3) 89.0 100 
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Effect of sampling frequency 

Smoothing windows using rarefied datasets were generally longer compared to 

the 1 Hz dataset in both species, except for 0.5 Hz Painted turtle data, which was slightly 

shorter (Appendix A, Table 4). Threshold values separating states using 0.5 and 0.25 Hz 

datasets were only marginally different from the original dataset, but were 17-75% 

higher using 0.125 and 0.0625 Hz datasets (Appendix A, Table 4). Similarly to the original 

dataset, we found that ΔODBA effectively distinguished terrestrial and aquatic activity in 

both species using all rarefied datasets. Lastly, we found that accuracy measurements of 

activity classification did not decrease with lower sampling frequencies. Accuracy of the 

two-branch decision tree (including both accelerometer and water sensor data) ranged 

from 79.4 to 91.9% (mean = 87.5%), when using sampling frequencies of 0.5, 0.25, 0.125 

and 0.0625 Hz (Appendix A, Table 4).  

Activity-budgets 

 To illustrate the application of our accelerometer-based activity classification for 

free-ranging turtles, we present activity-budgets for our study animals (Figure 4). 

Species exhibited similar activity in both aquatic and terrestrial environments, with only 

modest differences in time allocation: Both species spent most of their time motionless, 

with Blanding’s turtles spending 84.0% (± SD 5.9%) and Painted turtles 78.1% (± 7.3%) of 

their day motionless under water (Dirichlet z-value = 0.647, p = 0.517); whereas 

Blanding’s turtle spent 9.1% (± 6.0%) and Painted turtles 9.7% (± 4.4%) motionless on 

land (z = 1.528, p = 0.127). In contrast, Blanding’s turtles spent 6.0% (± 3.5%) and 

Painted turtles 11.2% (± 5.8%) of the day in-motion under water (z = 2.511, p = 0.012). 
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In-motion on land occurred rarely, with Blanding’s turtles spending 0.8% (± 1.0) and 

Painted turtles 1.0% (± 0.7) of the time engaging in terrestrial activity (z = 1.294, 

p = 0.196) (Figure 4).  

 

 

 

 

Figure 4: Daily activity-budget for Blanding’s (n=16) and Painted turtles (n=23) in the 

South March Highlands, Ottawa. Shown are mean proportion (± SD) of time spent in 

each of the four states during a 24-hour period. 
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Discussion 

Using a combination of accelerometers and water sensors, we classified activity 

of two free-ranging freshwater turtle species with high accuracy and achieved higher 

predictive accuracy when differentiating activity on land or in water separately using 

only accelerometer data (>83%) than when also considering water sensor data (accuracy 

>75%). Our model accuracy was comparable to studies classifying behaviours in other 

species exhibiting relatively simple behavioural repertoires (e.g. Hammond et al., 2016; 

Shamoun-Baranes et al., 2012), and in general threshold values distinguishing terrestrial 

and aquatic states were higher in the former environment. Unsurprisingly for our study 

species’ simple and monotonous behaviours, sampling frequency down to a rate of 1 

reading per 16 seconds did not affect classification performance. Interestingly, minor 

differences in classification threshold values between the two species did not impact the 

transferability of models between species, allowing us to conclude that accelerometry 

holds promise for broadly classifying activity of free-ranging freshwater turtles.  

Smoothing window and acceleration metrics 

A primary objective in calibrating accelerometry data is to determine the 

appropriate smoothing window to separate between activity and behaviours. For 

Blanding’s turtles, the longer smoothing window can be explained by their larger body 

size and thus greater stroke length compared to Painted turtles (Sato et al., 2007). This 

is consistent with the results of Shepard et al. (2009) which show a positive relationship 

between stroke length and the running mean at which ODBA stabilised. For Painted 

turtles, we selected the longer plausible smoothing window to avoid underestimating 
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the dynamic portion of acceleration (see Shepard et al., 2009). Generally, our smoothing 

windows were longer than those in many mammal or bird behavioural calibrations, 

which often ranged from 2-4 s (e.g. Graf et al., 2015; Patterson et al., 2019; Shepard et 

al., 2009); we ascribe this difference as being the result of slow movement and 

therefore long stroke length of our study animals relative to their body size. Regardless, 

despite small differences in optimal smoothing windows between our study species, 

cross-species validation suggests that these differences do not necessarily affect 

threshold values separating states or accuracy of activity predictions. ODBA is the most 

prevalent metric in the accelerometer literature, and its correlation with VeDBA has 

been demonstrated previously (e.g. Qasem et al. 2012; Wright et al. 2014). Accordingly, 

our choice of ODBA was appropriate and it seems likely that this metric will be well-

suited for a wide range of species that are tracked via accelerometers (Brown et al., 

2013; Wilson et al., 2006).  

Effect of species and environment 

While direct comparisons of accelerometer-derived behavioural signatures 

between species are rare in the literature, our findings are consistent with other studies 

showing some influence of body size and device attachment on accelerometer readings 

(Pagano et al., 2017; Patterson et al., 2019b). For example, the observation that 

terrestrial activity in Blanding’s turtles was separated by greater thresholds than in 

Painted turtles is likely due to the larger carapace of the former species. When 

accelerometers are attached to the carapace margin of the larger species, even small 

body movements might translate to higher acceleration due to a greater distance to the 
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center of mass. Further, misclassification of in-water vs. out-of-water between species 

may be explained by relatively flat carapaces of Painted turtles requiring the water 

sensor to be mounted lower on the shell than for Blanding’s turtles; as a consequence, 

Painted turtles were recorded as using aquatic habitat at shallower depths. Even though 

in our study system differences in threshold values between species due to turtle body 

shapes and sizes did not impact transferability of classification models between species, 

our findings highlight the need for careful placement of sensors, especially where 

accurate differentiation between aquatic and terrestrial activity is a high priority. 

Generally, larger ΔODBA thresholds separating motion from motionless states in aquatic 

compared to terrestrial environments is comparable to other studies showing that 

waves and water currents can lead to variation in measured acceleration due to passive 

motion (Whitford and Klimley, 2019). This effect is stronger in lighter animals, resulting 

in higher thresholds in aquatic (but not terrestrial) habitat for Painted turtles. Other 

studies emphasize the need to consider contribution of water currents or wind to 

accelerometer readings (Kelly and Klimley, 2012; Mitchell et al., 2015). Our results 

confirmed that comparable activity can vary in accelerometer signatures between 

environments, and thus require separate examination and validation across habitats. 

Nonetheless, despite decreased accuracy of the more complex classification model, 

more than one bio-sensor is usually preferred as it allows the description of much 

broader ecological contexts of behaviours (Brown et al., 2013). 



38 
 

Generality of activity classification model 

Our study appears to be one of the first to assess the cross-species fit of 

accelerometer-based activity classification models, and our findings hold promise for 

future studies assessing the generality of such models in other taxa. We are aware of 

only one other case study assessing behavioural classification performance across 

species using accelerometers and gyroscopes; in a comparison of wolves (Canis lupus) to 

domestic dogs (Canis familiaris), cross-species model accuracy was considerably lower 

(≤51%) than what we observed for freshwater turtles (Ferdinandy et al., 2020). This 

difference could be related to the more restricted suite of behaviours under 

consideration and larger distinction in accelerometer readings between states in our 

study. Regardless, our findings are important because they show that deriving a single 

classification tree across similar species holds promise for improving model 

development and application. However, it should be noted that classification models are 

likely interchangeable only when accelerometer devices are identical and device 

position is consistent. Indeed, our preliminary trials using different accelerometers from 

two manufacturers, and even using different models from the same manufacturer, 

yielded >10% variation in activity classification (A. Auge, pers. obs.; see also Moreau et 

al. 2009). Therefore, researchers should consider cross-species application of 

classification models only for comparable devices and species with similar behavioural 

traits, and only after some testing and validation.  
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Sampling frequency 

It is not especially surprising that lower sampling frequency up to 0.0625 Hz 

yields equally reliable activity information for slow-moving animals like freshwater 

turtles, thereby supporting findings from other studies showing classification success at 

similarly low sampling frequencies (e.g. Studd et al., 2019a). Assessing the impact of a 

range of sampling frequency on the performance of activity classification is an important 

step in studying behaviour of wild animals using accelerometers, as it serves as a 

validation exercise and allows refinement of accelerometer settings before deployment. 

High classification performance at low frequencies allows longer battery life, prolonged 

monitoring capacity, and, thus, longer field deployment duration. In addition, low-

frequency accelerometer data require lower computational power for processing and 

analysis (Pagano et al., 2017). It is important to note, however, that species with more 

complex behaviour patterns and shorter bouts of behaviour may require high frequency 

accelerometry for reliable inference about behaviours (Brown et al., 2013; Sato et al., 

2007).  

Overall, our study demonstrates the successful application of accelerometry to 

distinguish between states in free-ranging turtles. Our findings highlight robust 

approaches for classifying activity and validating models that can serve as templates in 

other species. Ultimately, we conclude that accelerometers, combined with other bio-

logging technologies, are powerful tools not only to characterise activity levels in free-

ranging animals, but also to develop behavioural profiles of cryptic and elusive species 

with a high level of detail and accuracy (Brown et al., 2013; Wilson et al., 2019). 
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Accordingly, we predict that properly-validated application of accelerometry across a 

range of species and systems will provide a valuable tool for tracking animal behaviour 

across a variety of research and conservation or management contexts (Wilson et al., 

2015). 
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Abstract 

Environmental temperature is a crucial resource for ectotherms, affecting their 

physiology, behaviour, and, ultimately, fitness. To maintain body temperatures within 

suitable ranges, ectotherms must select thermally-favourable locations, but selection of 

these sites may be challenging in environments with high spatio-temporal 

heterogeneity. We assessed thermal habitat selection in two freshwater turtles 

(Blanding’s turtles: Emydoidea blandingii; Painted turtles: Chrysemys picta) within a 

thermally heterogeneous environment, where low temperatures may constitute a 

periodic physiological constraint. We investigated thermal habitat selection at two 

spatial scales (selection of home ranges and selection of habitats within home ranges) 

and across seasons by comparing temperatures at locations used by turtles to 

temperatures available in the environment. Turtles selected warmer locations 

compared to those available in both aquatic and terrestrial habitats, but selection 

occurred only at the scale of habitats within the home ranges rather than at the scale of 

habitats available outside home ranges. Moreover, turtles selected locations that were 

less variable in temperature than the surrounding environment, both at the home range 

scale and within home ranges. Thermal habitat selection was strongest during the colder 

and more thermally-variable pre-nesting season compared to later periods. Despite 

differences in body mass between species, both responded similarly to temperature 

variation. We conclude that microclimate selection by these reptiles at their northern 

range margin demonstrates the importance of ectotherm ability to select sites with 
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favourable temperatures and avoid temperature fluctuations within highly 

heterogeneous environments.  

 

Introduction 

For ectotherms, ambient temperature is often the primary environmental 

resource (Huey, 1991). Environmental temperature influences ectotherm body 

temperature, which translates to changes in physiology and behaviour that ultimately 

shape survival, reproduction, and, thus, fitness (Huey, 1991; Huey and Stevenson, 1979). 

To maintain body temperatures within a suitable range that maximizes physiological 

performance, ectotherms behaviourally thermoregulate by adjusting their body 

position, timing of activity, and selection of thermally-suitable locations (Christian and 

Tracy, 1981; Huey, 1982; Stevenson, 1985). Thermoregulation is thus a major driver of 

habitat selection in ectotherms, and ambient temperature is often more important in 

determining ectotherm habitat selection than are other resources such as food 

abundance and quality (Classen et al., 2015; Halliday and Blouin-Demers, 2016; Huey, 

1991). Maintaining favourable body temperatures is particularly important in regions 

with climatic extremes such as near species’ distribution margins (e.g. Blouin-Demers 

and Weatherhead, 2001; Picard et al., 2011) and in areas with high heterogeneity in 

ambient temperatures owing to variation in habitat or sun exposure (e.g. Pincebourde 

and Suppo, 2016; Scheffers et al., 2017; Sears et al., 2016). 
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Most landscapes are thermally heterogeneous and ectotherms can adjust their 

behaviour to exploit environmental disparities and avoid less favourable temperatures 

(Carroll et al., 2016; Huey, 1991; Sears et al., 2011).  In fact, in a heterogeneous 

landscape, absolute and relative temperature may be equally important in influencing 

behaviour and physiological performance (Sears and Angilletta, 2015). While the link 

between habitat selection and thermoregulation has been demonstrated in a variety of 

ectotherms (e.g. Blouin-Demers and Weatherhead, 2001b; Harvey and Weatherhead, 

2010), it is less clear how environments with high spatial and temporal heterogeneity in 

ambient temperatures can shape ectotherm behaviour. 

Environmental heterogeneity and animal sensitivity to spatial variation in 

ambient temperatures are often a matter of scale (Luck, 2002; Morin et al., 2005). At 

which scale habitat selection occurs is related to the biology or physical traits of the 

species; for example, smaller animals often perceive their surroundings at finer spatial 

scales (Bowne and White, 2004; Mech and Zollner, 2002). While there is some evidence 

that ectotherms select macrohabitats at the scale of their home range (e.g. Carrière and 

Blouin-Demers, 2010; Edge et al., 2010), environmental temperature may be more 

important in determining behaviour at finer scales, as they can vary over short spaces. 

Therefore, responses to temperature heterogeneity within the home range seem 

plausible (Compton et al., 2002; Hughes, 2016). Hence, to ensure biologically-relevant 

interpretations of behavioural observations, habitat selection should be considered 

across multiple spatial scales (Compton et al., 2002; Markle and Chow-Fraser, 2014; 

Mayor et al., 2009).  
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Such scale-sensitive perceptions of the environment may be influenced by body 

size, but body size can also influence thermal inertia and the time required for body and 

ambient temperature to equilibrate: larger species or individuals require more time to 

heat up or cool down with changes in ambient temperature (Seebacher et al., 1999; 

Turner and Tracy, 1985). The relationship between body size and temperature balance 

can depend on the level of heterogeneity in the environment, through habitat-specific 

differences in heat transfer and capacity. Environments composed of both aquatic and 

terrestrial habitats are especially variable in their thermal properties, because water is 

more efficient in terms of heat transfer and retention than air (Turner, 1987). This 

means that body size and environmental thermal variation are likely to work in tandem 

to shape ectotherm habitat selection. Further, habitat selection may vary through time 

due to seasonal differences in temperature and varying biological needs of animals 

(Arnall et al., 2019; Arvisais et al., 2004; Grgurovic and Sievert, 2005). For example, in 

temperate environments animals may be more sensitive to thermal heterogeneity in 

spring, when mean ambient temperature is relatively low (Angilletta, 2009; Hadamová 

and Gvoždík, 2011). In spring, ectotherms may also be especially sensitive to thermal 

variation in the environment after their emergence from hibernation, which could 

prompt basking or other behavioural adjustments to raise their temperature and 

metabolic rate (Jackson, 1971; Krawchuk and Brooks, 1998). These spatial and temporal 

dynamics remain largely untested, however, especially for species occupying both 

aquatic and terrestrial habitats.  



46 
 

We assessed patterns of thermal site selection in two freshwater turtles 

(Blanding’s turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta)), in a 

temperate region of southern Canada. In this region, both species are near their 

northern range limit, and near the northern range limit of reptiles generally. Thus, these 

species represent good candidates for evaluating ectotherm responses to large spatial 

and temporal variation in temperature. We hypothesized that thermal conditions 

dictate how turtles use the landscape, and expect that thermal site selection depends 

on the spatial scale of analysis and season. Specifically, we predicted that turtles should 

select locations that are (1) warmer, and (2) less variable in temperature compared to 

the surrounding environment. Furthermore, because of their relatively small size and 

restricted movements, we expected that turtles should exhibit thermal site selection at 

(3) a relatively fine spatial scale (i.e., locations within home ranges and within habitats, 

rather than across the landscape). Further, turtle selection for thermal sites should be 

(4) strongest during pre-nesting season, when mean ambient temperature is lower and 

animals are more sensitive to thermal heterogeneity. Finally, because both species differ 

to varying degrees in several traits, including diet, habitat preferences, colouration and, 

more noticeably, in body size (Bury and Germano, 2003; Ernst and Lovich, 2009), we 

expected that (5) species will differ in thermal habitat selection, with smaller Painted 

turtles, having lower thermal inertia, exhibiting stronger preference for warmer and 

less-variable thermal habitats compared to larger Blanding’s turtles. We acknowledge 

limitations associated with two-species comparisons (Garland and Adolph, 1994), but 

recognize the substantial size variation between the two species and therefore 
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approach the comparison with no adaptive inference (Garland and Adolph, 1994; Price, 

1997).  

 

Methods 

Study species and site  

We studied Blanding’s and Painted turtles in the South March Highlands 

Conservation Forest in Ottawa, Ontario, Canada (45°20ˈ N, 75°56’ W) during April-

September 2019-2020. Both species inhabit wetlands, with Painted turtles being more 

generalist in habitat use compared to Blanding’s turtles (Ernst and Lovich, 2009; 

Standing et al., 1999). The species differ in body size, with adult Blanding’s turtles 10-

80% larger and 160-420% heavier than adult Painted turtles (Congdon and Loben Sels, 

1991a; Rowe et al., 2003). Both species use aquatic and terrestrial habitats to varying 

degrees, with the former being used primarily for foraging and basking and the latter 

serving mainly for inter-wetland travel or searching for nesting or overwintering sites 

(Bowne et al., 2006; Hartwig and Kiviat, 2007). Temperatures at our study location are 

generally colder than in more temperate parts of the species’ range, which could 

constrain physiological performance (Addo-Bediako et al., 2002; Huey and Slatkin, 

1976). Consequently, turtles in our area have a short active period (April to October) 

during which they must acquire sufficient energy and thermal resources for digestion, 

growth and reproductive activities (Congdon, 1989; Huey, 1991). The active season for 

turtles in our study region can be divided into distinct periods including pre-nesting 
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(April-May) and nesting (June-July), when turtles are more active and bask often 

(Edwards and Blouin-Demers, 2007; Krawchuk and Brooks, 1998), and post-nesting (July-

October), when animals prepare for hibernation by reducing feeding and activity 

(Christensen, 2013; Rasmussen and Litzgus, 2010). 

Our study area (~1000 ha) is composed of five main landcover or habitat types: 

deciduous and mixed forest (~51%), open field (~25%), marsh (~11%), swamp (~10%), 

and open water (~3%) (Appendix B, Figure 1). We captured Blanding’s and Painted 

turtles using baited hoop-nets or by hand, weighed turtles and measured their carapace 

lengths, and fitted each of them with a combined GPS/temperature/water sensor data 

logger (model AxyTrek, Technosmart, Rome, Italy) and a VHF transmitter (model SI-2T, 

RI-2B, Holohil, Carp, Canada) bolted to the left and right carapace margins, respectively. 

Combined, both units comprised <10% (mean = 4.9%) of turtle body mass in air. Data 

loggers recorded water conductivity and temperature at a frequency of 1 Hz 

(temperature logger accuracy ± 0.1 °C, Technosmart). GPS transmitters recorded 

locations every hour, but because animals spent considerable time underwater and GPS 

data could not be collected when devices were submerged, the realised fix rate 

averaged across the entire study was 12.3% (12601 total fixes). Tests involving leaving 

GPS transmitters (n = 3) stationary in the field for six days revealed an average locational 

accuracy of 17.4 m (A. Auge, unpubl.). After transmitter attachment, turtles were 

released at their capture sites and re-captured at the end of the field season to retrieve 

data loggers. All animals were handled in accordance with guidelines from the Canadian 

Council on Animal Care (CCAC 2005) and procedures were approved by the Trent 
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University Animal Care Committee (Protocol No. 24729) and by the Ontario Ministry of 

Natural Resources and Forestry (MNRF, Permit No. KV-C-002-14).  

Available and selected environmental temperatures  

We recorded environmental temperatures in our study area by deploying data 

loggers (iButtons; Maxim model DS1921G-F5, accuracy ± 0.5 °C, Dallas Semiconductor, 

Sunnyvale, CA) in haphazard locations within the different habitats: forest (n = 3-8), 

open field (n = 2-4), marsh (n = 5-8), swamp (n = 4-6), and open water (n = 4-6) 

throughout the study period. Most loggers were placed >200 m from each other to 

reduce autocorrelation (A. Auge, unpubl.), although some locations received multiple 

loggers (i.e., water surface and ~1 m under water). Loggers recorded hourly 

temperature and were moved weekly several meters within the same site and habitat 

type to obtain a representative sample.  

We calculated habitat-specific mean daily temperatures by averaging 

temperature recorded for each day and within each habitat. To test if daily 

temperatures within a habitat predict temperatures of the same habitat type in a 

different location, we randomly divided the dataset into training (70%) and testing 

(30%) data, each including similar ratios of habitat types (see Liu and Cocea, 2017). We 

found strong positive correlation between daily mean habitat temperature calculated 

from the training and test datasets (forest: R2 = 0.94; field: R2 = 0.94; marsh: R2 = 0.72; 

swamp: R2 = 0.89; open water: R2 = 0.89). Differences between recorded mean habitat 

temperatures were generally consistent through both years of study, except for fields, 

where undersampling in 2019 led to unreliable estimates (A. Auge, unpubl.). 
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Accordingly, we adjusted estimates for fields by calculating their relative temperature in 

2020 compared to forest habitat. We considered both quadratic (R2 = 0.83; 

AICc = 17679) and linear (R2 = 0.81, AICc = 18048) models when fitting field vs. forest 

temperatures, and note that the difference between AIC values (ΔAIC = 369) is large 

despite relatively small differences in R2 which is not uncommon given Akaike 

Information Criterion calculation and interpretation (see Burnham and Anderson, 2002). 

Accordingly, we chose the more parsimonious model (quadratic) based on AIC. Further, 

we considered the quadratic relationship between forest and field temperature as most 

biologically plausible because at warmer ambient temperatures open field habitat 

should warm up faster than forest. Thus, we corrected 2019 field temperatures with the 

following model: 

𝑇𝑓𝑖𝑒𝑙𝑑 = 0.0217 𝑇𝑓𝑜𝑟𝑒𝑠𝑡
2 + 0.7273 𝑇𝑓𝑜𝑟𝑒𝑠𝑡 − 0.0045 

 

Using ArcGIS Pro 2.4.0 (Esri Inc., Redlands, CA, USA, 2019), we developed 

thermal habitat maps of the study area using existing habitat shapefiles (City of Ottawa, 

Scholars GeoPortal), satellite images, and ground-truthing. We calculated mean daily 

environmental temperature available to turtles, depending on the scale of analysis: by 

averaging habitat temperatures within the entire study area (when analysing habitat 

selection at the home range scale), and within a radius of 75 m surrounding daily 

centroid turtle locations determined from GPS telemetry (when analysing selection of 

locations within home ranges) for each day. A radius of 75 m represents 10% of the 
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mean home range of both study species (~18 ha, A. Auge, unpubl.) in our study 

populations, and was the smallest relevant spatial scale corresponding to the temporal 

scale of one day (mean daily linear movement distance = 68.4 ± (SD) 39.2 m) that 

included enough habitat types to estimate meaningful temperature means and variation 

(A. Auge, unpubl.). Within the same areas (study area, home range), we calculated 

available thermal variability as the coefficient of variation (C.V.) in hourly temperatures 

of all habitats during a day.  

We validated the assumption that temperatures recorded by shell-mounted 

dataloggers were representative of environmental temperatures experienced by turtles 

(as opposed to measuring operative environmental temperatures, see also Parlin et al., 

2017; Vickers and Schwarzkopf, 2016) by assessing temperature correspondence 

between AxyTrek units mounted on a turtle model (Blanding’s turtle carapace attached 

to a water-filled container) and iButton dataloggers. The model was moved between a 

variety of sunny and shaded locations within habitats in the study area and showed that 

both temperature loggers responded similarly to temperature changes in the 

environment (average difference between readings: 0.32 °C ± 0.40 °C; n = 506) and had 

comparable heat-up and cool-down patterns across the range of temperatures and 

habitat types (A. Auge, unpubl.).   

To compare selected vs. available temperatures or temperature variability within 

and across home ranges, we first averaged recorded 1 Hz AxyTrek temperatures over 

each hour per individual. Note that AxyTrek temperature data could span any habitat 

used by the animal during the 1-hour period, and all recorded data within one day were 
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included in the analysis. We then calculated daily temperature means and C.V. as a 

measure of thermal variability, both in AxyTrek (selected) and iButton (available) 

temperatures for each turtle. Selected aquatic vs. terrestrial habitat was determined 

using a water sensor threshold of 500 V (aquatic, sensor in water: <500 V; terrestrial, 

sensor out of water: ≥500 V), determined by separate trials with transmitters in 

(234 ± 5.4 V (n = 13.7 million)) and out (979.9 ± 13.5 V (n = 13.2 million)) of water (A. 

Auge, unpubl.). We note that when the sensor is out of water, turtles were mostly 

motionless on land (91.5 ± 5.4% of the time), and near ponds (A. Auge, unpubl.), 

suggesting most of the time spent out of water is spent basking.  

Data analyses 

We assessed selection of the thermal environment at each of three spatial 

scales: home range (selected home ranges vs. study area), location within home range 

(selected locations across habitats vs. home range), location within aquatic and 

terrestrial habitats (selected locations in and out of water vs. aquatic and terrestrial 

habitats within home range, respectively). We used linear mixed effect models and 

compared selected mean temperature or temperature variability to those available at 

each spatial scale. For these analyses, daily mean temperature, or daily temperature 

C.V. was the response variable, and level (selected vs. available), species, and season 

were fixed effects. Note that despite aforementioned limitations regarding species 

comparisons (Garland and Adolph, 1994) we used a species variable (binary) rather than 

a continuous variable representing turtle body mass because of the large size 

differences between species (3X) and that body mass data were clearly bimodal (A. 
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Auge, unpubl.). We ran models both with a 3-way interaction (level x species x season) 

and with two 2-way interactions (level x species, level x season), and selected the top 

model using AIC. Each mixed effect model included turtle ID and level (selected vs. 

available) as random intercept and slope, and turtle ID and season as random intercept 

and slope, assuming random variation in temperature selection between individuals 

(Zuur et al., 2009). Mixed effect models were analysed using the R package lme4 (Bates 

et al., 2015). Marginal and conditional R2 values were computed using the R package 

piecewiseSEM (Lefcheck 2016). We identified discrete seasons as pre-nesting (April 28-

May 31), nesting (June 1-July 21), and post-nesting (July 22-August 23) based on our 

field observations of both species (A. Auge, unpubl.). All data were analysed using R 

version 4.0.2 (R Development Core Team, Vienna, Austria, 2020).   
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Results 

In 2019 and 2020, we captured 23 Blanding’s and 25 Painted turtles. We 

collected temperature data from 17 Blanding’s and 24 Painted turtles, and each was 

monitored on average 61.7 days (range: 8-121 days) and 74.6 days (range: 20-117 days), 

respectively. Because of our low GPS fix rate, we ended up with a smaller subsample of 

days for which environmental temperature around turtle locations could be calculated 

(Blanding’s, mean days per individual: 32.6 days (range: 3-81); Painted, mean days per 

individual: 45.9 days (range: 6-97 days)). On average, monitored Blanding’s turtles had 

292 ± 14 mm carapace length, 149 ± 11 mm carapace width, and 1629 ± 244 g body 

mass. In contrast, Painted turtles had 153 ± 12 mm carapace length, 112 ± 8 cm 

carapace width, and 457 ± 118 g body mass. Thus, on average, Painted turtles in our 

sample had 67% of the shell length and 28% of the body mass of Blanding’s turtles.  

Selection of thermal home ranges 

There was no evidence that animals selected home ranges with absolute 

temperatures that differed from the study area, with the exception of post-nesting 

season when turtles selected home ranges that were 0.4 °C (95% confidence interval 

(CI): 0.1-0.7) warmer (Figure 1, Table 1; Appendix B, Table 1). Despite this, on average, 

temperature was 4.4% (2.6-6.2) less variable through the day in turtle home ranges 

compared to the environment (Figure 1, Table 1). Furthermore, at the scale of the home 

range, variation in temperature between selected and available locations varied 

seasonally and was strongest during pre-nesting, when animals selected home ranges 

that were 7.1% (4.8-9.4) less variable than availability. In contrast, later in the year 
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home ranges were ≤3.5% less variable than the environment (Figure 1; Appendix B, 

Table 1). Both species occupied home ranges with apparently similar thermal profiles, in 

terms of both the mean and the variability in temperature (Table 1).   
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Figure 1: Thermal home range selection for Blanding’s and Painted turtles in eastern 

Ontario, Canada. Mean temperatures (left) and temperature variability (C.V.) (right) in 

the available environment in the study area compared to selected turtle home ranges 

during each season. Displayed are marginal means as predicted by mixed effect models 

and 95% confidence intervals. Species did not differ in their patterns of thermal 

selection and therefore are pooled for display. 
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Table 1: Thermal home range selection for Blanding’s and Painted turtles in eastern 

Ontario, Canada. ANOVA results and R2 values from mixed effect model comparing 

mean environmental temperature and mean temperature coefficient of variation (C.V.) 

of selected vs. available (‘level’) locations.  

Response 
variable 

Fixed 
effect 

Num. 
DF 

Den. DF F-value p-value Marg. 
R2 

Cond. 
R2 

M
ea

n
 t

em
p

er
at

u
re

 Level 1 39.002 1.021 0.318 0.645 0.983 

Species 1 30.643 0.813 0.374 

Season 2 28.962 182.069 <0.001 

Level x 
species 

1 38.386 1.657 0.206 

Level x 
season 

2 57.004 8.790 <0.001 

M
ea

n
 t

em
p

er
at

u
re

  

C
.V

. 

Level 1 29.234 24.333 <0.001 0.402 0.911 

Species 1 26.245 0.018 0.893 

Season 2 42.292 39.534 <0.001 

Level x 
species 

1 28.654 1.130 0.297 

Level x 
season 

2 76.419 6.888 0.002 

Num. DF: Numerator degrees of freedom; Den. DF: Denominator degrees of freedom;  
Marg. R2: Marginal R2; Cond. R2: Conditional R2 
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Selection of thermal locations within home ranges 

At the scale of the habitat within the home range, turtles selected locations that 

were 4.0 °C (3.7-4.3) warmer overall, compared to the surrounding environment within 

their home range (Figure 2, Table 2). Strength of temperature selection varied 

seasonally and was greatest during pre-nesting, when selected locations averaged 4.4 °C 

(4.0-4.8) warmer than overall for the home range, and this disparity declined to ≤3.9 °C 

through nesting and post-nesting seasons (Figure 2, Table 2; Appendix B, Table 1).  

On average, turtles selected thermal locations that were 5.3% (2.0-8.7) less 

variable during the day than their home range, but selection strength depended on 

season (Table 2, Figure 2). Turtles buffered temperature variation in the environment 

most strongly during pre-nesting, when selected locations were 8.1% (4.5-11.8) less 

variable in temperature, followed by nesting and post-nesting (≤3.6% less variable; 

Figure 2; Appendix B, Table 1). Thermal habitat selection patterns did not appear to 

differ between species (Table 2). 

  



59 
 

 

 

Figure 2: Temperature selection within home ranges for Blanding’s and Painted turtles 

in eastern Ontario, Canada. Mean temperatures (left) and temperature variability (C.V.) 

(right) selected by turtles compared to those available in their home ranges during each 

season. Displayed are marginal means as predicted by mixed effect models and 95% 

confidence intervals. Species did not differ in their patterns of thermal selection and 

therefore are pooled for display. 
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Table 2: Temperature selection within home ranges for Blanding’s and Painted turtles in 

eastern Ontario, Canada. ANOVA results and R2 values from mixed effect model 

comparing mean environmental temperature and mean temperature coefficient of 

variation (C.V.) of selected vs. available (‘level’) locations. 

Response 
variable 

Fixed 
effect 

Num. 
DF 

Den. 
DF 

F-value p-value Marg. 
R2 

Cond. 
R2 

M
ea

n
 t

em
p

er
at

u
re

 Level 1 34.487 741.778 <0.001 0.734 0.967 

Species 1 27.533 1.662 0.208 

Season 2 27.218 141.109 <0.001 

Level x 
species 

1 33.756 0.002 0.962 

Level x 
season 

2 55.434 4.415 0.017 

M
ea

n
 t

em
p

er
at

u
re

  
C

.V
. 

Level 1 36.261 10.431 0.003 0.368 0.877 

Species 1 15.365 0.318 0.581 

Season 2 30.209 42.242 <0.001 

Level x 
species 

1 35.953 1.639 0.209 

Level x 
season 

2 72.374 5.939 0.004 

Num. DF: Numerator degrees of freedom; Den. DF: Denominator degrees of freedom;  
Marg. R2: Marginal R2; Cond. R2: Conditional R2 
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Selection of thermal locations in and out of water 

At the scale of patches within habitats, turtles selected warmer than available 

temperatures, but this selection was less pronounced when they were in water 

compared to on land (Figure 3, Table 3). In water, turtles selected locations that were on 

average 3.1 °C (2.8-3.4) warmer than the surrounding aquatic habitat, whereas when 

out of water, turtles selected locations that were 8.2 °C (7.6-8.8) warmer compared to 

available terrestrial temperatures (Figure 3). Again, the magnitude of temperature 

selection both in and out of water differed by season, but not by species (Table 3). In 

water, the difference between selected and available temperature was greatest during 

pre-nesting and nesting season (≥3.2 °C) compared to post-nesting season, when 

selected locations were 2.6 °C (2.2-3.1) warmer than available water temperatures 

(Figure 3; Appendix B, Table 1). Out of water, selection for warmer locations was 

strongest during pre-nesting season (8.9 °C warmer, 8.1-9.7) compared to nesting and 

post-nesting season (≤8.1 °C; Appendix B, Table 1).  

Overall, there was no evidence that turtles buffered daily temperature variability 

under water (Figure 3, Table 3), except during post-nesting, when they selected 

locations that were 1.7% (0.2-3.2) less variable in temperature than the surrounding 

aquatic habitat (Figure 3; Appendix B, Table 1). On land, temperature was generally 

more variable through the day, and turtles appeared to buffer this temperature 

variation by selecting locations that were overall 21.2% (17.0-25.4) less variable 

compared to the surrounding terrestrial environment (Figure 3; Appendix B, Table 1). 

The ability to buffer temperature on land varied by season, and was greatest during pre-
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nesting season, when turtles selected locations that were 26.3% (21.7-31.0) less variable 

than the available environment on land, compared to nesting and post-nesting season 

(≤17.7% less variable; Figure 3; Appendix B, Table 1).   
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Figure 3: Temperature selection within habitats for Blanding’s and Painted turtles in 

eastern Ontario, Canada. Mean temperatures and temperature variability (C.V.) selected 

by turtles when in and out of water compared to those available in aquatic and 

terrestrial habitat, respectively, during each season. Displayed are marginal means as 

predicted by mixed effect models and 95% confidence intervals. Species did not differ in 

their patterns of thermal selection and therefore are pooled for display. 
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Table 3: Temperature selection in and out of water for Blanding’s and Painted turtles in 

eastern Ontario, Canada. ANOVA results and R2 values from mixed effect models 

comparing mean environmental temperature and mean temperature coefficient of 

variation (C.V.) of selected vs. available (‘level’) locations within aquatic and terrestrial 

habitat types. 

Habitat Response 
variable 

Fixed 
effect 

Num. 
DF 

Den. 
DF 

F-value p-
value 

Marg. 
R2 

Cond. 
R2 

In
 w

at
er

 

M
ea

n
 t

em
p

er
at

u
re

 Level 1 40.970 390.866 <0.001 0.717 0.963 

Species 1 32.092 2.185 0.148 

Season 2 27.292 135.248 <0.001 

Level x 
species 

1 40.268 0.343 0.561 

Level x 
season 

2 65.847 5.246 0.008 

Te
m

p
er

at
u

re
  C

.V
. Level 1 35.582 0.056 0.814 0.193 0.821 

Species 1 32.594 0.312 0.580 

Season 2 33.846 16.336 <0.001 

Level x 
species 

1 35.209 1.210 0.279 

Level x 
season 

2 85.655 7.117 0.001 

O
u

t 
o

f 
w

at
e

r 

M
ea

n
 t

em
p

er
at

u
re

 Level 1 36.496 780.390 <0.001 0.821 0.931 

Species 1 29.495 0.469 0.499 

Season 2 26.501 56.574 <0.001 

Level x 
species 

1 35.786 0.113 0.739 

Level x 
season 

2 59.586 4.704 0.013 

Te
m

p
er

at
u

re
  C

.V
. Level 1 36.439 104.198 <0.001 0.612 0.900 

Species 1 27.387 0.0001 0.991 

Season 2 41.428 37.080 <0.001 

Level x 
species 

1 35.899 0.030 0.865 

Level x 
season 

2 75.317 10.892 <0.001 

Num. DF: Numerator degrees of freedom; Den. DF: Denominator degrees of freedom;  
Marg. R2: Marginal R2; Cond. R2: Conditional R2 
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Discussion 

Our study revealed that, near the limits of these turtle species' ranges, the 

thermal landscape had an important influence on turtle habitat selection. Animals 

selected warmer than average available temperatures at the scale of habitats within 

home ranges, and in aquatic and terrestrial habitats, but not at the larger home range 

scale. Further, through their habitat preferences turtles experienced less variability in 

temperature than the surrounding environment at the scale of the home range, across 

habitat types within home ranges, and in terrestrial, but not aquatic habitat. As 

predicted, temperature selection was slightly stronger during pre-nesting season 

compared to nesting and post-nesting season, and was surprisingly consistent between 

species. This study illustrates selection for microclimate by ectotherms, contingent on 

spatial scale and season. It therefore highlights how temperature-sensitive animals 

navigate the thermal landscape by being sensitive to both mean temperature and the 

variation in temperature within their home range.  

Our finding that turtles did not select home ranges according to mean 

environmental temperature likely reflects that at the home range scale, the spatial 

extent was too large for animals to perceive and respond rapidly to variation in ambient 

temperature (see also Hughes, 2016). This low sensitivity probably relates to the small 

body size and relatively low mobility of both species, and their inability to respond to 

large-scale temperature variation at the relatively short temporal scale at which this 

behaviour was assessed (Compton et al., 2002; Mayor et al., 2009; Mech and Zollner, 

2002). However, there is evidence that animals use a variety of spatial scales when 
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responding to environmental heterogeneity, depending on the resource requirements. 

For example, while ectotherms may traverse larger spatial scales in search of food, 

ambient temperature is usually perceived at a finer spatial scale (e.g. Compton et al., 

2002). Indeed, microhabitats can be important thermal refugia, effectively buffering 

animals from temperature extremes and sometimes reducing temperature-related 

mortality (Scheffers et al., 2014). This level of thermal sensitivity is not exclusive to 

ectotherms and some endothermic species also show scale-dependent behavioural 

responses in thermally challenging landscapes (e.g. Alston et al., 2020; Attias et al., 

2018; van Beest et al., 2012). Despite acknowledging the importance of analysing 

ecological and behavioural data at multiple scales, many studies still fail to do so 

(McGarigal et al., 2016) and our results demonstrate that without a multi-scale 

approach temperature-dependent habitat selection processes may be overlooked (see 

also Mayor et al., 2009).  

The observation that turtles experienced markedly warmer and less variable 

temperatures relative to the environment when they were out of water is most likely 

related to the high temperatures that they experienced when basking (e.g. Millar et al., 

2012). Indeed, many ectotherms bask on sun-exposed sites with little to no shade (Moll 

and Legler, 1969), which exhibit high temperatures with limited thermal variation 

throughout the day. In contrast, most other terrestrial habitats, including forests, 

experience considerable daily temperature variation. Open and sun-exposed 

environments can provide high thermal quality for a variety of ectotherms (e.g. Elzer et 

al., 2013; Row and Blouin-Demers, 2006), and can improve thermoregulatory 
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effectiveness and maximise net energy gain (Lelièvre et al., 2010; Stellatelli et al., 2013). 

We interpret the observed weaker thermal site selection under water as a reflection of 

higher heat retention and efficient temperature transfer properties in water (Turner, 

1987). Thus, we surmise that the more thermally homogeneous aquatic habitat 

provided animals with fewer opportunities to seek warmer and less thermally variable 

sites (Sears et al., 2016a). Overall, turtles likely were sensitive to divergent thermal 

change properties across the landscape, and thus were most selective in habitats with 

the highest thermal disparities, i.e. terrestrial habitat types. Generally, our results are 

consistent with the notion that temperature is an important driver in habitat selection in 

ectotherms at their northern range limit; such fine-scale selection should ultimately 

should maximise their physiological performance and fitness under extreme conditions 

(Huey, 1982, 1991).  

Our results suggest that, despite their body mass differences, thermal site 

selection was consistent across the two species. However, we highlight the limitations of 

comparing two species at a single site, including our inability to infer adaptive evolution 

or to generalise results. Thus, in the absence of a more extensive effort to document 

species differences, we acknowledge that any observed behavioural differences may be 

due to random genetic drift or other morphological and physiological differences 

between species (Garland and Adolph, 1994). Nevertheless, the 3-fold mass advantage 

of Blanding’s turtles could conceivably lead to lower thermal sensitivity (e.g. McNab, 

2002; Peralta-Maraver and Rezende, 2020) because larger-bodied reptiles can retain 

heat longer and therefore should be less sensitive to temperature variation (e.g. Blake 
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et al., 2021; Fitzgerald and Nelson, 2011). The two species were entirely syntopic in our 

study area (A. Auge, pers. obs.) and therefore exposed to the same thermal landscape. 

Accordingly, their comparable thermal responses could indicate that this resource was 

not sufficiently limiting during our study to elicit mass-related differences in response. 

Alternatively, comparing species across a wider breadth of body size/mass could have 

been more likely to reveal differences in thermal selection behaviour, although we note 

that our test had adequate statistical power to detect biologically-relevant variability 

given the roughly 3-fold body mass difference between species. Further, we 

acknowledge that other differential traits may contribute to temperature selection 

behaviour in the two species and could have compensated for any body-size-related 

behavioural differences.  

The observed difference in turtle responses to the thermal environment across 

seasons is a phenomenon reported in many ectothermic species (Bouazza et al., 2016; 

Rasmussen and Litzgus, 2010; Row and Blouin-Demers, 2006a; Rowe et al., 2020), and is 

likely related to seasonal variation in ambient temperature. Average daily temperature 

is usually coldest early in the year, meaning that reptiles generally may be more 

sensitive to variation in temperature at that time because they require relatively high 

body temperature to accelerate metabolic activity to support growth and reproduction 

(Bouazza et al., 2016; Doughty and Shine, 1998; Shine, 2003). For example, turtles use 

up to ~50% of their total yearly energy to engage in activities like mating, nest searching, 

and egg development (Congdon and Tinkle, 1982; Krawchuk and Brooks, 1998), and 

species in temperate environments need to keep their body temperature between 24-
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28 °C to assimilate this energy (Picard, 2008). Further, higher spatio-temporal 

heterogeneity in ambient temperature in the spring may force ectothermic animals to 

exploit relatively warmer thermal locations more efficiently (Sears and Angilletta, 2015; 

Sears et al., 2016a). In northern climates, animals experience shorter active seasons 

with ambient temperatures that are particularly cold and variable through space and 

time, compared to species or populations at lower latitudes (Tuttle and Gregory, 2012). 

It follows that northern ectotherms have limited time to assimilate sufficient energy for 

growth, and reproductive activities, and thus they must invest more effort into selecting 

higher temperatures early during the active season (Congdon, 1989; Tuttle and Gregory, 

2012, 2014). Conversely, species at lower latitudes may exhibit less pronounced 

seasonal responses to ambient temperature variation (Sunday et al., 2011; Tuttle and 

Gregory, 2012).  

Overall, our results imply that reptiles near their northern range limit exploit 

thermally heterogeneous landscapes, which advances our understanding of ectotherm 

ability to select thermal habitats. We surmise that turtles used a combination of actively 

moving between microclimates to stay within favourable temperature ranges, and 

selecting locations that are inherently warmer and/or that buffer temperature variation 

(see Woods et al., 2015). To better understand the intricate relationship between 

environmental temperature, thermoregulation, and habitat selection, we recommend 

that future studies incorporate animal activity or energetic data as well as animal body 

temperature in the analysis. Through the advent of new technologies like miniaturized 

bio-logging devices, it is now possible to obtain precise acceleration or body 
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temperature measurements which then can be related to ambient temperature 

conditions (Wilson et al., 2015). Moreover, because we expect animals in more 

temperate regions to be less sensitive to thermal variation in the landscape, future work 

should examine habitat selection behaviour in response to thermal heterogeneity and 

mean ambient temperature in multiple populations across latitudinal gradients spanning 

species distributions and large variation in thermal properties. Collectively, these 

research efforts will support a better understanding of how ectotherms select habitats 

in a heterogenous landscape, and thus help predict how they will respond to future 

temperature variation in rapidly-changing environments.   
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Abstract 

Habitat loss due to land-use change is one of the main drivers of biodiversity loss 

worldwide. Balancing urban development with environmental sustainability is a major 

societal challenge, and developers are often required to counter effects of habitat loss 

with mitigation measures intended to promote sustainability of indicator or at-risk 

species. Despite these efforts, we still have limited understanding of the efficacy of 

attempts to balance development and sustainability, specifically in terms of the 

demographic responses of populations that are targeted for protection. We studied an 

urban Blanding’s turtle (Emydoidea blandingii) population in Ottawa, Ontario, Canada, 

to assess whether urban development and mitigation were sufficient to ensure long-

term population viability. We assessed habitat change and turtle survival throughout 

one decade of ongoing residential and road development, using telemetry and capture-

mark-recapture, to assess the magnitude of the effect of development on population 

viability through habitat loss, decreased survival, and lower population size. Between 

2010 and 2020, Blanding’s turtle habitat declined by 10%, and corridors connecting 

wetlands in the area were lost. This coincided with a severe reduction in survival and 

juvenile recruitment rates, resulting in a 70% decline in population size. Females 

experienced the most dramatic decline in numbers and were more likely to be found 

closer to roads than males; roadway deaths were a major source of mortality in the 

population. Population viability analysis revealed that an estimated 4 adult female road 

mortalities per year yielded population decline that was consistent with that observed. 

We infer that in our study area, despite mitigation measures implemented as part of the 
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development approval process, urbanization is not compatible with this at-risk turtle 

population viability. The broader implications of our findings are that development 

approval conditions, even in jurisdictions with robust species-at-risk legislation, can be 

inadequate for sustaining target species and therefore require considerably more 

stringent review during planning, approval, and implementation. 

 

Introduction 

Land-use change is one of the main drivers of biodiversity loss worldwide (Sala et 

al., 2000). Habitat change due to urban and agriculture land-use can reduce resource 

availability (e.g. Shochat et al., 2006), affect thermal or hydrological regimes (e.g. Lee et 

al., 2006), and, through fragmentation, reduce inter-population connectivity and gene 

flow (e.g. Fusco et al., 2021). These changes may lead to abnormal population structure 

(Reese and Welsh, 1998), reduced fitness of individuals, and, ultimately, population 

decline and potential extirpation. A primary, proximate outcome of urbanisation is 

higher mortality, for example, through higher rates of wildlife-vehicle collisions. Road 

mortality can be a major source of demographic change in urban wildlife populations, 

and sometimes these impacts can be disproportionate across demographic groups in 

the population (e.g. Gibbs and Steen 2005; Dorcas et al. 2007). Therefore, a major 

challenge in society is to balance increasing urban development with environmental 

sustainability (Hawkins et al., 2016), but the extent to which contemporary 

development and related activities can actually meet reasonable environmental 
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standards over the long term is much-debated (Bull et al., 2016; Maron et al., 2012; 

Theis et al., 2020).    

To reduce environmental impacts of urban development, projects may receive 

approval on the condition that mitigation measures are enacted. Mitigation can take a 

variety of forms, including efforts to reduce impacts on species and habitats while the 

development is first established and thereafter monitoring responses of species-at-risk. 

For example, developments may be required to avoid or buffer around sensitive 

habitats, or alter the placement of roads or other structures to minimize impacts on 

wildlife (Clevenger et al., 2001; Marshall et al., 2020). However, although effective 

conservation planning requires consideration and implementation of a variety of 

mitigation measures to reduce development impacts, often these measures lack 

rigorous testing and may provide limited protection of target species (van der Grift et 

al., 2013). Notably, rigorous evaluation of the responses of wildlife to development and 

mitigation may require intensive and long-term monitoring – before, during and after 

development – which is usually beyond the scope of activities or timelines mandated by 

the approval process (Pickett et al., 2013; Vasconcelos and Calhoun, 2006).  

Freshwater turtles epitomize this challenge. These species have long generation 

times, delayed age to maturity, and naturally low nest survival, making them both 

vulnerable to new sources of disturbance and challenging to study in a  demographic 

and response-to-disturbance context (Congdon et al., 1993). For example, many 

freshwater turtle species live in semi-urban areas where they occupy inter-connected 

wetlands and, to some degree, use terrestrial habitat, making them particularly 
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vulnerable to disturbances due to development. Most turtle populations require high 

adult female survival to compensate for naturally low recruitment rates, but this can be 

problematic in an urbanisation context because of higher road mortality associated with 

inter-wetland movements near or across roads, or use of roadsides for nesting by 

females (Enneson and Litzgus, 2008; Steen and Gibbs, 2004; Steen et al., 2006). Despite 

the need to track freshwater turtle responses to urbanisation and assess the efficacy of 

mitigation measures on population viability, to date such studies have not spanned 

sufficiently long periods of time or modeled different disturbance scenarios for robust 

assessment (Beaudry et al., 2010; Howell and Seigel, 2019; Ross et al., 2020). 

Here, we investigate the effects of recent urbanisation on the structure and 

viability of a population of Blanding’s turtles (Emydoidea blandingii) in Ottawa, Ontario, 

Canada. Blanding’s turtles can be strongly affected by land-use changes (Mui et al., 

2017; Rhodin et al., 2018), especially by the compounding effects of habitat loss and 

road mortality (Beaudry et al., 2010; Howell and Seigel, 2019). We use 10 years of field 

data, combined with population and habitat analyses, to reconstruct changes in 

population size and structure and assess possible mechanisms for the observed changes. 

Specifically, we focus on the change in habitat connectivity between turtle sub-

populations and on the potential effects of increased road mortality on population size. 

We hypothesized that urban development, including loss of natural habitat and 

establishment of a road network through the site, has impacted the local Blanding’s 

turtle population by causing direct loss of habitat and increased road mortality. 

Accordingly, we predicted: 1) loss of habitat suitable for turtles, 2) reduced habitat 
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connectivity between turtle sub-populations leading to a 3) decline of the turtle 

population size with 4) a more pronounced decline in females due to their tendency to 

be closer to roads, including when searching for nest sites. Ultimately, we expected that 

our analyses would indicate unsustainable rates of road mortality on the study 

population, despite various mitigation measures. More broadly, our study is a case study 

of the robust assessment of impacts of urbanisation on a sensitive, long-lived species. 

 

Methods 

Study area and population  

We studied Blanding’s turtles in the South March Highlands in Ottawa, Ontario, 

Canada (45°20ˈ N, 75°56’ W). The study site (~1000 ha) includes the protected South 

March Highlands conservation forest (SMH) in the north and a provincially-significant 

wetland (Kizell Cell Wetland) in the south, and is bounded by roads and residential areas 

(Appendix C, Figure 1). The study site has been impacted by substantial urban 

development during the past 40 years, including the extension of Terry Fox Drive, a 

major arterial route that now bisects the area, and development of two residential 

zones in the centre of the area (Appendix C, Figure 1). Following the road and residential 

development (starting in 2008), several mitigation measures were established including: 

~2 km of wildlife fencing along Terry Fox Drive (2008), construction of 10 road culverts 

to allow turtle passage from SMH to Kizell Cell Wetland (2008), and construction of one 

artificial turtle nesting area (0.3 ha) and 2 ponds (2017; total area = 0.5 ha) (Dillon 
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Consulting Limited 2013; DST Consulting Engineers 2015). The Blanding’s turtle 

population was previously monitored by the City of Ottawa (2010-2013, Hasler et al. 

2015, Dillon Consulting Limited 2013) and we compare contemporary (2017-2020) site 

features and turtle population size to those observed by Hasler et al. (2015). 

Turtle captures 

During both study periods, Blanding’s turtles were captured between May-

September using baited hoop-nets or by hand, assigned age classes (hatchling, juvenile, 

adult) based on body size/mass (Congdon and Loben Sels, 1991b; Hasler et al., 2015), 

sexed based on secondary sexual characters (Congdon and Loben Sels, 1991b; 

Hamernick, 2000), and individually marked with carapace notches (Cagle, 1939). 

Because the 2010-2013 study included an extensive site to the north of the study area 

that was not sampled in 2017-2020 (approx. 110 ha), we excluded data (n = 9 turtles) 

from that site. Our 2017-2020 capture effort (i.e., number of traps, person-hours 

trapping) was ~50% of the earlier study; this disparity was integrated into population 

models (see below). All animals were handled in accordance with Canadian Council on 

Animal Care (CCAC) (2005) guidelines, and procedures were approved by Trent 

University Animal Care Committee (Protocol No. 24729) and the Ontario Ministry of 

Natural Resources and Forestry (MNRF, Permit No. KV-C-002-14).  

Tracking and survival 

In 2011-2013, 92 Blanding’s turtles were captured, of which 21 were equipped 

with radio-transmitters and tracked for survival and location on average every 4 days 

(see Hasler et al. (2015), Dillon Consulting Limited 2013 for additional details). During 
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2017-2020, we captured 36 Blanding’s turtles and equipped 31 adults with GPS 

(AxyTrek, Technosmart, Rome, Italy; GPS accuracy ± 17.4m) and VHF transmitters (SI-2, 

Holohil, Carp, Canada) (both <10% of turtle body mass). We retrieved data from 28 

turtles. An additional 2 turtles were fitted with VHF transmitters only. GPS devices 

recorded locations hourly, which we then rarefied to one location per 4 days for 

comparison with less-extensively sampled VHF locations from 2010-2013 (see Mills et al. 

2006). We assessed survival using VHF telemetry on a weekly basis and noted cause of 

death when mortalities were detected. Additionally, by driving and walking along roads, 

we surveyed Terry Fox Drive daily, and other roads surrounding the study area 3-4x per 

week for vehicle-caused mortalities, recognizing that observations of carcasses on the 

road might underestimate the true number of road mortalities because injured animals 

may move off the road before they die or road-killed turtles may be removed by 

scavengers or local residents (Row et al. 2007, DeGregorio et al. 2011). We considered 

the recovery rate of road-killed turtles that had been tagged as a crude rate of carcass 

detection.   

Change in habitat and connectivity 

We developed habitat maps of the study area and quantified the change in 

aquatic (open water, swamp, marsh) and terrestrial (forest, grassland/field) habitat, as 

well as settlement area between 2010 and 2020 (Appendix B, Table 1). We assessed 

habitat loss at two spatial scales: 1) within the entire study area and 2) within the 

combined home ranges of turtles in the central part of the study area in 2010-2013 (incl. 

developed areas). We applied a least-cost path model to estimate change in 
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connectivity between patches of high-quality Category 1 habitat, using the habitat map 

as a resistance layer (lower resistance values in aquatic habitats; Appendix C, Table 2) 

(Mui et al., 2017). Category 1 habitat is considered highly sensitive habitat (including 

turtle nest and hibernation sites and 30 m buffer area), where species-at-risk have the 

lowest tolerance to alternation (MNR, 2021). Corridor modelling and mapping were 

performed in ArcGIS Pro 2.4.0 (Esri Inc., Redlands, CA, USA, 2019) (see Supplementary 

Information for additional details).  

Statistical analyses 

We compared male to female sex ratios and juvenile to adult ratios of turtles 

captured during 2010-2013 and 2017-2020 using a χ2 goodness-of-fit test. We calculated 

turtle home ranges as 95% minimum convex polygons (MCP) (Row and Blouin-Demers, 

2006b). We compared (log-transformed) home range sizes between study periods using 

a linear mixed model, including the turtle individual as a random effect to account for 

the ones that were monitored during both periods (Zuur et al., 2009). Based on 2017-

2020 data, we estimated the proportion of time that turtles were on land from the 

realised GPS fix rate (obtained GPS locations / scheduled GPS locations), assuming that 

most missed fixes occurred when animals were submerged in water. We used ArcGIS to 

calculate distance of each turtle GPS location to the nearest road. We compared 

proportion of time on land and mean distance to roads during 2017-2020 nesting 

seasons (June to mid-July; A. Auge, unpubl.) between males and females using t-tests. 

We collected survival data for tracked animals during both study periods, and for the 

2017-2020 period we calculated 30-day (May-September) survival probability using 
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Kaplan-Meier estimates (Murray and Bastille-Rousseau, 2020). Low sample sizes 

precluded calculating Kaplan-Meier survival rates during 2010-2013. Female and male 

survival rates were compared using a Cox proportional hazard (CPH) model; we 

confirmed that the model fit the proportional hazards assumption using Schoenfeld 

residuals (Murray and Bastille-Rousseau, 2020). Survival analysis was performed using 

the survival package (Therneau 2021) in R version 4.0.2 (R Development Core Team, 

Vienna, Austria, 2020).    

Population size estimation 

We estimated adult and juvenile turtle population size for each monitoring year 

(2010-2020) with Jolly-Seber (JS) models (POPAN formulation) (Schwarz and Arnason, 

1996), using turtle capture histories from all 8 sampling years. JS models assume an 

open population, where deaths, emigration and immigration can occur (Pledger et al., 

2010; Schwarz and Arnason, 1996). We assumed that weak connectivity with both the 

closest Blanding’s turtle population outside our study area (Carp River system, approx. 

3 km from our study area, see Dillon Consulting Limited 2013) and the northern portion 

of the study area that was not sampled during the 2017-2020 period meant that 

migration was possible, but unlikely in practice. This assumption was supported by the 

low estimated probability of entry into the population (pent, see results, but also Schwarz 

and Arnason 1996). Note that JS models are designed for open population estimation, 

but can serve to estimate apparent survival (Φ) in populations with negligible probability 

of immigration (e.g. Schneider et al. 2018; Cross et al. 2021; Kiss et al. 2021). Thus, JS 

models provided an alternate calculation of turtle survival probability, with JS estimates 
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being the product of true (year-round) survival and site fidelity and explicitly consider 

imperfect detection (Lebreton et al., 1992). We constructed multiple JS models ranging 

from those with all parameters constant to others varying by sex, time and sampling 

period, and chose the best-fit model, given the need for model parsimony, using Akaike 

Information Criterion (AIC) (Burnham and Anderson, 2002). Differences in sampling 

effort across study periods were factored into the JS models as a covariate. We 

estimated population sizes first for the entire population and then separately for the 

northern conservation forest and southern Kizell wetland. Population size modeling was 

conducted using the R packages marked (Laake, 2013a) and RMark (Laake, 2013b).  

Population Viability Analysis (PVA) 

Turtle population viability was evaluated using demographic projection models 

(Morris and Doak 2002, Legendre 2020). Based on the 2010 adult female and juvenile 

turtle population size estimate from our JS models, we populated a 3-stage Leftkovich 

model representing turtle life stages (hatchlings (age 0-1 year), juveniles (age 1 to 14), 

and adults (age 14+)). Our base model was parameterized mostly using estimates from 

studies on Blanding’s turtle populations subjected to few anthropogenic effects, to 

establish potential demographic conditions in our population prior to the 2010 pulse in 

urban development. In particular, annual baseline survival rates were derived from a 

long-term Blanding’s turtle study in Michigan with low human access (Congdon et al., 

1993, 2011), productivity rates from a study in Maine (Beaudry et al., 2010), and initial 

population sizes and proportion of breeding females were from our study (Table 1). 

Because sex of juvenile Blanding’s turtles was not determined, we assumed the juvenile 
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sex ratio to be similar to the adult sex ratio at the start of the study (see below). Based 

on the number of eggs per clutch, the proportion of reproductive females per year and 

adult survival rate (Beaudry et al., 2010; Congdon et al., 1993), we calculated fecundity 

to be 3.37 female eggs per female per year.  

Population projections included only females, as they tend to be most important 

in the demography of long-lived and polygamous species (Caswell, 2001; Doak et al., 

1994). Further, we focused on the effects of adult female survival on population 

projections because of the apparent high loss of adult females during this study (see 

below) and several studies suggesting female-biased mortality in freshwater turtle 

populations exposed to roads (Aresco 2005; Steen et al. 2006; Reid and Peery 2014, but 

see  Congdon and Loben Sels 1991; Carstairs et al. 2019). Population viability analysis 

(PVA) was conducted using the R package popbio (Stubben et al. 2020), with populations 

projected deterministically over 50 years. We used probability of the population 

breaching a quasi-extinction threshold of 4 adult female turtles as our measure of 

population viability (Enneson and Litzgus, 2008; Howell and Seigel, 2019). We explored 

the effect of anthropogenic disturbance on population projections as different road 

impact scenarios, by changing age-specific annual mortality rates and assessing their 

correspondence with observed changes in adult female turtle population size during our 

study (see below). Apart from our baseline model (which assumes no additional 

mortality), we modelled: 1) one adult female mortality per year for the first 10 years, 

based on the approx. number of observed adult female road-kills observed during the 

study (see below); 2) two adult female mortalities per year for the first 10 years, 



83 
 

assuming 50% road mortality detection rate during road surveys, and 3) increased adult 

female mortality to 3 and 4 per year, in an effort to reproduce the 2010-2020 

population size changes estimated from the JS model. Note that these increased 

mortality rates were not used to project the population further into the future. 

Additionally, we modelled 4) a constant reduction of adult female survival rate by 1.8% 

per year, which represents the mean observed number of road-kills as a proportion of 

the 2010 female population size, and 5) a decrease in adult female survival rate by 3.6% 

per year, representing 2 road mortalities proportional to the 2010 population size. 6) 

We explored which female survival due to female-biased road mortality could produce 

the observed decline in females by incrementally reducing adult female survival 

(compared to the baseline annual survival of 0.96) until projected population sizes were 

comparable to those observed during our field study. 7) To explore the maximum level 

of adult female mortality that would be sustainable above the quasi-extinction 

threshold by 2030 and 2060 (20 and 50 years after the beginning of the study, 

respectively), we reduced annual female survival rates incrementally until the 

population size was ≤4 adult females. 8) Lastly, to explore the potential consequences of 

habitat fragmentation on population dynamics, we conducted projections on two 

distinct sub-populations (northern SMH conservation forest; southern Kizell wetland) 

starting with estimated sub-population sizes from 2013 (the period prior to the recent 

development pulse). We projected sub-population dynamics with one and two female 

mortalities per year only in the northern sub-population and assessed adult female 

survival rate necessary to reproduce observed decline in the sub-population sizes. We 
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conducted elasticity and sensitivity analyses to assess the importance of each 

demographic parameter to population growth rate.  
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Table 1: Demographic estimates used in a population viability analysis (PVA) of 

Blanding’s turtles in Ottawa, Ontario, Canada. Values were taken from the literature 

when they could not be determined from our study.  

Parameter Value Source 

Breeding structure polygamous Ernst and Lovich 2009 

Female age of first reproduction 14 Congdon et al. 1983, 
1993; Congdon and 
Loben Sels 1991 

Percent females at birth  50 Beaudry et al. 2008; 
Midwood et al. 2015  

Number of eggs per clutch 11.7 Beaudry et al. 2010 

Female hatchling annual survival rate 0.2610 Congdon et al. 1993 

Female juvenile annual survival rate 0.7826 Congdon et al. 1993 

Female adult annual survival rate  0.9600 Congdon et al. 1993 

Quasi-extinction level 4 females Enneson and Litzgus 2008 

Initial adult population size 55.6 females This study 

Initial juvenile population size 17.1 females This study 

Initial adult sub-population size (SMH) 21.9 females  This study 

Initial juvenile sub-population size (SMH) 5.3 females This study 

Initial adult sub-population size (Kizell) 7.1 females This study 

Initial juvenile sub-population size (Kizell) 1.0 This study 

Percent adult females breeding 60  This study 
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Results 

During 2010-2013, 92 Blanding’s turtles were captured and marked in the study 

area, of which 19.6% were juveniles. Among adults, 68.9% of the population was female. 

In contrast, during 2017-2020, we caught 36 Blanding’s turtles, of which 1.3% were 

juveniles and 48.6% were adult females. Thus, since the onset of intensive development 

in the study area (2010), the Blanding’s turtle population experienced both lower 

recruitment (χ2
1 = 6.46, p = 0.011) and an increased skew towards males (χ2

1 = 6.75, 

p = 0.009).  

Habitat changes and connectivity 

Compared to 2010, by 2020 development in the study area had caused a 10.0% 

loss in forest area, 16.8% loss in swamps, but no change in marsh area (Figure 1). 

Availability of Category 1 habitat decreased by 10.1% during the 10-year period. Due 

entirely to the creation of two artificial ponds in 2017, the study area gained 1.2% open 

water area. As a result of land clearing, open area covered by grassland increased by 

40.5% and developed area increased by 131.4%, compared to 2010. These habitat 

changes occurred almost exclusively within the area occupied by Blanding’s turtles 

during the 2010-2013 study. Specifically, there was an 18.9% loss in forest and 34.2% 

loss of swamps in areas initially occupied by turtles, with a 93.6% increase in grassland. 

Largely due to a decrease in low-resistance wetlands (mostly swamps, Category 1 

habitat) and increase in high-resistance habitat (settlement, grassland) within the 

central region of the study area, availability of least-cost paths linking the northern and 

southern wetlands declined, with the shortest paths entirely lost by 2017-2020. The 



87 
 

single remaining corridor was 480 m (15.1%) longer than the previous least-cost path 

and following a more convoluted trajectory involving traversing wetland, forest, and 

some open field habitat, as well as roads (Figure 1).  
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Figure 1: Blanding’s turtle habitat in the study area in Ottawa, Ontario, Canada. Changes in habitat and least-cost paths (red) 

connecting Category 1 habitat in the northern conservation forest and southern Kizell wetlands in the study area before (left, 2010-

2013) and after (right, 2017-2020) initiation of two major development projects. The South March Highland conservation area and 

Kizell pond sub-populations are, respectively, to the north and south of Terry Fox Drive, the main road bisecting the site.  
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Population size estimation 

We estimated that the total adult Blanding’s turtle population size was 81.0 

(95% CI: 62.5-99.6) in 2010, declining to 24.4 (95% CI: 13.3-35.5) in 2020. The overall 

(69.9%) population decline was not consistent across sexes, with females declining >4-

fold from 55.6 (95% CI: 45.6-65.6) to 11.7 (95% CI: 5.8-17.6) (79.0%), whereas males 

declined by half from 25.4 (95% CI: 16.9-34.0) to 12.7 (95% CI: 7.5-17.9). The greater loss 

of females resulted in a shift from a female-biased population in 2010 (68.6% female) to 

near-sex-ratio-parity (48.0% female) in 2020 (Figure 2, Table 2Error! Reference source n

ot found.). The best-fit JS population estimation model had constant capture probability 

(ρ = 0.48; 95% CI: 0.41-0.55) and number of individuals (Ns = 8.1; 95% CI: 4.1-15.8) 

available to enter the population (2010 to 2020). The best-fit JS model estimated the 

same apparent annual survival (Φ) for both sexes, which was 0.86 (95% CI: 0.81-0.90) 

during 2010-2013 and 0.81 (95% CI: 0.64-0.90) during 2017-2020 (Table 2). Probability 

of entry into the population (pent) was very low, estimated as 0.052 (95% CI: 0.029-

0.091) for males and 0.009 (95% CI: 0.001-0.080) for females (Table 2). Further, we 

estimated that the juvenile Blanding’s turtle population decreased by 90.0% from 24.9 

(95% CI: 15.4-34.3) in 2010 to 2.5 (95% CI: 0.0-5.8) in 2020, with an estimated apparent 

annual survival rate of 0.78 (95% CI: 0.63-0.88) and a capture probability of ρ = 0.20 

(95% CI: 0.12-0.31) (Figure 2; Appendix C, Table 3).  

When considering only the sub-population of adult Blanding’s turtles in the 

northern conservation forest, we estimated a 70.4% population decline from 52.7 

(95% CI: 46.1-69.4) to 15.6 (95% CI: 7.9-23.4) between 2010 and 2020. Specifically, 
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females in this sub-population experienced a more severe decline (79.6%) than males 

(48.1%; Appendix C, Figure 2, Table 2). In this sub-population, adult apparent annual 

survival (Φ) was 0.81 (95% CI: 0.74-0.86) and probability of immigration for males 

(pent = 0.062; 95% CI: 0.035-0.106) was >3 times higher than that for females (Table 2). 

In this sub-population, estimated number of juveniles declined from 16.2 (95% CI: 6.1-

26.4) in 2010 to 2.4 (95% CI: 0.0-5.6) in 2020 (Appendix C, Figure 2; Appendix C, Table 3). 

In contrast, the adult population model exclusive to the southern Kizell wetland 

revealed relatively high apparent survival (Φ = 0.94, 95% CI: 0.85-0.98), but markedly 

low probability of entry for both sexes (pent <0.001). In this analysis, the total adult sub-

population declined by 40.2% from 17.4 (95% CI: 14.4-20.6) to 10.6 (95% CI: 5.1-16.1). In 

this sub-population, declines in females (39.0%) and males (39.1%) were comparable 

(Table 2; Appendix C, Figure 2). Juveniles in the southern Kizell sub-population were 

estimated to have declined from 2.3 (95% CI: 0.8-3.9) in 2010 to 0.4 (95% CI: 0.0-2.0) in 

2020 (Appendix C, Figure 2; Appendix C, Table 3).  
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Figure 2: Estimated Blanding’s turtle population size (with 95% confidence interval) in 

Ottawa, Ontario, Canada, including both the South March Highlands conservation area 

and Kizell pond sub-populations. Estimates were calculated from a Jolly-Seber 

population model (POPAN formulation).  
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Table 2: Estimated population parameters for the adult Blanding’s turtle population in Ottawa, Ontario, Canada, including both the 

South March Highlands conservation area and Kizell pond sub-populations. Parameters were derived from Jolly-Seber estimation for 

the whole population and for the northern (SMH) and southern (Kizell) sub-populations separately. Sex- or study-period-specific 

parameters are shown where appropriate. Where only one estimate is shown, the parameter was estimated to be constant through 

time and for both sexes.   
Entire population SMH Kizell 

Estimate Lower 
95% CI 

Upper 
95% CI 

Estimate Lower 
95% CI 

Upper 
95% CI 

Estimate Lower 
95% CI 

Upper 
95% CI 

Capture probability 0.478 0.412 0.545 0.516 0.406 0.625 0.419 0.312 0.533 

Superpopulation size1 8.1 4.1 15.8 6.3 2.8 13.9 0.3 0.0 54.5 

Apparent survival  

2010-2013 0.860 0.809 0.899 
0.808 0.743 0.860 0.944 0.848 0.980 

2017-2020 0.805 0.643 0.904 

Probability of immigration 

Females 0.009 0.001 0.080 0.016 0.002 0.100 
<0.001  <0.001  1 

Males 0.052 0.029 0.091 0.062 0.035 0.106 

Female population size      

2010 55.6 45.6 65.6 37.3 27.5 47.1 8.2 6.7 9.8 

2020 11.7 5.8 17.6 7.6 3.4 11.8 5.0 2.4 7.6 

Male population size       

2010 25.4 16.9 34.0 15.4 8.6 22.3 9.2 7.7 10.8 

2020 12.7 7.5 17.9 8.0 4.5 11.6 5.6 2.7 8.5 
1  Superpopulation = the total number of individuals available for entry into the sampled population (Schwarz and Arnason, 1996) 
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Home ranges and locations 

Mean home range area of Blanding’s turtles monitored in 2010-2013 was 

19.7 ha (95% CI: 5.3-34.1) compared to 13.8 ha (95% CI: 4.6-23.02) in 2017-2020 

(F1,1 = 0.001, p = 0.98; n = 36 turtles). During the 2017-2020 nesting seasons, females 

were found more often in close proximity to roads than males (t25 = 0.68, p = 0.51; 

n = 27 turtles), with 33.1% of female turtle GPS locations and 21.3% of male turtle GPS 

locations within 200 m of roads. On average, females were located 260.5 m 

(95% CI: 117.7-403.3) (or 44.3%) closer to roads than males (t25 = 3.75, p <0.001; n = 27). 

Moreover, the proportion of realised GPS fixes was twice as high for females as for 

males (t25 = 2.12, p = 0.043), implying that females spent more time on land. Turtle GPS 

trajectories showed that 5 (4 females, 1 male) of the 35 tagged turtles in 2017-2020 

crossed Terry Fox Drive, the major road that bisects the study area, at least once. 

However, GPS data resolution was not sufficient to determine if turtles crossed through 

culverts or on the road.  

Mortalities 

During 2010-2013, of 21 radio-tagged turtles, 9.5% died during the May-

September monitoring period. A single adult female died from a vehicle collision, while 

the other turtle succumbed to an unknown cause. During 2017-2020, of 33 tagged 

turtles, a single male (2.9%) died from a vehicle collision. Based on telemetry, estimated 

30-day turtle survival probability during summers 2017-2020 was 0.96 (95% CI: 0.89-1.0) 

and 1.0 for male and female turtles, respectively, with 4 of 33 turtles succumbing to 
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unknown fate (and thus censored in survival estimation). Our CPH model revealed no 

apparent hazard ratio differences between the sexes (p = 0.99).  

Untagged turtles were found dead on the road during both 2010-2013 (n = 5, 

only one could be identified as an adult female) and 2017-2020 (n = 3, 2 of which were 

identified as adult females, the other could not be sexed). Note that during 2018 and 

2019, a separate research team working in the area detected an additional 4 road 

mortalities, 2 of which were identified as adult females and 2 as juveniles (D. Seburn, 

Canadian Wildlife Federation, pers. comm.). Thus, we infer that a minimum of 1 adult 

female Blanding’s turtle per year was killed on the road, during both periods. However, 

we consider that because the single road mortality of a tagged turtle in 2020 would not 

have been detected without telemetry, and because additional road mortalities may 

have been removed prior to our road survey, estimated road mortality rates are likely 

considerably higher than our estimates. Notably, 92.9% of observed road mortalities 

occurred on roads immediately surrounding the northern conservation forest and 78.6% 

were found specifically on Terry Fox Drive (Appendix C, Figure 1) and in proximity to 

openings in the roadside fences (e.g., for railroad crossing and development access).  

Population viability analysis 

In the baseline population projection for Blanding’s turtles, the population 

experienced a stable finite growth rate throughout the 50 years (λ = 0.997). Adult 

female survival was the parameter with the highest elasticity (80%), with the remaining 

parameters having lower contributions (all <11%; Appendix C, Table 4). When one and 

two additional female mortalities per year were modelled, projected adult female 
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population size in 2020 was 37.0 and 28.2, respectively, which was considerably larger 

than our estimated population size of 11.7 (95% CI: 5.8-17.6) females from the JS model. 

When female mortality was increased to 3 and 4 per year, projected adult female 

population size in 2020 was 19.3 and 10.5, respectively. Thus, 4 adult female mortalities 

per year during 2010-2020 matches closely our estimated decline of female Blanding’s 

turtle population size. When annual female adult survival rate was reduced 

proportionally by 1.8% for 50 years (representing 1 of the 56 initially estimated adult 

females in 2010), λ was 0.982, and estimated population size in 2020 was 38.6 adult 

females (Figure 3; Appendix C, Table 5). When annual female survival rate was reduced 

by 3.6% for the duration of the projection (representing 2 of 56 females in 2010), total 

population growth rate declined further (λ = 0.968), and population size in 2020 was 

projected as 32.5 females (Figure 3; Appendix C, Table 5). Note that both these 

projected 2020 adult female population sizes were 3.3 and 2.7 times larger, respectively, 

than our estimated population size from the JS model. In fact, we found that an adult 

female annual survival rate of 0.82 was needed to produce the female population size 

estimated by the JS model (Figure 3; Appendix C, Table 5). Note that this modelled 

annual survival rate is comparable to the mean apparent survival rate estimated by the 

JS model. With a female survival rate of 0.82, the population experienced a finite growth 

rate of λ = 0.922 and would likely breach the quasi-extinction threshold of 4 females 

before 2030 (Figure 3; Appendix C, Table 5). Likewise, annual female survival of 0.75 and 

0.86 would recreate the lower (n = 5.8 females) and upper 95% confidence limit 

(n = 17.6 females) of the population size estimate, respectively (Appendix C, Table 5). 
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Lastly, to sustain a population size above the quasi-extinction threshold (n = 4 females) 

by 2030 and 2060, the adult female survival rate would have to be ≥0.82, or ≥0.91, 

respectively, starting in 2010 (Figure 3; Appendix C, Table 5).  

When modelled as two sub-populations and one female road mortality per year 

was added to the northern sub-population (as suggested from our road mortality 

observations), the projected size of this sub-population in 2020 was 12.1 adult females. 

When two female road mortalities were added per year, the projected population size 

in 2020 was 5.7 adult females (Appendix C, Table 6), suggesting that between 1-2 adult 

females were likely killed on the road in the northern conservation forest since 2013, 

leading to our observed number of adult females in this sub-population (n = 7.6, 95%. CI: 

3.4-11.8). An annual female survival probability of 0.84 recreated the observed decline 

in females in this sub-population. With this survival rate, the northern sub-population 

experienced a growth rate of λ = 0.904 (Appendix C, Figure 3). In contrast, in the 

southern Kizell wetland, adult females likely experienced a higher annual survival rate of 

0.94, leading to the observed sub-population size of 5.0 (95% CI: 2.4-7.6) adult females 

and a population growth rate of λ = 0.977 (Appendix C, Figure 3).  
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Figure 3: Population viability analysis (PVA) of the adult female Blanding’s turtle 

population in Ottawa, Ontario, Canada, starting with the estimated female adult 

population size in 2010. Projected scenarios are: Baseline in the absence of road 

mortality; with road mortality scenarios similar to road kill observations (1.8% and 3.6% 

reduced female annual survival rate), with a survival rate of 0.82 that recreated 

observed female population size in 2020, and survival rates with which quasi-extinction 

(Q-E) threshold of 4 female adults were breached by 2030 and 2060 (survival rates: 0.83 

and 0.91, respectively). The horizontal line represents the quasi-extinction threshold.  
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Discussion 

Human impacts on the environment threaten wildlife worldwide (Sala et al., 

2000), and knowledge about the extent of the impact of urban development on 

population sustainability can guide management decisions for species-at-risk. Consistent 

with our hypothesis, current urban development in the South March Highlands area of 

Ottawa, Ontario, Canada, is not compatible with Blanding’s turtle population viability. 

Over the decade of intensive development, the study area experienced a substantial loss 

of turtle habitat and connectivity, likely leading to the separation of two smaller and 

largely distinct sub-populations of turtles. Habitat loss coincided with a severe decline in 

adult turtle survival and population size, which was especially pronounced in females 

and ultimately shifted the population’s sex ratio and led to low juvenile recruitment. 

Turtles were killed by vehicles; females spent more time on land and were closer to 

roads than males. An annual survival rate for adult females of 0.82 yielded comparable 

changes in female population size to those observed over the last 10 years and this rate 

is insufficient to have a viable population over the longer term. Ultimately, our results 

suggest that in our study area, despite efforts to offset habitat loss and road mortality, 

this urban development is incompatible with the viability of this at-risk freshwater turtle 

population. Generally, our work suggests that development approval conditions may 

need to be revised to prevent population declines, and, in the long term, reduce 

biodiversity loss in urbanised areas. 

Our study shows that urbanisation can dramatically alter animal population size 

and structure, primarily through reduced habitat availability and higher road mortality. 
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We estimated Blanding’s turtle survival (or apparent survival) in two ways: using 

capture-mark-recapture (CMR) and telemetry-based methods. Although the two 

methods provided different estimates, we suspect that telemetry-based estimates were 

overestimates because, despite our best efforts in the field, a portion of the monitored 

turtles (11.4%) were not recovered and thus succumbed to unknown fate that could 

have included road mortality. This uncertainty reduces the precision of survival 

estimates (Murray, 2006; Murray and Bastille-Rousseau, 2020) and, unlike our CMR-

based annual apparent survival estimates, telemetry provided survival estimates only 

for the May-September period during 2017-2020. Notably, apparent survival estimates 

derived from the JS model reflected observed changes in the total study population size, 

and the fact that our pent estimates were low implies that the population was 

functionally closed and thus that apparent survival rates were minimally influenced by 

turtle emigration from the study area. Further, our projection results suggest that a 

female adult annual survival rate similar to the mean apparent survival rates could 

effectively reproduce the current female population size.  

Survival estimates in our urban study population were markedly lower than 

those observed in undisturbed Blanding’s turtle populations (e.g. Congdon et al. 1993). 

While sex-biased road mortality is sometimes still controversial (see e.g. Carstairs et al. 

2019), and often not considered in turtle management, several studies have 

demonstrated that roads can have dramatic and differential effects on freshwater 

turtles (Beaudry et al., 2010; Howell and Seigel, 2019; Howell et al., 2019). For example, 

Piczak et al. (2019) found a >80% decline and increased male-bias in a Snapping turtle 
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(Chelydra serpentina) population subjected to high road mortality. Likewise, our 

detections of road mortality combined with estimates of time spent on land and in 

proximity to roads (see also Aresco, 2005; Steen et al., 2006) supported that females are 

at higher risk of vehicle collisions (Beaudry et al., 2010; Crawford et al., 2014; Howell 

and Seigel, 2019). Our suspicion that road mortality has a serious impact on our study 

population is further reinforced by the fact that the sub-population in the northern 

conservation forest (which is surrounded by roads) declined more than the more 

isolated southern sub-population. Thus, our results demonstrate the critical impacts of 

roads, not only on total turtle population size, but especially on females during overland 

travel, such as when searching for nest sites (Ernst and Lovich, 2009; Tuberville et al., 

1996), and highlights the need for careful implementation and intensive monitoring of 

fences and wildlife passages.  

Notably, the major road bisecting the study area (Terry Fox Drive) was built just 

prior to our first study period and there were already indications of high road mortality 

and population decline at that time (Dillon Consulting Limited 2013, Hasler et al. 2015) 

which was supported by our JS population model results. We showed that turtle 

apparent survival decreased even more after the recent pulse in residential 

development (2017-2020), which likely spurred an increase in road traffic. Habitat loss 

often works in tandem with other anthropogenic disturbances, leading to aggravated 

impacts on wildlife populations (Paterson et al., 2021; Romero-Muñoz et al., 2020). In 

our case, we suspect that loss of a portion of crucial turtle habitat and reduced 

connectivity between sub-populations may have forced animals into the proximity of 
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roads, where permeable fencing failed to prevent vehicle collisions. These combined 

effects could have aggravated and accelerated the effects of habitat change or roads 

alone. These results emphasize the need to consider multiple stressors when developing 

management plans to limit impacts on urban wildlife populations.   

Coinciding with the decline of adult females in the Blanding’s turtle population, 

we found a decrease in juvenile recruitment over the last decade. Despite lower 

detection probabilities of juvenile turtles compared to adults (Pike et al., 2008), we used 

identical capture methods in 2017-2020 and in 2010-2013, and conducted extensive 

visual surveys of the area. Thus, we surmise that the observed decline in juveniles is 

representative of demographic changes in our study population, notably the loss of 

reproductive females due to road mortality. Apart from road mortality, loss of juveniles 

could also be due to an increase in nest predation by subsidized sub-urban predators 

such as raccoons, which hunt for turtle eggs along road sides (Karson et al., 2018; 

Marchand and Litvaitis, 2004). Knowledge about recruitment rates can inform turtle 

management, which may consider nest-protection or head-starting programs, in 

addition to protecting adults (e.g. Ross et al. 2020; Campbell et al. 2020).  

Our study population likely cannot sustain current rates of adult road mortality, a 

phenomenon seen in other systems where wildlife population sustainability has been 

sought in tandem with rapid urban development (e.g. Howell et al. 2019; Stokes et al. 

2021; Ascensão and Desbiez 2022). Unfortunately, approval for urban development 

proposals rarely requires the level of pre-development baseline data that would inform, 

for example, robust habitat availability and population viability analyses. This implies 
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that assessments of wildlife responses to development almost always suffer from data 

deficiencies, which precludes both rigorous assessment of responses and the ability to 

make rapid and effective adjustments to mitigation measures. In South March 

Highlands, the measures used to offset development impacts, including road culverts, 

wildlife fences, artificial turtle nest sites and hibernacula, were constructed mostly ad 

hoc and with limited surveillance and quality control (A. Auge, unpubl.). Some measures 

were established years after the project had been initiated and were untested. For 

example, although the benefits of wildlife fencing in combination with culverts have  

been confirmed for some freshwater turtle populations (e.g. Aresco 2005b), other 

mitigation measures such as artificial nest sites and hibernacula have not been 

evaluated. Often, newly created habitats fail to fully restore ecosystem function 

(Moreno-Mateos et al., 2012) or require years to become established (Vesk et al., 2008), 

which can prevent target species from occupying these areas and can reduce success of 

new habitat (Moilanen et al., 2009; Pickett et al., 2013). In principle, these measures 

could have worked given that creating new habitats, passages or fences can benefit a 

variety of wildlife species (Jarvis et al., 2019; Kiviat et al., 2000), but in other instances, 

such measures have not been successful (Baxter-Gilbert et al., 2015; Cunnington et al., 

2014; Gilhooly et al., 2019). As a result, it is unsurprising that mitigation in our study 

area was insufficient to prevent population decline.  

Long-lived species with delayed maturity and low natural recruitment often have 

a larger minimum viable population size, slower population growth rate (Wang et al., 

2019), and, thus, limited ability to recover from high levels of mortality associated with 
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anthropogenic disturbances (Hamilton et al., 2018; Norse et al., 2012; Richards et al., 

2021). Further, although some effects of habitat loss can be detected over a short 

timespan (e.g., loss of nesting sites, increased predation), demographic consequences of 

habitat loss may be revealed only after an extended period and following intensive 

monitoring. This is especially true when long-lived species might already have been in 

slow decline prior to more intense disturbance, leading to challenges in evaluating the 

true impacts of development and merits of mitigation (Knapp and Perez-Heydrich, 2012; 

Pike et al., 2010).  

To conclude, urban wildlife populations face a high risk of extirpation due to 

habitat alterations (Browne and Hecnar, 2007; Howell and Seigel, 2019; Stokes et al., 

2021). Population and biodiversity protection are most successful when environmental 

impacts are avoided or at least minimised (Gardner et al., 2013; Marshall et al., 2020), 

but in the present age of widespread biodiversity loss, urban sprawl, and environmental 

change, the onus is on legislators and planners to devise better strategies for allowing 

development while ensuring protection of species at-risk. If habitat loss cannot be 

avoided, mitigation strategies should be demonstrated to be effective and applied 

correctly (Edwards et al., 2019; Ghisbain et al., 2020). We recommend that monitoring 

data collected before, during, and after development should be used to evaluate such 

strategies and to inform timely adjustments to mitigation (Maron et al., 2012; Taylor et 

al., 2010; Vasconcelos and Calhoun, 2006). Ultimately, these activities will be 

increasingly necessary to help improve the sustainability of wildlife populations in an 

increasingly disturbed, urbanised environment.  
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Chapter 5: General Discussion 
 

Synthesis and significance 

The overall objective of my thesis was to further our understanding of animal 

behaviour and population dynamics in response to natural and anthropogenic 

challenges in the environment. To achieve this, I used novel miniaturised bio-logging 

technologies to classify and validate activity states of free-ranging freshwater turtles; 

investigated how these animals navigate environments of high thermal heterogeneity 

near their northern range limit; and assessed their population responses to 

anthropogenic changes on the landscape.  

Chapter 2: Accelerometer-based activity classification 

In chapter 2, I developed classification models that successfully characterised 

and validated freshwater turtle activity states using animal-borne bio-loggers: 

accelerometers and water sensors. I demonstrated two approaches for using 

accelerometers more efficiently for behavioural studies and found the following: 1) 

Predictive accuracy of activity classification was unaffected by using sampling 

frequencies that were considerably lower than those tested in previous accelerometer 

studies (e.g. Halsey et al., 2009; Studd et al., 2019) – this finding implies that lower 

sampling frequencies can be used, at least for freshwater turtles, to benefit 

accelerometer battery life, deployment length, and data processing power needs; and 2) 

Demonstration, in one of the first studies using accelerometers to investigate 

freshwater turtle behaviour, that simple classification trees have high predictive 
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accuracy and that simple classification models can be used interchangeably between 

closely-related species. The results of this study are more supportive of the potential 

cross-species transferability of accelerometer-based behavioural/activity classification, 

compared to previous studies (e.g. Ferdinandy et al., 2020). More generally, this chapter 

makes an important methodological contribution to the field of behavioural ecology by 

providing a framework for robust behavioural classification and by highlighting the need 

for similar studies to validate new bio-logging technology.  

Chapter 3: Navigating the thermal landscape 

In chapter 3, I investigated how two species of ectotherms select habitats in a 

thermal landscape near the northern edge of their range, at various spatial scales and 

across seasons. I showed that turtles selected warmer and more thermally 

homogeneous conditions compared to the available environment, but more so at finer 

spatial scales, which likely correspond to the scale that these relatively small and slow-

moving animals perceive their surroundings. Turtle thermal sensitivity was greatest 

early in the year after emerging from hibernation when animals require higher 

temperature due to increased energy demands related to reproductive behaviour 

(Bouazza et al., 2016; Congdon and Tinkle, 1982; Krawchuk and Brooks, 1998).  

Results from this chapter augment previous research on ectotherm habitat 

selection (e.g. George et al., 2017; Picard et al., 2011) and habitat thermal quality (e.g. 

Cadena and Tattersall, 2009; Row and Blouin-Demers, 2006) by focussing on the 

selection of thermal regimes, including mean temperature and thermal variability, 
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across various environmental conditions, using fine-scale data derived from novel bio-

loggers. My results highlight the importance of considering multiple factors influencing 

environmental properties and various spatial scales when examining habitat selection. 

These analyses are especially significant because they not only assess animal sensitivity 

to average ambient temperatures, but also the role of thermal heterogeneity on the 

landscape in driving behaviour. Such heterogeneity in temperatures has been shown to 

have comparable effects on animal behaviour in theoretical models, but has rarely been 

tested in wild animals (Sears and Angilletta, 2015; Sears et al., 2016b). These findings on 

thermal habitat selection are important because they suggest that animals may buffer 

environmental fluctuation in heterogeneous landscapes, which eventually will have 

consequences for their energy balance, physiological performance and fitness (Huey and 

Slatkin, 1976; Sears and Angilletta, 2015). Ultimately, this research advances our 

understanding of animal habitat selection in heterogeneous landscapes, and can help 

predict animal responses to future temperature variation in challenging and rapidly-

changing environments.  

Chapter 4: Urbanisation and population persistence 

In chapter 4, I investigated the impact of habitat change and road development 

on an urban turtle population. Consistent with my prediction, I found that development 

in the study area over the last decade resulted in substantial turtle habitat loss and 

fragmentation. Moreover, I found a dramatic reduction in juvenile recruitment and 

adult survival, which translated to a marked decline in population size. This decline was 
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most profound in females, which could be attributable to higher female mortality on 

roads given that they spent more time on land and were closer to roads than males. 

These findings are important as sex-biased road mortality risk is still fairly controversial 

in the literature (e.g. Carstairs et al., 2019). I show that road mortality in an area with 

reduced habitat availability and connectivity can lead to a precipitous decline in 

population size, even though effects of habitat loss on long-lived species can often be 

discerned only after a lag period (Findlay and Bourdages, 2000). In fact, I suspect that 

habitat loss may be the ultimate factor in this decline by forcing turtles onto roads when 

moving between wetlands or searching for new nesting sites. My population viability 

models show that with continued road mortality the local Blanding’s turtle population is 

likely to become functionally extinct in the next decade. The results of chapter 4 are 

eye-opening as they challenge the long-held assumption that environmental 

sustainability and urban development can be compatible as long as mitigation measures 

are implemented (Bull et al., 2016; Maron et al., 2012). Indeed, my results imply that the 

application of several mitigation measures designed to protect turtles and restore their 

habitat in the study area was not sufficient to ensure viability of this at-risk turtle 

population. This point is compounded by the fact that long-term monitoring of the turtle 

population and adjustment of mitigation measures are not planned. More broadly, the 

results imply that development approval conditions should be reconsidered to require a 

higher level of pre- and post-development monitoring for target species, including 

efficacy assessment and adaptive improvements to increase the performance of 

mitigation measures. 
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Broader implications and conclusion 

Species are frequently faced with a variety of natural and anthropogenic threats 

in the environment (Angilletta, 2001; Sala et al., 2000). My thesis adds to our 

understanding of the role of the thermal environment and anthropogenic land-use 

change in shaping animal behaviour and population dynamics. My results imply that 

freshwater turtles can respond behaviourally to fine-scale environmental variability in 

challenging environments, which likely maximises their physiological performance, 

survival and fitness. On the other hand, when faced with rapid and more permanent 

anthropogenic impacts on the environment, such as habitat loss and road mortality, 

populations of long-lived species are likely unable to respond quickly enough, leading to 

diminished long-term viability, despite measures to offset impacts on wildlife. These 

results have important implications for approval conditions of urban development 

projects, which likely need to be revised to meet environmental standards over the long 

term.  

Future research  

While I was able to show that turtles experienced warmer and less variable 

temperatures compared to the environment, my study did not address the mechanisms 

leading to animal responses to temperature variability. I suspect that animals likely used 

a combination of actively moving between thermally suitable locations and choosing 

sites that are inherently warmer and less variable (Woods et al., 2015), which could 

have implications for cost of thermoregulation. For example, while actively moving 
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between preferred locations in a heterogeneous landscape can increase 

thermoregulatory efficiency, these benefits need to be balanced with costs related to 

predation risk and energy expenditure (Huey and Slatkin, 1976; Sears and Angilletta, 

2015). Thus, I recommend future work to address the mechanisms of thermal habitat 

selection by assessing activity patterns and/or energy expenditure (using a combination 

of bio-loggers, including accelerometers) compared to fine-scale environmental 

temperature variability and distribution.  

Further, my results are reflective of turtle behaviour in thermally heterogeneous 

environments at the northern distribution margin. I would expect that populations in 

regions with more benign and homogenous ambient temperatures show weaker 

selection of thermal locations (George et al., 2017; Sears and Angilletta, 2015). Thus, 

future similar work should be conducted on multiple populations, including those in 

more temperature regions. Several studies have addressed the relationship between 

ambient temperature and thermoregulation (e.g. Piasečná et al., 2015; Sears et al., 

2016), and my study provides evidence that animals exhibit thermoregulatory behaviour 

by selecting specific microclimates. However, future work should extend my analysis by 

including body temperature to investigate how thermal habitat selection affects body 

temperature and thus, thermoregulatory efficiency and accuracy.  

I suspect that habitat loss and road development worked in tandem to cause the 

dramatic decline in the Blanding’s turtle population. A few studies have addressed the 

synergistic effects of multiple threats on population viability, leading to effects that may 
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be much stronger than each threat on its own (Jenssen et al., 2015; Paterson et al., 

2021; Romero-Muñoz et al., 2020). Future studies should further investigate the effects 

of various disturbances, such as habitat loss, road mortality or other anthropogenic 

impacts, to investigate how these effects work together at various spatial scales. For 

example, long-term studies with a robust before-and-after-control-impact assessment 

(BACI) design should assess changes in movement patterns, corridor usage and survival 

of animals in areas undergoing development to assess to what extent individuals are 

forced out of their home range due to habitat loss, and what proportion of the 

population succumbs to immediate causes of mortality (e.g. on the road) vs. more 

ultimate impacts (e.g. through changes of nest site quality or predation affecting 

reproductive output). Ultimately, my work highlights the need to conduct rigorous 

environmental monitoring prior to, during, and after development, and if necessary, 

adopt mitigation measures that have a track record of success and that can be adjusted 

on the basis of monitoring results. Regardless, my study clearly shows that it may be 

very difficult to effectively balance urban development with environmental needs, as is 

so often purported by urban planning documents and development proposals (e.g. 

Geneletti et al., 2017; Sofeska, 2016).   

Lastly, while I used accelerometers and water sensors to describe freshwater 

turtle activity with high accuracy, I focused on characterising simple activity states. 

Other studies using a combination of bio-loggers successfully described more complex 

behaviours in other species, such as foraging or hunting in terrestrial mammals (Studd et 

al., 2019b, 2021). Likewise, future work on other small or cryptic animals, or species 
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with more complex behaviours, should aim to classify fine-scaled behaviour. For 

example, a combination of accelerometers and other bio-loggers could be useful for 

documenting nesting, mating or foraging behaviour across a range of species. Thus, 

adoption of these new, innovative tools could provide much deeper insight into animal 

time-budgets, responses to environmental variation, and the effect of natural and 

anthropogenic threats. Moreover, accelerometer data correlate with energy 

expenditure in a variety of species (e.g. Jeanniard-du-Dot et al., 2017; Ladds et al., 2018; 

Wilson et al., 2012), meaning that future work should calibrate these metrics for 

freshwater turtles and other species to gain insights into energy-time-budgets and the 

determinants of animal survival, fitness and population dynamics.  
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Appendix A: Supplementary materials for Chapter 2 
 

 

Table 1: Percent overlap of the best and second-best accelerometer summary statistic 

following histogram separation of terrestrial and aquatic in-motion and motionless. 

Dataset Species Separated 
activities 

Best 
summary 
statistic 

% 
overlap 

% 
improvement 
to second 
best statistic 

Second 
best 
summary 
statistic 

1 Hz 
sampling 
frequency 

Blanding’s Terrestrial-
in-motion 
vs. 
motionless 

ΔODBA, 
ΔVeDBA 

1.4 61.1 SDODBA 

Aquatic-in-
motion vs. 
motionless 

ΔODBA 6.7 5.6  ΔVeDBA 

Painted Terrestrial-
in-motion 
vs. 
motionless 

ΔODBA, 
ΔVeDBA 

1.1 9 TODBA 

Aquatic-in-
motion vs. 
motionless 

ΔODBA 0.5 16.7 ΔVeDBA 

Cross-
species 
comparison 

Blanding’s Terrestrial-
in-motion 
vs. 
motionless 

ΔODBA, 
ΔVeDBA 

1.6 38.5 TODBA 

 Aquatic-in-
motion vs. 
motionless 

ΔODBA 6.2 3.1 ΔVeDBA 

Painted Terrestrial-
in-motion 
vs. 
motionless 

ΔODBA, 
ΔVeDBA, 
SDVeDBA 

1.1 8.3 TODBA 

 Aquatic-in-
motion vs. 
motionless 

ΔODBA 0.6 14.3 ΔVeDBA 
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Table 2: Correlation matrix showing Pearson’s correlation coefficients between different 

accelerometer metrics. All correlations were significant (p <0.001). 

  
 ODBA VeDBA ΔODBA ΔVeDBA TODBA TVeDBA SDODBA SDVeDBA 

ODBA 1.00        

VeDBA 0.99 1.00       

ΔODBA 0.65 0.65 1.00      

ΔVeDBA 0.65 0.65 1.00 1.00     

TODBA 0.78 0.79 0.85 0.85 1.00    

TVeDBA 0.78 0.79 0.84 0.84 1.00 1.00   

SDODBA 0.64 0.63 0.81 0.81 0.70 0.69 1.00  

SDVeDBA 0.64 0.64 0.82 0.82 0.71 0.71 0.99 1.00 
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Table 3: State classification performance for the testing data used to classify Blanding’s 

turtle and Painted turtle accelerometry and water sensor data, using the other species 

threshold values. 

 

  

B
la

n
d

in
g`

s 

 Observed 

P
re

d
ic

te
d

 

 Motionless 
(aquatic)  

Motionless 
(terrestrial)  

In-motion 
(aquatic)  

In-motion 
(terrestrial)  

Motionless 
(aquatic) 

35 0 0 0 

Motionless 
(terrestrial) 

6 242 0 3 

In-motion 
(aquatic) 

20 0 41 0 

In-motion 
(terrestrial) 

22 1 13 465 

 Sensitivity (%) 42.2 99.6 75.9 99.4 

 Specificity (%) 100 98.5 97.5 90.5 

 Overall accuracy (%):    92.5 (95% CI: 90.3, 94.0%) 

P
ai

n
te

d
 

 

 Motionless 
(aquatic)  

Motionless 
(terrestrial)  

In-motion 
(aquatic)  

In-motion 
(terrestrial)  

P
re

d
ic

te
d

 

Motionless 
(aquatic) 

88 233 0 0 

Motionless 
(terrestrial) 

0 878 0 0 

In-motion 
(aquatic) 

12 0 34 19 

In-motion 
(terrestrial) 

0 25 0 42 

 Sensitivity (%) 88.0 77.0 100 68.9 

 
Specificity (%) 

81.1 100 97.6 98.0 

 
Overall accuracy (%):    78.3 (95% CI: 76.0, 80.5%) 
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Table 4: Effect of sampling frequency on state classification accuracy. Best-fit smoothing 

window, threshold values, accuracy, sensitivity and specificity of Blanding’s turtle and 

Painted turtle activity classification based on accelerometry data, sampled at 0.5, 0.25, 

0.125 and 0.0625 Hz. 

SF: sampling frequency, SW: smoothing window, Acc.: accuracy, Sens.: Sensitivity, Spec.: Specificity, CI: 
95% confidence interval 

 

 

  

SF (Hz) Species  Separation 
of in-motion 
vs. 
motionless  

SW 
(s) 

Thresh-
old 

Acc. (%)  
(95% CI) 

Sens. 
(%) 

Spec. 
(%) 

Overall 
accuracy (%)   
(95% CI) 

0.5 Blanding’s Terrestrial 
90 

0.7 99.2 (97.6, 99.8) 99.2 99.2 
93.2 

(90.3, 95.4)  Aquatic 1.2 92.9 (84.1, 97.6) 88.1 100 

Painted Terrestrial 
50 

0.4 98.3 (97.0, 99.2) 98.3 100 
79.4 

(76.1, 82.4)  Aquatic 1.5 98.5 (92.0, 1.0) 98.0 100 

0.25 Blanding’s Terrestrial  
92 

0.7 97.7(94.3, 99.4) 95.0 99.1 
91.9 

(87.4, 95.2) Aquatic 1.4 73.5 (55.6, 87.1) 70.0 78.6 

Painted Terrestrial 
72 

0.6 99.6 (98.1, 99.9) 100 92.6 
91.4 

(88.0, 94.3) Aquatic 2.1 85.3 (68.9, 95.1) 82.6 90.9 

0.125 Blanding’s Terrestrial  
112 

0.8 93.1 (85.6, 97.4) 96.7 91.2 
85.8 

(77.7, 91.9) Aquatic 1.5 73.7 (48.8, 90.9) 54.5 100 

Painted Terrestrial 
112 

1.7 96.6 (92.3, 98.9) 100 37.5 
89.2 

(83.4, 93.4) Aquatic 1.9 82.3 (56.7, 96.2) 83.3 80.0 

0.0625 Blanding’s Terrestrial  
128 

0.7 86.4 (72.3, 94.5) 68.8 96.4 
80.4 

(66.8, 90.2) Aquatic 5.1 42.9 (1.0, 81.6) 20.0 100 

Painted Terrestrial 
96 

0.9 97.3 (90.6, 99.7) 100 50 
89.0 

(80.2, 94.9) Aquatic 2.8 100 (63.1, 100) 100 100 
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Figure 1: Accelerometer (left) and VHF transmitter (right) bolted onto the rear carapace 

margin of a Painted turtle. 
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Figure 2: Boxplot of length of recorded states (top panel), and number of occasions each 

state was observed (bottom panel) across Blanding’s (blue) and Painted turtles (orange). 
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Figure 3: Sample histogram separating activity modes in Blanding’s turtles: terrestrial in-

motion from motionless and aquatic in-motion from motionless. The red vertical line 

indicates the threshold value determined after testing the accuracy of ΔODBA values 

within the overlapping regions. These histograms are based on data sampled at 1 Hz. 
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Figure 4: Optimizing the threshold value (vertical lines) relative to data accuracy, 

sensitivity and specificity, for Blanding’s turtles and Painted turtles, using acceleration 

data calculated with smoothing windows of the other species. 
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Appendix B: Supplementary materials for Chapter 3 
 

 

 

Figure 1: Blanding’s and Painted turtle habitat in the study area in Southern Ontario, 

Canada.  
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Table 1: Pairwise comparison between parameter estimates from mixed effect model 

comparing mean environmental temperature (mean T) and mean temperature 

coefficient of variation (T C.V.) within selected turtle locations vs. available locations at 

three different spatial scales, across seasons.  

 

 

  

Spatial 
scale  

Response 
variable 

Random vs. selected 
temperature during  

Estimate 95% CI p-
value Lower Upper 

Home 
range 

Mean T 

Pre-nesting season 0.253 -0.026 0.536 0.075 

Nesting season -0.225 -0.493 0.044 0.099 

Post-nesting season  -0.372 -0.677 -0.066 0.018 

T C.V. 

Pre-nesting season 0.071 0.048 0.094 <0.001 

Nesting season 0.026 0.004 0.048 0.020 

Post-nesting season  0.035 0.009 0.060 0.008 

Within 
home 
ranges 

Mean T 

Pre-nesting season -4.391 -4.792 -3.991 <0.001 

Nesting season -3.947 -4.326 -3.569 <0.001 

Post-nesting season  -3.611 -4.057 -3.164 <0.001 

T C.V. 

Pre-nesting season 0.081 0.045 0.118 <0.001 

Nesting season 0.043 0.007 0.079 0.020 

Post-nesting season  0.036 -0.002 0.074 0.064 

Within 
aquatic 
habitats 

Mean T 

Pre-nesting season -3.210 -3.642 -2.778 <0.001 

Nesting season -3.513 -3.921 -3.104 <0.001 

Post-nesting season  -2.645 -3.120 -2.169 <0.001 

T C.V. 

Pre-nesting season -0.006 -0.021 0.008 0.390 

Nesting season -0.006 -0.020 0.008 0.372 

Post-nesting season  0.017 0.002 0.032 0.031 

Within 
terrestrial 
habitats 

Mean T 

Pre-nesting season -8.941 -9.742 -8.139 <0.001 

Nesting season -7.531 -8.287 -6.783 <0.001 

Post-nesting season  -8.061 -8.938 -7.185 <0.001 

T C.V. 

Pre-nesting season 0.263 0.217 0.310 <0.001 

Nesting season 0.195 0.150 0.240 <0.001 

Post-nesting season  0.177 0.128 0.227 <0.001 
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Appendix C: Supplementary materials for Chapter 4 
 

 

Supplementary Methods 

We developed maps of development and natural habitat in the study area during 2010-

2013 and 2017-2020 using existing maps, satellite images, and ground-truthing. This 

allowed us to quantify natural habitat loss with classified habitat types being: open water, 

marsh, swamp, forest, grassland, and settlement (Appendix C, Table 1 for details). Highly 

sensitive Category 1 habitats (MNR, 2021) include with main ponds within the SMH 

wetlands and 55.5% of observed turtle locations. We assigned wetlands (open water, 

marsh, swamp) the lowest resistance values (and increasing resistance with increasing 

distance to wetlands), while forest and grasslands provided intermediate, and settlement 

and roads the highest resistance (as derived by Mui et al. 2017) (Appendix C, Table 2).  
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Figure 1: Blanding’s turtle study area in Ottawa, Ontario, Canada, where intensive 

development was initiated in the early 2000’s and has continued to 2020. The study 

area includes the South March Highlands Conservation Forest in the North und the Kizell 

Wetland in the South, which is adjacent to the area being developed since 2017.   
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Table 1: Definitions of habitat types in the study area that were used in the habitat 

suitability analysis 

Habitat type Definition 

Open water 
Wetland with some emergent and submerged macrophytes, 
shallow to deep 

Marsh 
Wetland with cattails, willow thickets, dogwood, floating 
vegetation 

Swamp Bogs, fens, forested swamps with minimal open water area 

Forest 
Deciduous, coniferous, mixed forest; used as upland travel 
corridors between wetlands 

Grassland/field 
Open grassed field, vegetated (abandoned) developed area; 
possibly used for nesting 

Settlement 
Any developed area (e.g. residential areas, parking lots, schools); 
generally unsuitable 
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Table 2: Resistance values for variables used in the connectivity analysis. Habitat 

resistance values are mean Blanding’s turtle specific values for spring and summer 

resistance reported by Mui et al. (2017) (0 = least resistance, 100 = highest resistance).  

Factor  Variable Resistance value 

Habitat Swamp 14 

 Marsh 15 

 Open water 0 

 Grassland 46 

 Forest 48 

 Settlement 70 

Road 0-5 m 90 

 >5 m 1 

Distance to water 0-10 m 0 

 10-50 m 5 

 50-100 m 20 

 100-500 m 35 

 >500 m 50 
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Supplementary Results  

 

Consistent with the decrease in connectivity pathways, we observed a decline in turtles 

moving between north and south of the study area. During 2010-2013, 13.0% of the 23 

tracked turtles were found in both populations and an additional 2 turtles observed in 

one area during 2010-2013 were captured in the other site during 2017-2020. In contrast, 

during 2017-2020 only 6.2% of tracked turtles (n = 32) were detected on both sides of the 

study area, indicating that loss of connectivity led to a decline in movement between the 

two main wetlands. During 2010-2013, 39.1% of tagged turtles used wetlands within the 

development zones either partially or exclusively. In contrast, during 2017-2020, only 

14.3% were detected in those areas, none which used the area exclusively.  

  



153 
 

Table 3: Estimated population parameters for the juvenile Blanding’s turtle population near Ottawa, Ontario, Canada, including both 

the South March Highlands conservation area and Kizell pond sub-populations. Parameters were derived from Jolly-Seber estimation 

for the whole population and for the northern (SMH) and southern (Kizell) sub-populations separately.  

 
Entire population SMH Kizell 

Estimate Lower 95% 
CI 

Upper 95% 
CI 

Estimate Lower 95% 
CI 

Upper 95% 
CI 

Estimate Lower 95% 
CI 

Upper 95% 
CI 

Capture 
probability 

0.197 0.116 0.313 0.700 0.345 0.911 0.495 0.327 0.664 

Super-population 
size 

3.4 2.8 3.6 1.3 0.8 1.1 0.1 0 36.9 

Apparent survival 0.777 0.631 0.877 0.123 0.014 0.578 0.832 0.287 0.984 

Probability of 
immigration 

0.017 0.006 0.057 0.109 0.080 0.148 0 0 1 

Juvenile 
population size  

    

2010 24.9 15.4 34.3 16.2 6.1 26.4 2.3 0.8 3.9 

2020 2.5 0 5.8 2.4 0 5.6 0.4 0 2.0 
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Table 4: Sensitivity and elasticity of demographic parameters used for the population 

viability analysis (PVA) for the female Blanding’s turtle population in Ottawa, Ontario, 

Canada.  

Parameter Value  Sensitivity Elasticity 

Fecundity 3.37 0.009 0.031 

Female hatchling 
survival 

0.261 0.118 0.031 

Female juvenile survival 0.7826 0.137 0.107 

Female adult survival 0.96 0.832 0.801 
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Table 5: Population viability analysis (PVA) results for each simulated scenario of the 

Blanding’s turtle population in Ottawa, Ontario, Canada, starting with initial population 

size from 2010 (n=55.6 female adults, n=17.1 female juveniles) and recreating estimated 

adult female population size in 2020 (n=11.7 females, 95% CI: 5.8-17.6) as estimated by 

the Jolly-Seber model.  

 

  

  

Scenario Female 
adult 

survival 
rate 

growth 
rate λ 

Projected adult female population 
size in 

2020 2030 2060 

Baseline 0.960 0.9969 45.8 44.1 40.2 

1.8% increased in female 
annual mortality rate 

0.942 0.982 38.6 32.0 18.7 

3.6% increased in female 
annual mortality rate 

0.924 0.968 32.5 23.1 8.6 

Recreation of observed 
mean female population 
size in 2020 

0.821 0.896 11.7 3.7 0.1 

Recreation of lower CL of 
female population size in 
2020 

0.751 0.861 5.8 1.2 0.0 

Recreation of upper CL 
female population size in 
2020 

0.862 0.922 17.6 7.6 0.7 

Breaching Q-E threshold 
by 2030 

0.825 0.898 12.2 4.0 0.2 

Breaching Q-E threshold 
by 2060 

0.906 0.954 27.2 16.7 4.0 
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Table 6: Population viability analysis (PVA) results for each simulated scenario of the two 

Blanding’s turtle northern conservation forest (SMH) and in the southern Kizell sub-

populations in Ottawa, Ontario, Canada, starting with initial population sizes from 2013 

(SMH: n = 21.9 female adults, n = 5.3 female juveniles; Kizell: n = 7.1 female adults, 

n = 1.0 female juveniles) as estimated by the Jolly-Seber model, and assuming 70% 

females in the juvenile cohort.  

 

 

  

Sub-
population 

Scenario Female 
adult 
survival rate 

Projected adult female 
population size in 

2020 2030 2060 

SMH 

Baseline 0.960 18.4 17.5 15.9 

1 female road mortality / 
year in SMH 

0.960 12.1 3.0 0.0 

2 female road mortality / 
year in SMH 

0.960 5.7 0.0 0.0 

Recreation of observed 
SMH adult female 
population size in 2020 

0.835 7.5 2.5 0.1 

Kizell 

Baseline 0.960 5.9 5.6 5.1 

1 female road mortality / 
year in Kizell 

0.960 0.0 0.0 0.0 

Recreation of observed 
Kizell adult female 
population size in 2020 

0.935 5.0 3.8 1.9 
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Figure 2: Estimated population size (with 95% confidence interval) of adult female and 

male and juvenile Blanding’s turtles in each sub-population (South March Highlands 

conservation forest (“SMH”) and Kizell Cell Wetland (“Kizell”) in the South March 

Highlands, Ottawa, between 2010 and 2020. Estimates were calculated from a Jolly-

Seber population model (POPAN formulation).  
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Figure 3: Population viability analysis (PVA) of the South March Highlands Blanding’s 

turtle population treated as two distinct sub-populations, starting with estimated 

population sizes in SMH conservation forest and Kizell cell wetland in 2013. Shown are 

population projections over 50 years since 2013 for the two sub-populations, modelled 

with baseline conditions, and with the female adult annual survival rates necessary to 

recreate observed changes in the sub-populations (female survival rate in SMH: 0.84, 

Kizell: 0.94).   

 

 


