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ABSTRACT 

 

Within a landscape, a species‟ occurrence is dictated by the availability of suitable habitat 

and resources needed for survival; however, occurrence is not only affected by the characteristics 

of occupied sites, but also by the characteristics of the surrounding landscape. The endangered 

Blanding‟s turtle (Emydoidea blandingii), a semi-aquatic freshwater turtle, occupies a wide range 

of wetlands and landscapes in southeastern Canada and the northeastern United States. While the 

effects of habitat characteristics on wetland occupancy by Blanding‟s turtles have been 

documented, here I explore whether the probability of wetland occupancy by Blanding‟s turtles 

is affected by the surrounding landscape. I used visual surveys, environmental DNA, and atlas 

data to document the presence of Blanding‟s turtles. I then used boosted regression tree 

modelling to determine how landscape composition explains wetland occupancy. Forest cover 

around the surveyed wetlands was the strongest positive driver of turtle occupancy while 

anthropogenic land cover was the strongest negative driver of turtle occupancy. Generally, 

human disturbances in a landscape lowered the probability of occupancy. Overall, I determined 

that wetland occupancy by Blanding‟s turtles is affected by landscape composition and that, 

therefore, wetland occupancy can successfully be predicted from the composition of the 

surrounding landscape. 

 

 

 

  



iii 

 

RÉSUMÉ 

 

Dans un paysage, la présence d‟une espèce est dictée par la disponibilité d‟habitat 

convenable et des ressources nécessaires pour sa survie. Par contre, la présence d‟une espèce 

n‟est pas seulement affectée par les caractéristiques des sites occupés, mais aussi par les 

caractéristiques du paysage environnant. La tortue mouchetée (Emydoidea blandingii), une tortue 

semi-aquatique d‟eau douce, occupe une vaste gamme de milieux humides du sud-est du Canada 

et du nord-est des États-Unis. Bien que les effets des caractéristiques de l'habitat sur l‟occupation 

des milieux humides chez la tortue mouchetée aient déjà été documentés, ici j'examine si la 

probabilité d'occupation des milieux humides chez la tortue mouchetée est affectée par le 

paysage environnant. J‟ai utilisé la modélisation par arbres de régression augmentés pour 

déterminer comment la composition du paysage peut expliquer l‟occupation des milieux humides 

chez la tortue mouchetée. Parmi les milieux humides échantillonnés, le couvert forestier des 

terres adjacentes était le facteur principal affectant l‟occupation positivement, tandis que le 

couvert anthropogénique était le facteur principal affectant l‟occupation négativement. 

Généralement, les dérangements anthropogéniques dans un paysage abaissent la probabilité 

d‟occupation. En somme, j‟ai déterminé que l‟occupation des terres humides chez la tortue 

mouchetée est affectée par la composition du paysage et que l‟on peut prédire avec succès 

l‟occupation par la tortue mouchetée en se servant de la composition des paysages environnants.  
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GENERAL INTRODUCTION 

Worldwide, species are currently facing many challenges to their continued survival due 

to the impacts of human activities. Habitat loss and degradation, climate change, and other 

unsustainable practices threaten biodiversity and have led to the extinction of many species (Sisk 

et al., 1994; Thomas et al., 2004; Tilman et al., 2017). Currently, an estimated 1 million species 

worldwide are at risk of extinction due to anthropogenic threats, and even populations of some 

common and widespread species are in decline (IPBES, 2019; Rosenberg et al., 2019). For 

example, avifauna in North America has lost nearly 3 billion individuals since 1970, a loss of 

approximately half of North America‟s present bird population (Rosenberg et al., 2019). The 

measurable and catastrophic impacts of humans on the Earth‟s climate, habitats, and biodiversity 

have led many to advocate a new epoch: the Anthropocene (Crutzen, 2006; Dirzo et al., 2014; 

Pievani, 2014). As such, the preservation of habitat and biodiversity is instrumental in 

maintaining healthy ecosystems for the benefit of humans, in the form of ecosystem services, and 

for the benefit of all other species (Christie et al., 2012; Lefcheck et al., 2015). 

Reptiles are no exception in the current biodiversity crisis: over a fifth of reptile species 

worldwide are currently threatened with extinction (IUCN, 2020). Threats to reptiles are diverse 

and include agricultural practices, urban development, and collection for food, pets, and 

medicine (da Nóbrega Alves et al., 2008; IUCN, 2020; Klemens and Thorbjarnarson, 1995). Out 

of 43 species of reptiles found in Canada, there are currently 26 listed as at-risk under the 

Species at Risk Act (SARA, 2020; Seburn and Seburn, 2000), a federal law governing the 

protection of species in Canada. Of these 26 species of reptiles listed as at-risk, 16 are listed as 

„threatened‟ or „endangered‟, designations that offer legal protection from habitat loss or 

physical harm (SARA, 2002).  
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Included in the legal protections offered to threatened and endangered species in Canada 

is the designation of critical habitat: habitat deemed essential for the persistence of a species 

(SARA, 2002). Identifying critical habitat is important not only for ensuring a species‟ 

persistence, but also to ensure scientific credibility for those who have economic interest in the 

protected habitat (Rosenfeld and Hatfield, 2006). Currently in Canada, nine species of reptile 

have officially designated critical habitat (SARA, 2020) and, for many species, this designated 

critical habitat only encompasses a small portion of their known range and utilized habitat. To 

identify critical habitat properly, determining how a species associates with habitat from a local 

patch to a landscape scale is required (Rosenfeld and Hatfield, 2006). My thesis focuses on the 

latter: the effects of the landscape on the probability of occurrence of a species at risk, the 

Blanding‟s turtle (Emydoidea blandingii). 
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1 INTRODUCTION 

 

Landscape composition affects the abundance, occurrence, and behaviour of the species 

that inhabit that landscape (Guerry and Hunter, 2002; Knutson et al., 1999; Tremblay et al., 

1998). Within a landscape, a species‟ occurrence and abundance are dictated by the availability 

of suitable habitat and of resources needed for survival and reproduction (Johnson, 1980). 

Knowing that the likelihood of a species occupying a given area in a landscape is dependent on 

the presence of that species‟ preferred habitat characteristics, those habitat characteristics can be 

used to predict the occupancy of a species within a given area of a landscape. For example, by 

modelling habitat characteristics of sites occupied by Coho salmon (Oncorhynchus kisutch), 

Anlauf-Dunn et al. (2014) were able to estimate the probability of occupancy of O. kisutch 

across their study area. 

A species‟ occupancy is not only affected by characteristics of the sites they occupy, but 

also by characteristics of the landscape they inhabit. Mazerolle et al. (2005) found that the 

probability of pond occupancy by green frogs (Lithobates clamitans) in New Brunswick, Canada 

was significantly correlated with landscape features such as wetland cover and forest cover at 

various scales. Interestingly, probability of occupancy by green frogs depended on forest cover at 

scales up to 1000 m from the focal pond, indicating that landscape features well outside the 

60 m
2
 mean home range of L. clamitans (Martof 1953) can influence site occupancy. Similarly, 

probability of site occupancy by Eastern newt (Notophthalmus viridescens) in Vermont, USA 

was positively correlated with forest and wetland cover in the surrounding landscape, and 

negatively correlated with developed area (Rinehart et al. 2009). These studies demonstrate how 

threats like habitat fragmentation and habitat loss at the landscape scale can act negatively on a 

local population (Burkey, 1995; Cushman, 2006; Fahrig, 2003).  
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In freshwater turtles, habitat fragmentation and habitat loss, along with more specific 

threats such as road mortality and collection for the pet or food trades, are the most significant 

drivers of population declines (Gibbon et al., 2000; Steen and Gibbs, 2004; Turtle Conservation 

Fund, 2002). The Blanding‟s turtle (Emydoidea blandingii), a semi-aquatic freshwater turtle, is 

considered at-risk across most of its range in southeastern Canada and the northeastern United 

States (COSEWIC, 2016). For instance, the Great Lakes and St. Lawrence population in Ontario 

and Québec is estimated to have been reduced by > 60% in the past three generations (a 

generation is estimated at approximately 40 years) owing largely to habitat loss and road 

mortality (COSEWIC, 2016). Although Blanding‟s turtles inhabit wetlands such as swamps, 

ponds, and marshes (Edge et al., 2010; Ross and Anderson, 1990), they also use upland habitat 

for nesting and inter-wetland travel (Edge et al., 2010; Markle and Chow-Fraser, 2014; Millar 

and Blouin-Demers, 2011). Eleven studies have included the tracking of Blanding‟s turtles with 

radio-telemetry and have documented the mean home range area to be between 1 and 95 ha 

(Fortin at al., 2012; Millar and Blouin-Demers, 2011); home ranges as large as 255 ha and as 

long as 3.2 km have been documented (Fortin et al., 2012). Although both male and female 

turtles demonstrate similar home range areas, gravid females during the nesting period exhibit 

the longest movements and have been documented travelling more than 6 km (Edge et al., 2010; 

Millar and Blouin-Demers, 2011). Since the Blanding‟s turtle is a vagile species and road 

mortality and habitat loss are putative drivers of its population decline, landscape features such 

as road density and human development may be good predictors of its presence. Landscape 

features are good at estimating site occupancy for the eastern musk turtle (Sternotherus 

odoratus) in Georgian Bay, where the probability of site occupancy was negatively correlated 

with the density of surrounding roads, docks, and cottages (Markle et al., 2018). Similarly, 
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northern map turtles (Graptemys geographica) prefer natural shoreline over developed shoreline 

at a macrohabitat scale (Carrière and Blouin-Demers, 2010). Literature on Blanding‟s turtle site 

occupancy is largely focused on microhabitat selection and on habitat suitability modelling at the 

provincial scale (Edge et al., 2010; Markle and Chow-Fraser, 2014; Millar and Blouin-Demers, 

2012; Ross and Anderson, 1990). Here, I investigate whether we can estimate the probability of 

wetland occupancy by Blanding‟s turtles based on landscape composition. 

 To determine whether landscape composition affects the probability of wetland 

occupancy by Blanding‟s turtles, I determined wetland occupancy using visual surveys, 

environmental DNA (eDNA), and sightings from the Ontario Reptile and Amphibian Atlas 

(Ontario Nature, 2018). Species detection with eDNA is a relatively new methodology that is 

based on the collection and detection of persistent DNA shed from a target species into the 

environment (Ficetola et al., 2008). eDNA has been used with mixed success for the detection of 

aquatic and semi-aquatic species (Jerde et al., 2011; Raemy and Ursenbacher, 2018; Thomsen et 

al., 2012). For instance, eDNA was used successfully to detect an invasive species of carp in the 

Lake Michigan watershed before its detection by traditional survey methods (Jerde et al., 2011). 

eDNA was superior to visual surveys, but inferior to trap surveys, for the detection of the 

European pond turtle (Emis orbicularis) (Raemy and Ursenbacher, 2018). Due to mixed success 

and to a lack of previous studies on the use of eDNA to survey for Blanding‟s turtles, I 

complemented and validated eDNA data with visual surveys and occurrence records from the 

Ontario Reptile and Amphibian Atlas. 
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1.1 Modelling 

 

 I used boosted regression tree (BRT) modelling to test whether the probability of wetland 

occupancy by Blanding‟s turtles can be predicted from landscape composition. BRTs are a 

relatively new method used to model ecological interactions and have been used with success in 

assessing landscape effects on organisms (Elith et al., 2008; Ruso et al., 2019). BRT models are 

a machine learning method that works by building regression trees of a set complexity and 

scaling their contribution for inclusion in a final model (Elith et al., 2008). A distinct advantage 

of BRT modelling for my study is that, unlike other modelling methods, the final model 

predictions are little affected by outliers and collinearity amongst predictor variables (Elith et al., 

2008; Main et al., 2015), which is almost inevitable in landscape studies because increased cover 

of a given habitat necessarily means less cover of the other habitats. The main disadvantages of 

BRT models is that they are susceptible to model overfit and can show noise in fitted functions 

(Elith et al., 2008; Naghibi et al., 2016); however, neither are necessarily critical issues (Elith et 

al., 2008). 

 

1.2 Hypothesis and Predictions 

 

I hypothesize that the probability of wetland occupancy by Blanding‟s turtles (Emydoidea 

blandingii) can be estimated from the composition of the landscape surrounding a wetland. I 

predict that an increase in human activity, such as roads and urban areas, will decrease the 

probability of Blanding‟s turtle occupancy. Apart from the direct effect of roadways increasing 

wildlife mortality and being a threat to Blanding‟s turtles (COSEWIC, 2016; Trombulak and 

Frissell, 2000), roads also degrade habitat connectivity by acting as barriers to movement (Attum 

et al., 2008; Proulx et al., 2014). Roadways and increased human presence can also lead to an 



7 

 

increase in activities that threaten Blanding‟s turtles, such as collection for the pet trade 

(COSEWIC, 2016; Trombulak and Frissell, 2000). I also predict that, since the preferred habitats 

of Blanding‟s turtles are wetlands (Edge et al., 2010), increased wetland cover in the surrounding 

landscape will increase the probability of occupancy. Since it is difficult to know a priori at 

which scales landscape components will affect the probability of occupancy, I test each variable 

at multiple scales to identify the scale of maximum effect. For example, Mazerolle et al. (2005) 

found that a decrease in the probability of occupancy of Lithobates clamitans was related to an 

increase in forest cover within 250 m of the focal wetlands, but the opposite was true when 

measuring forest cover within 1000 m, demonstrating the difficulty of estimating landscape 

effects at predetermined scales. 

 

1.3 Significance 

 

Properly documenting how a landscape can influence the occurrence of Blanding‟s turtles 

is important for the conservation of the species because it can inform habitat protection. By 

assessing which landscape features can be used to estimate Blanding‟s turtle occupancy, it will 

be possible to better identify where to invest conservation resources at the landscape scale. This 

relationship between landscape and occupancy can be applied to, among other applications, 

legally required critical habitat mapping. In addition, documenting how a landscape can 

influence the occurrence of Blanding‟s turtles will provide valuable knowledge of the 

relationship between landscape components and the species that inhabit that landscape. 

Blanding‟s turtles are a good species for this study for several reasons. (1) Although 

Blanding‟s turtles inhabit a wide variety of wetlands (Edge et al., 2010), they are not ubiquitous 

across the study area like more common turtle species, such as the painted turtle (Chrysemys 



8 

 

picta), allowing for a wider range of occupied and unoccupied wetlands to be included in the 

study. (2) The decline of Blanding‟s turtles in the study area has, in part, been linked to road 

mortality and habitat loss (COSEWIC, 2016); threats which can be attributed to road density and 

land cover classifications which can be spatially modelled (Falcucci et al., 2007; Gibbs and 

Shriver, 2002). Finally, (3) since there is interest in conserving the remaining populations of 

Blanding‟s turtles (Environment Canada, 2016), having the ability to estimate its presence based 

on landscape features will provide another tool for conservation biologists working on this 

species. 
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2 METHODS 

 

2.1 Study sites 

 

I conducted fieldwork from May to August 2018 and 2019 within the limits of the City of 

Ottawa, Ontario, Canada (Figure 2). All the wetlands I studied were within the ~2,800 km
2
 area 

of the City of Ottawa, a low-lying and predominantly flat region of the mixedwood plains 

ecozone whose geology is described primarily as glacial deposits and marine deposits atop 

Paleozoic sedimentary formations (Harrison, 1979; Richard, 1982). The study area was 

comprised of 48% agriculture, 18% wetlands, 16% forests, 15% anthropogenic lands (which 

include urban developments, roadways, waste facilities, and quarries), and 4% open water. Road 

density of all road types across the study area was 2.3 km/km
2
 on average. 

I studied 155 wetlands: I surveyed 117 wetlands for Blanding‟s turtles by visual surveys 

or environmental DNA sampling (70 wetlands overlapped between the two techniques) and the 

remaining wetlands were included based on Blanding‟s turtle sightings obtained from the 

Ontario Reptile and Amphibian Atlas. Wetlands were spread out across the study area to ensure 

sufficient occupied sites for use as positive controls for environmental DNA surveying as well as 

to stratify adjacent lands of surveyed sites with the landscape composition of the study area. 

Land cover within a 2 km buffer of the included wetlands was 38% agriculture, 20% wetlands, 

20% forests, 18% anthropogenic lands, and 3% open water while road density was 2.6 km/km
2
. 
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2.2 Blanding’s turtle occupancy 

 To determine whether wetlands are occupied by Blanding‟s turtles, I surveyed for 

Blanding‟s turtles by means of visual surveys and environmental DNA sampling. Survey efforts 

were supplemented by Blanding‟s turtle sightings from the Ontario Reptile and Amphibian 

Atlas. 

2.2.1 Environmental DNA 

 

During the summer of 2019, I took 445 water samples from 89 wetlands to survey for 

Blanding‟s turtles with environmental DNA (eDNA). I sampled wetlands by gathering five 1 L 

samples of water per wetland in sterilized polypropylene bottles. I collected one sample in the 

wetland inflow, if present, and the remaining samples were spread out around the wetland with at 

least one sample located in the outflow. I placed the samples on ice in a cooler and transported 

them to the laboratory where I filtered the samples through glass microfiber filter paper (Watman 

GC/F) using a vacuum pump for suction. I placed the filter papers in microtubes which were 

frozen at -20 °C for short term storage and -80 °C for long term storage. I sterilized equipment 

between wetlands by soaking in a 0.5% solution of sodium hypochlorite for 10 minutes then 

rinsing. Sample bottles were also flushed with water from the target wetland before sampling. I 

took an additional ten samples using distilled water, ten samples using City of Ottawa tap water, 

and five samples from an outdoor water source that was certain to not contain Blanding‟s turtles. 

These 25 negative control samples were gathered and processed using equipment sterilized after 

being used for sites known to contain Blanding‟s turtles. 

DNA extraction, PCR, and Blanding‟s turtle primer development was completed by the 

laboratory of Dr. Yann Surget-Groba at the Université du Québec en Outaouais (Appendix 1). 

They extracted the DNA from the samples using a QIAgen DNeasy kit. The samples were 



11 

 

diluted by a factor of 10 and amplified using qPCR. They amplified a minimum of three 

replicates per sample. 

2.2.2 Visual surveys 

 

I conducted visual surveys for Blanding‟s turtles from late April to mid-June when 

Blanding‟s turtles are most likely to be basking and thus easiest to detect (Millar and Blouin-

Demers, 2011). During this time, I visited 98 wetlands with a spotting scope and binoculars to 

search for Blanding‟s turtles. Wetlands were visited from mid-morning to late afternoon on days 

without precipitation and I spent approximately one hour per wetland per visit. I visited wetlands 

an average of three times (a minimum of one and a maximum of 10) and no longer visited 

wetlands once I had confirmed Blanding‟s turtles to be present.  

2.2.3 Ontario Reptile and Amphibian Atlas 

I used Blanding‟s turtle sightings from the Ontario Reptile and Amphibian Atlas to 

provide additional wetlands with confirmed presence. I retained sightings within the City of 

Ottawa which could be attributed to a specific wetland (i.e. within or on the edge of a wetland). I 

further filtered sightings to only include observations from the past ten years. The Ontario 

Reptile and Amphibian Atlas provided 840 Blanding‟s turtle observations within the study area, 

522 of which were from the years 2008 to 2018.  

 

2.3 Landscape composition 

 

I acquired land cover data from the Ontario Land Cover Classification V2 (OMNRF, 

2014) in raster form with 15 meter resolution and 28 land cover classes. I merged land cover 

classes into the following 6 categories: 1- agriculture, 2- anthropogenic (buildings, roadways, 
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gravel pits and quarries, and other human disturbed sites), 3- forest, 4- wetlands, 5- open water, 

and 6- other (all other land cover types which did not fall into the previous five categories, such 

as alvar and bedrock). I acquired road information from Open Street Maps (2019) and included 

motorways, primary, secondary, tertiary, and residential roads. I delineated wetlands at a scale of 

1:5000 using aerial photographs taken in the spring of 2014 (National Capital Commission, 

2014) and ground truthed for accuracy. I determined wetland age (in years) from historical aerial 

photographs (City of Ottawa 1958, 1976, 1991, 1999, 2008; National Capital Commission 1965, 

2001, 2014; University of Toronto 1954) as the mean of the age of the air photo in which the 

wetland first appeared and the age of the next oldest air photo. The earliest air photos covering 

the study site were taken in 1954, so I deemed wetlands already present in 1954 to be 65 years 

old.  

I created buffers around wetlands in 100 meter increments from 100 to 4000 m (Fortin et 

al., 2012). After wetlands were buffered by each radius, I tabulated land cover (as a percentage 

of the buffer area excluding the focal wetland) and road density (km/km
2
) within each 

incremental buffer. I then calculated point biserial correlation between each variable and 

Blanding‟s turtle occupancy at all buffer scales to determine the variables‟ scale of maximum 

effect. I retained each variable at its scale of maximum effect for model building. I completed all 

geospatial analyses using ArcGIS 10.4.1 (ESRI, 2016) and Python 2.7.10 (Python Software 

Foundation, 2015). 

 

2.4 Modelling 

 

I used boosted regression tree (BRT) modelling to determine whether landscape 

composition affects the probability of wetland occupancy by Blanding‟s turtles. Using the 
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„dismo‟ (Hijmans et al., 2017) and „gbm‟ (Greenwell et al., 2019) packages in R 3.5.2 (R 

Development Core Team, 2018), I built six models using the eDNA data, the visual survey data, 

the Ontario Reptile and Amphibian Atlas data, and all combinations of data sources (with the 

exception of solely Ontario Reptile and Amphibian atlas data which is a presence only dataset). 

When combining data sources and conflicting occupancy data existed, presences overrode 

absences regardless of survey method. All six models included eight explanatory variables: open 

water cover, wetland cover, forest cover, anthropogenic land cover, agricultural land cover, road 

density (km/km
2
), wetland age (years), and wetland area (hectares). The buffer size within which 

each land cover class and road density was tabulated varied between models and was determined 

based on the scale of maximum effect (Table 1). 

BRTs are optimized using tree complexity (the number of splits in each tree), learning 

rate (the scaling rate of each tree), and bag fraction (the proportion of the data randomly selected 

to build the trees). Optimization is evaluated based on the cross-validation deviance, the number 

of trees in the model, and the area under the receiver operating curve (Elith et al., 2008). First, I 

set the tree complexity to five. Next, I built models with decreasing learning rates from 0.01 to 

0.001 to determine the optimal value. Similarly, I tested bag fractions of 0.5, 0.6, and 0.7 using 

the retained learning rate (Elith and Leathwick, 2017; Ruso et al., 2019). Finally, once the 

optimal learning rate and bag fraction were determined, I tested tree complexity with values of 

two, three, and four, which are considered suitable for small sample sizes (Elith et al., 2008).  

BRT model performance is primarily evaluated based on cross-validation (CV) deviance 

and cross-validation area under the receiver operating curve (AUC), which are more reliable in 

evaluating model performance than self-statistics such as residuals (Elith et al., 2008; Elith and 

Leathwick, 2017). Percent deviance explained, calculated as (total deviance - CV deviance)/total 
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deviance (Buston and Elith, 2011), gives a goodness-of-fit measure equivalent to the coefficient 

of determination (R
2
) of a linear regression (Leyk and Zimmermann, 2004). The number of trees 

was also examined, because models are ideally fit with at least 1000 trees (Elith et al., 2008). 

Regardless of model performances, I retained the model built using data from all three 

data sources, and hence the most complete dataset, as the most comprehensive model to 

determine the effects of landscape composition on Blanding‟s turtle occupancy. To test for 

model overfit, which indicates a model may not make accurate predictions of occupancy on 

wetlands not included in model building, I picked a random subset of 100 wetlands from the 

original 155 which I used as training data to build a new model and the remaining 55 wetlands 

were retained as validation data. I repeated this process 100 times with a new random subset of 

100 wetlands for each model. I used the subset models to estimate wetland occupancy by 

Blanding‟s turtles for the 100 training wetlands and the 55 validation wetlands. Occupancy 

estimates from all 100 models were grouped into four categories: (1) unoccupied training 

wetlands, (2) occupied training wetlands, (3) unoccupied validation wetlands, and (4) occupied 

validation wetlands. Welch‟s t-tests were used to compare the means of the four categories of 

estimated probabilities of occupancy and a kernel density estimation was performed for a visual 

comparison of the categories. Similarly, I used the comprehensive model to make estimations of 

wetland occupancy for all 155 wetlands to compare between wetlands where Blanding‟s turtles 

are present and absent. 
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3 RESULTS 

 

3.1 Blanding’s turtle occupancy 

 

 Environmental DNA sampling, visual surveys, and the Ontario Reptile and Amphibian 

Atlas resulted in six datasets, each of which I used for modelling Blanding‟s turtle occupancy. 

These datasets are as follows, with their abbreviation in brackets: environmental DNA (eDNA) 

consisting of 89 wetlands, visual surveys (Visual) consisting of 98 wetlands, eDNA and visual 

surveys (Visual + eDNA) consisting of 117 wetlands, eDNA and Ontario Reptile and Amphibian 

Atlas (eDNA + ORAA) consisting of 131 wetlands, visual surveys and Ontario Reptile and 

Amphibian Atlas (visual + ORAA) consisting of 143 wetlands, and eDNA, visual surveys, and 

Ontario Reptile and Amphibian Atlas (Comprehensive) consisting of 155 wetlands. 

3.1.1 Environmental DNA 

 

The eDNA results were unreliable, since three of the 25 negative controls (four of 75 

replicates) tested positive for Blanding‟s turtle DNA due to contamination either during the 

sampling, filtering, or DNA extraction. For this reason, I deemed sites occupied based on strict 

criteria to avoid possible false-positives. I filtered samples by quantification cycle (Cq) values 

and number of positive replicates. Based on the Cq values from positive control replicates, I 

determined that values between 8 and 16 represent values that are unlikely to be contamination 

(Figure 3). Additionally, sites where only one of the 15 replicates was positive I eliminated as 

possible contamination. After eliminating possible contamination (29 wetlands were eliminated), 

26 of the 89 sites tested positive for Blanding‟s turtle DNA. 

I took eDNA samples from 20 wetlands where Blanding‟s turtles had been visually 

confirmed to provide positive controls, as well as three additional wetlands that had been 
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visually confirmed by other researchers within a week prior to sampling. With few exceptions, I 

took samples from positive control wetlands within one day of Blanding‟s turtle observations. 

Eleven of the positive control wetlands tested positive for Blanding‟s turtle DNA while 12 of the 

23 wetlands resulted in false-negatives. 

3.1.2 Visual surveys 

 

I confirmed the presence of Blanding‟s turtles at 24 of the 98 wetlands with visual 

surveys. Of the 24 wetlands occupied by Blanding‟s turtles, I confirmed presence on the first 

visit for 19 wetlands, on the second visit for three wetlands, on the fourth visit for one wetland, 

and on the fifth visit for two wetlands. No wetlands were found to be occupied by Blanding‟s 

turtles beyond the fifth visit even though some wetlands were visited up to 10 times. 

3.1.3 Ontario Reptile and Amphibian Atlas 

 

I used Blanding‟s turtle sightings from the Ontario Reptile and Amphibian Atlas to 

confirm occupancy at an additional 47 wetlands. Of these wetlands, I had surveyed nine by either 

eDNA or visual surveys and the remaining 38 had not been surveyed, bringing the total number 

of wetlands with confirmed Blanding‟s turtle presence to 88 out of the 155 wetlands included in 

the study. 

 

3.2 Landscape composition 

 

The scale of maximum effect for each landscape composition variable, determined as the 

buffer size with the highest correlation between the landscape variable and wetland occupancy, 

varied for each of the six datasets. Between the six datasets, the scale of maximum effect for 

open water cover varied from 700 to 4000 m, wetland cover from 100 to 3500 m, forest cover 
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from 200 to 4000 m, anthropogenic land cover from 300 to 4000 m, agricultural land cover from 

200 to 4000 m, and road density from 300 to 4000 m (Table 1, Figure 4a-f). Within the retained 

buffer sizes, the proportions of the various land covers and road density were comparable to 

those of the study area (Table 2). 

 

3.3 Modelling 

 

Using the „dismo‟ (Hijmans et al., 2017) and „gbm‟ (Greenwell et al., 2019) packages in 

R 3.5.2 (R Development Core Team, 2018), I fit BRT models to the data using a tree complexity 

of five, with the exception of the model using only eDNA data which required a tree complexity 

of three to successfully build due to its smaller sample size and number of positive sites. I 

determined that a learning rate of 0.001 and a bag fraction of 0.6 resulted in the best performing 

models. Model performances are summarized in Table 3. 

 The model built using visual survey data and Ontario Reptile and Amphibian Atlas 

(Visual + ORAA) data is the best performing model. This model explains 28.8% of the deviance 

in Blanding‟s turtle occupancy and had a cross-validation area under the receiver operating curve 

(CV AUC) of 0.847 (Figure 5). The next best performing models were the comprehensive model 

(built using all data sources; 17.8% deviance explained and CV AUC of 0.795) and the model 

using the eDNA and ORAA data (16.4% deviance explained and CV AUC of 0.780). The worst 

performing model uses only the eDNA data and explains 0.9% of the deviance in occupancy and 

has a CV AUC of 0.599. Models which use the eDNA data are generally the poorest performing 

models, the worst of which uses only eDNA data. 

Although model performance varied greatly, there were similarities in the relative 

influence (a rank of the importance of a variable in predicting Blanding‟s turtle occupancy in 
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relation to the other variables) and marginal effects of variables across all models. Forest cover 

and wetland age were the most consistent variables; in all models forest cover showed a strong 

positive relationship with Blanding‟s turtle occupancy and it ranked in the top three most 

important variables with a relative influence (RI) ranging from 11.8% to 34.8% (Figure 6 and 

Figure 7a-f) and wetland age, although not ranked as highly as forest cover, also showed a 

positive relationship across all the models (2.5% to 16.5% RI). Wetland area (9.3% to 21.2% 

RI), wetland cover (7.1% to 24.4% RI), and open water cover (6.6% to 20.2% RI), although not 

consistent across all models, generally showed a positive relationship with occupancy. 

Anthropogenic land cover (3.7% to 14.8% RI) and road density (3.5% to 11.1% RI) were 

generally showed a negative relationship with occupancy. Agricultural land cover (5.7% to 

18.0% RI) was much less clear in its effects on wetland occupancy and varied between showing 

a positive and a negative relationship with occupancy. 

The comprehensive model, built using data from the visual surveys, eDNA sampling, and 

Ontario Reptile and Amphibian Atlas, ranks wetland cover as the most important variable 

(21.0% RI) followed by forest cover (19.5% RI), and wetland area (18.1% RI) (Figure 6).  

Marginal effects show increased wetland cover, forest cover, wetland area, and wetland age to 

have a positive relationship with occupancy while anthropogenic and agricultural land covers 

have a negative relationship with occupancy (Figure 7b).  Overall trends of occupancy based on 

increased water cover and road density are difficult to assess. The comprehensive model, when 

used to estimate occupancy for all 155 wetlands, estimates wetlands where Blanding‟s turtles are 

present to have a significantly higher (p < 0.001) probability of occupancy than wetlands where 

Blanding‟s turtles are absent (Figure 8; mean 74.5%, SE 1.6% for occupied wetlands; mean 

33.4%, SE 2.3% for unoccupied wetlands). The subset models, built using 100 randomly selected 
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wetlands, performed worse than the comprehensive model (mean deviance explained: 10.8%;  

mean CV AUC: 0.730); however, Welch‟s t-test determined there was a significant difference (p 

< 0.001) between the occupied training wetlands and the unoccupied training wetlands, between 

the occupied testing wetlands and the unoccupied testing wetlands, between the occupied 

training wetlands and the occupied testing wetlands, and between the unoccupied training 

wetlands and the unoccupied testing wetlands (Figure 9).  
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4 DISCUSSION 

 

4.1 Landscape effects on occupancy 

 

I tested the hypothesis that wetland occupancy by Blanding‟s turtles is affected by 

landscape composition around the wetland. Overall, I found that landscape composition is a 

factor in whether a wetland is occupied by Blanding‟s turtles, with the highest performing BRT 

model explaining over a quarter of the deviance in Blanding‟s turtle occupancy. Interestingly, 

wetlands located in less disturbed landscapes with a higher proportion of natural land cover 

types, such as wetland cover and forest cover, had a higher probability of harbouring Blanding‟s 

turtles. By contrast, wetlands located in more human influenced landscapes with a high 

proportion of urban land cover and a high road density were not as likely to be occupied by 

Blanding‟s turtles. This is consistent with existing literature on the relationship between 

Blanding‟s turtles and landscape features. 

While BRT models have power in estimating Blanding‟s turtle occupancy based on the 

surrounding landscape, the exact importance of each landscape variable is difficult to determine 

due to high collinearity amongst predictor variables. If two variables included in building a BRT 

model are perfectly correlated, one of the two variables will be assigned a relative importance of 

0% and show no effect on the model‟s predictions. If, hypothetically, the first of the two 

perfectly correlated variables is an important driver of occupancy while the second variable has 

no effect, the model may associate the effects of the first variable with the second variable. For 

this reason, it is important to examine collinearity when making assumptions about the 

importance and effects of a variable. The proportion of forest cover, for example, had a very high 

and significant correlation with anthropogenic land cover (Table 4). Therefore, it is difficult to 

determine the exact dynamics of the relationship between forest cover, anthropogenic land cover, 
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and Blanding‟s turtle occupancy. In this case, the importance of forest cover (ranked as high as 

34.8% relative importance) may be over or underestimated in favour of anthropogenic land cover 

(ranked as high as 14.8% relative importance). 

Road mortality and illegal collection are among the leading causes of Blanding‟s turtle 

population decline (COSEWIC, 2016), so landscape features like roadways and urban areas that 

facilitate these threats should negatively affect Blanding‟s turtle populations in nearby wetlands. 

This is consistent with the findings of my study which suggest increased road density and urban 

land cover reduced the probability of wetland occupancy by Blanding‟s turtles. Roadways and 

urban areas, in addition to causing direct mortality, also decrease habitat connectivity (Underhill 

and Angold, 2000) which may result in reduced recruitment from neighbouring wetlands. By 

contrast, an increase in wetland cover, the preferred habitat type of Blanding‟s turtles (Edge et 

al., 2010; Millar and Blouin-Demers, 2011), is found to increase the probability of occupancy. In 

addition to being the preferred habitat, additional wetlands in close proximity may increase 

Blanding‟s turtle immigration which reduces the likelihood of local extinction. However, it 

would be difficult to disentangle to what extent local wetlands increase the probability of 

occupancy due to immigration versus the increased habitat quality. Forest cover also increases 

the probability of wetland occupancy. Although forest is not the preferred habitat of Blanding‟s 

turtles, forest is used for inter-wetland travel and for travel to nesting sites (Markle and Chow-

Fraser, 2014). Forest is also a natural landscape with few anthropogenic threats and, as a result, 

may increase probability of occupancy simply by merit of not being a heavily influenced by 

humans. Its importance may also be conflated with anthropogenic land cover due to their high 

correlation (Table 4). 
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Agricultural land cover did not have a strong effect on the probability of wetland 

occupancy by Blanding‟s turtles. The negative impact of agricultural land on Blanding‟s turtle 

populations found in a previous study (Mui et al., 2016) was not evident from my models. Of 

note is that the landscape cover data I used does not distinguish between agricultural lands that 

are currently in use and lands that have been fallow for as many as 50 years. While it is difficult 

to get an exact proportion of agricultural lands that are fallow versus active, my estimate based 

on air photos is that about 10% of the agricultural lands across the study area are fallow. My 

estimate of fallow lands increases to over 50% in conservation and wilderness areas such as the 

Greenbelt and Marlborough Forest where many of the surveyed wetlands are located. The lack of 

distinction between fallow and active agriculture lands may have contributed to the weak effects 

of agriculture in the BRT models because fallow lands may provide nesting opportunities for 

Blanding‟s turtles, but without threats such as pesticides and agricultural machinery (Mui et al., 

2016). 

Wetland age was consistent in effect and importance across models. Older wetlands had a 

higher likelihood of being occupied by Blanding‟s turtles, although the effect was not as strong 

as that of other variables (2.5% to 16.5% relative influence). Although Blanding‟s turtles are 

relatively mobile compared to other freshwater turtles, populations in close geographic proximity 

can have low gene flow indicative of isolation (Mockford et al. 2005). Combined with the low 

recruitment rate of Blanding‟s turtles (Refsnider 2009), low gene flow indicates that wetland 

colonization must happen slowly. My results may provide an estimation of wetland colonization 

rates by Blanding‟s turtles because marginal effects plots suggest a large increase in the 

probability of occupancy at approximately 50 years of wetland age and no difference in the 

probability of occupancy for wetlands younger than approximately 40 years. Although 
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colonization rates of Blanding‟s turtles have not been well studied, the estimate of 50 years is 

consistent with a study on freshwater turtle colonization in Tommy Thompson Park in Toronto, 

Ontario, Canada where Blanding‟s turtles were first observed between 40 and 50 years after 

construction (Dupuis-Desormeaux et al. 2018). Colonization should occur more rapidly in my 

study area because the closest known Blanding‟s turtle population to Tommy Thompson Park is 

15 km away (Dupuis-Desormeaux et al. 2018) while the mean distance between unoccupied 

wetlands and the nearest occupied wetland in my study area is 3.8 km (minimum 0.1 km and 

maximum 15.6 km). 

Wetland size is the only explanatory variable I tested which does not significantly 

correlate with any other variable and, as a result, its relative importance in predicting Blanding‟s 

turtle occupancy is likely not conflated by collinearity. Larger wetlands were more likely to be 

occupied by Blanding‟s turtles. Although it is possible that this relationship was due to a higher 

abundance of turtles in larger wetlands, and thus an increased likelihood of detection during 

visual surveys, similar relationships have been observed in previous studies on Blanding‟s turtles 

(Piepgras and Lang 2000; Attum et al. 2008). For example, in Minnesota, USA radio tagged 

Blanding‟s turtles spent more time in larger wetlands (Piepgras and Lang 2000). 

 

4.2 Comprehensive model 

 

Although it is difficult to know which of the six models gives the most accurate 

representation of the effects of landscape composition on Blanding‟s turtle occupancy, I retained 

the model using data from all three sources as the comprehensive model because it includes the 

largest number of both occupied and unoccupied wetlands. The comprehensive model indicated 

that landscape composition explains nearly one fifth of the deviance in Blanding‟s turtle 
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occupancy (Figure 5) and is consistent with the overall findings that more human disturbed 

landscapes decrease the probability of occupancy. The results also suggest landscape to be a 

much stronger driver of wetland occupancy by Blanding‟s turtles than a similar study in the 

Pontiac region of Québec, but both studies show similar effects for the included land cover types 

(Fortin and Blouin-Demers, 2012). 

The comprehensive model‟s cross-validation AUC score of 0.795, which is lower than 

the training AUC of 0.970, suggests the model is overfit to the data. However, overfitting of 

BRT models is not necessarily an issue (Elith et al., 2008). To test the overfit and evaluate the 

predictive performance of the model, I built 100 models using random subsets of 100 of the 155 

wetlands used to build the Comprehensive model. I used these models to predict the probability 

of occupancy for all 155 wetlands. Welch‟s t-test determined that there was a significant 

difference in predicted occupancy between the training wetlands and the validation wetlands 

(Figure 9). This suggests the resulting models are indeed overfit to the data as indicated by the 

cross-validation AUC; however, regardless of overfit, there was a significant difference between 

the estimated probabilities of occupancy for occupied versus unoccupied validation wetlands 

suggesting the models still had power to predict wetland occupancy by Blanding‟s turtles for 

external data. 

The comprehensive model, when used to predict the probability of wetland occupancy by 

Blanding‟s turtles for all 155 wetlands (Figure 8), provides some insight into possible survey 

errors. Four wetlands have a low probability of occupancy (25% to 45%; mean predicted 

probability of occupancy for occupied sites is 74.5%, SE 1.6%), but are found to have 

Blanding‟s turtles present. Blanding‟s turtles were detected in three of these wetlands based on 

eDNA, but I did not find Blanding‟s turtles at those three wetlands by visual surveys and there 
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were no sightings in the Ontario Reptile and Amphibian Atlas. These three wetlands may thus 

represent false-positive eDNA detections, although it is not possible to verify. The fourth 

occupied site, which had the lowest predicted probability of occupancy, is a seasonal pond in 

downtown Ottawa that is drained each fall. It is thought the records from this pond, obtained 

from the Ontario Reptile and Amphibian Atlas, may be from released Blanding‟s turtles that 

were kept as pets. My subsequent visual surveys did not confirm the presence of Blanding‟s 

turtles to be present despite the pond‟s ease of surveying. Sites with a high predicted probability 

of occupancy in which I did not find Blanding‟s turtles may be false-negative survey results, a 

common issue with rare and elusive species (Miller et al., 2011; Zhou and Griffiths, 2007). Nine 

wetlands stand out as having a high predicted probability of occupancy (61% to 78%; mean 

predicted probability of occupancy for unoccupied sites is 33.4%, SE 2.3%), but were not 

occupied by Blanding‟s turtles All nine wetlands are located in areas that have well established 

Blanding‟s turtle populations and are in close proximity to other wetlands where Blanding‟s 

turtles are known to occur (mean 1.6 km, minimum 0.2 km, and maximum 5.5 km). 

The comprehensive model, with its ability to successfully estimate wetland occupancy by 

Blanding‟s turtles, can also be used to estimate Blanding‟s turtle occupancy across a landscape. 

Predicting occupancy across a landscape can be particularly useful for mapping exercises, such 

as determining critical habitat. Predictive mapping across a landscape, however, rather than 

estimating the probability of occupancy at a known wetland, does have the drawback of not 

having the ability to factor in wetland age or wetland area. As an exercise in predictive mapping, 

I rebuilt the comprehensive model without the wetland age or area variables and applied the 

estimations to a 1 km grid across the study area by assuming the centroids of the grid cells were 

the wetlands (Figure 10). While there was a loss of model performance resulting from the 
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exclusion of wetland age and area (CV deviance explained is 14.2%, down from 17.8%), the 

resulting predictive map was, based on my turtle observations and historic turtle observations, 

generally a very good representation of where Blanding‟s turtles are known to be found across 

the study area. 

 

4.3 Survey method comparison 

4.3.1 Occupancy results comparison 

 The eDNA samples and the visual surveys were both able to detect Blanding‟s turtles, but 

with differing effectiveness. Of the 70 wetlands surveyed by both methods, we confirmed 

Blanding‟s turtles to be present in 20 wetlands based on visual surveys, nine of which were also 

determined to be occupied by Blanding‟s turtles based on eDNA. By contrast, eDNA indicated 

Blanding‟s turtle occupancy in 23 wetlands of the 70, of which nine were found to be occupied 

by Blanding‟s turtles based on visual surveys. Between the two methods, we found 34 of the 70 

wetlands to be occupied by Blanding‟s turtles. While the reasons for the discrepancy in detection 

between the two methods are not entirely clear, there are some possible explanations. The 14 

wetlands in which Blanding‟s turtles were detected with eDNA, but not with visual surveys, are 

typically wetlands with high cattail (Typha sp.) cover that may have hampered detection. There 

is also the possibility that some sites where eDNA, but not visual surveys, detected Blanding‟s 

turtles are false-positives or sites with DNA persisting from individuals that had since dispersed. 

There is no fully satisfying explanation for why DNA was not detected at sites where we located 

Blanding‟s turtles by visual surveys, although low concentration of DNA in the samples, DNA 

degradation, and the presence of inhibitors are all possibilities (Jane et al. 2015; Strickler et al. 

2015). If we assume that none of the sites where Blanding‟s turtles were detected by eDNA are 
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false-positives, then eDNA was slightly more effective than visual surveys at detecting 

Blanding‟s turtles, which is consistent with one previous study of an elusive freshwater turtle 

(Raemy and Ursenbacher 2018). Neither method is perfect and a combination of the data from 

both methods yields the most comprehensive picture of where turtles occur. Data from visual 

surveys can be easily improved with additional site visits while improvements to eDNA data are 

more difficult to achieve. 

4.3.2 Model comparison 

The BRT models that included Blanding‟s turtle occupancy data from multiple sources 

(i.e., some combination of visual surveys, eDNA sampling, and the Ontario Reptile and 

Amphibian Atlas) were in agreement with existing literature on how landscape features should 

influence turtle populations. The results from the models using only eDNA data or only visual 

survey data were not as easily interpreted. A likely explanation is that these survey methods 

alone did not give an adequate representation of Blanding‟s turtle occupancy throughout the 

study area. The models including eDNA data performed poorly and were the most difficult to 

interpret, likely because these models included several false-negatives. Interestingly, the data 

from visual surveys generally performed better than the eDNA data even though the visual 

surveys were not more effective at detecting Blanding‟s turtles than the eDNA surveys. This may 

be because false-positives are much more likely with eDNA than with visual surveys. Due to 

results achieved using eDNA data and the high possibility of both false-positive and false-

negative results, I recommend eDNA be used only in conjunction with other survey methods. 
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5 CONCLUSION 

 

 My thesis demonstrates that wetland occupancy by Blanding‟s turtles can be successfully 

estimated by landscape composition. While there are certainly many untested factors influencing 

whether a wetland is occupied by Blanding‟s turtles, I show the importance of the surrounding 

landscape in determining occupancy. The finding that human influenced landscapes are generally 

less suitable for Blanding‟s turtles is not surprising given what we know about the impacts of 

humans on biodiversity; however, the findings do provide valuable knowledge into the 

complicated relationships between landscape components and the species that inhabit those 

landscapes. The findings also provide many practical applications for the conservation of 

Blanding‟s turtles, including critical habitat mapping and habitat restoration. 

 The ability to properly define critical habitat of at-risk species is thought to be one of the 

most difficult aspects of species conservation, and determining critical habitat requires 

knowledge of a species‟ interactions with the biotic and abiotic world at multiple scales 

(Rosenfeld and Hatfield, 2006). My study provides information at the landscape scale that can be 

directly applied to delineating critical habitat for Blanding‟s turtles. 
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6 TABLES 

 

Table 1: Summary of the scales of maximum effect (meters) of six landscape variables on 

Blanding‟s turtle occupancy, as determined by each of the six datasets. The scale of maximum 

effect is determined as the buffer size (ranging from 100 m to 4000 m in 100 m increments) 

surrounding a wetland in which the landscape value has the highest correlation with wetland 

occupancy (point biserial correlation). Visual = data from the visual surveys; eDNA = data from 

the eDNA sampling; ORAA = data from the Ontario Reptile and Amphibian Atlas; 

Comprehensive = data from Visual, eDNA, and ORAA. Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land 

proportion; Agriculture = agricultural land proportion; Road = road density (km/km
2
). 
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Water 3700 3900 4000 700 700 4000 

Wetland 3000 3300 3500 100 200 1700 

Forest 4000 4000 4000 4000 200 300 

Anthropogenic 4000 4000 4000 4000 300 300 

Agriculture 2300 2300 2900 4000 4000 200 

Road 4000 4000 4000 4000 300 300 
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Table 2: Land cover proportions (%) and road density (km/km
2
) of the study area and the 

buffered areas used in building the six BRT models. Models are identified by their source data 

and buffer sizes are in meters. Visual = data from the visual surveys; eDNA = data from the 

eDNA sampling; ORAA = data from the Ontario Reptile and Amphibian Atlas; Comprehensive 

= data from Visual, eDNA, and ORAA. Water = open water proportion; Wetland = wetland 

proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; 

Agriculture = agricultural land proportion; Road = road density (km/km
2
). 

 W
a
ter (%

) 

W
etla

n
d

 (%
) 

F
o
rest (%

) 

A
n

th
ro

p
o
g
en

ic (%
) 

A
g
ricu

ltu
re (%

) 

O
th

er (%
) 

R
o
a
d

 (k
m

/k
m

2) 

Study area 3.5 17.8 15.8 15.0 47.8 0.0 2.3 

Comprehensive - 2300 m 3.6 21.4 19.1 17.6 38.2 0.1 2.6 

Comprehensive - 3300 m 4.0 19.6 18.0 17.8 40.6 0.1 2.6 

Comprehensive - 3900 m 4.3 19.0 17.7 17.5 41.5 0.1 2.6 

Comprehensive - 4000 m 4.4 18.9 17.7 17.4 41.6 0.1 2.6 

Visual + ORAA - 2300 m 3.8 21.7 19.1 17.6 37.7 0.1 2.6 

Visual + ORAA - 3000 m 4.1 20.2 18.1 17.9 39.6 0.1 2.6 

Visual + ORAA - 3700 m 4.4 19.4 17.6 17.9 40.6 0.1 2.6 

Visual + ORAA - 4000 m 4.6 19.2 17.4 17.8 40.9 0.1 2.6 

eDNA + ORAA - 2900 m 3.6 20.6 18.7 17.4 39.7 0.1 2.6 

eDNA + ORAA - 3500 m 3.8 19.7 18.3 17.3 40.9 0.1 2.6 
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eDNA + ORAA - 4000 m 4.0 19.1 18.0 16.9 41.9 0.1 2.5 

Visual - 100 m 1.2 38.5 24.3 7.9 28.1 0.0 1.2 

Visual - 700 m 2.5 22.1 23.7 18.7 33.0 0.0 2.9 

Visual - 4000 m 3.7 15.5 15.1 23.9 41.9 0.0 3.4 

Visual + eDNA - 200 m 1.1 35.8 26.4 9.6 27.0 0.0 1.5 

Visual + eDNA - 300 m 1.3 32.6 26.5 11.4 28.1 0.0 1.8 

Visual + eDNA - 700 m 2.0 24.9 24.3 16.8 31.9 0.0 2.6 

Visual + eDNA - 4000 m 3.4 17.6 16.7 20.5 41.8 0.1 3.0 

eDNA - 200 m 1.0 35.9 27.6 10.5 25.0 0.0 1.6 

eDNA - 300 m 1.2 33.1 27.9 12.0 25.9 0.0 1.9 

eDNA - 1700 m 3.0 20.2 20.1 21.5 35.2 0.1 3.1 

eDNA - 4000 m 2.9 18.3 17.4 18.8 42.6 0.1 2.7 
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Table 3: Summary of the performances of the six BRT models used to predict Blanding‟s turtle 

occupancy. Models are identified by their source data and are built with a tree complexity of 5, a 

learning rate of 0.001, and a bag fraction of 0.6 with the exception of the eDNA model which is 

built with a tree complexity of 3. CV = cross-validation; AUC = area under the receiver 

operating curve; SE = standard error. Visual = data from the visual surveys; eDNA = data from 

the eDNA sampling; ORAA = data from the Ontario Reptile and Amphibian Atlas; 

Comprehensive = data from Visual, eDNA, and ORAA. 

 

Model # of trees 
Total 

deviance 

Residual 

deviance 

CV 

deviance 

(SE) 

Training 

AUC 

CV AUC 

(SE) 

Visual + 

ORAA 
2800 1.378 0.587 

0.981 

(0.079) 
0.974 

0.847 

(0.032) 

Comprehensive 3200 1.368 0.651 
1.124 

(0.077) 
0.970 

0.795 

(0.034) 

eDNA + 

ORAA 
1900 1.365 0.788 

1.141 

(0.074) 
0.945 

0.780 

(0.035) 

Visual 2050 1.113 0.620 
0.936 

(0.091) 
0.953 

0.786 

(0.064) 

Visual + 

eDNA 
550 1.295 1.133 

1.282 

(0.022) 
0.890 

0.577 

(0.044) 

eDNA 450 1.208 1.103 
1.197 

(0.033) 
0.861 

0.599 

(0.059) 
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Table 4a: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the visual survey data and the Ontario Reptile and Amphibian Atlas 

data (Visual + ORAA). Asterisk (*) represents significant correlation (p < 0.05). Water = open 

water proportion; Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = 

anthropogenic land proportion; Agriculture = agricultural land proportion; Road = road density 

(km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 

 

 

Water -0.32* -0.25* 0.08 -0.10 0.06 0.11 -0.06 

 Wetland 0.60* -0.51* -0.43* -0.51* 0.33* 0.11 

  Forest -0.71* -0.29* -0.72* 0.47* 0.01 

  Anthropogenic -0.26* 0.98* -0.48* -0.09 

   Agriculture -0.23* -0.21* 0.10 

     Road -0.45* -0.08 

      Age 0.09 

       Area 
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Table 4b: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the visual survey data, the eDNA data, and the Ontario Reptile and 

Amphibian Atlas data (Comprehensive). Asterisk (*) represents significant correlation 

(p < 0.05). Water = open water proportion; Wetland = wetland proportion; Forest = forest 

proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area 

(hectares). 

 

Water -0.34* -0.27* 0.00 0.00 0.08 0.12 -0.06 

 Wetland 0.62* -0.53* -0.43* -0.52* 0.29* 0.11 

  Forest -0.72* -0.32* -0.72* 0.44* 0.02 

  Anthropogenic -0.22* 0.98* -0.47* -0.09 

   Agriculture -0.21* -0.19* 0.09 

     Road -0.44* -0.08 

      Age 0.10 

       Area 
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Table 4c: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the environmental DNA data and the Ontario Reptile and Amphibian 

Atlas data (eDNA + ORAA). Asterisk (*) represents significant correlation (p < 0.05). Water = 

open water proportion; Wetland = wetland proportion; Forest = forest proportion, Anthropogenic 

= anthropogenic land proportion; Agriculture = agricultural land proportion; Road = road density 

(km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 

 

Water -0.35* -0.29* 0.06 -0.08 0.04 0.13 -0.06 

 Wetland 0.66* -0.58* -0.43* -0.58* 0.30* 0.11 

  Forest -0.74* -0.30* -0.73* 0.44* 0.03 

  Anthropogenic -0.20* 0.98* -0.49* -0.11 

   Agriculture -0.19* -0.15 0.09 

     Road -0.45* -0.10 

      Age 0.11 

       Area 
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Table 4d: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the visual survey data (Visual). Asterisk (*) represents significant 

correlation (p < 0.05). Water = open water proportion; Wetland = wetland proportion; Forest = 

forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural 

land proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area 

(hectares). 

 

Water -0.23* -0.07 0.09 -0.15 0.09 0.17 -0.06 

 Wetland -0.09 0.07 -0.02 0.10 0.26* 0.09 

  Forest -0.68* 0.03 -0.69* 0.49* -0.06 

  Anthropogenic -0.58 0.98* -0.46* -0.01 

   Agriculture -0.54* 0.04 0.09 

     Road -0.43* -0.01 

      Age 0.06 

       Area 
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Table 4e: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the visual survey data and the environmental DNA data (Visual + 

eDNA). Asterisk (*) represents significant correlation (p < 0.05). Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land 

proportion; Agriculture = agricultural land proportion; Road = road density (km/km
2
); Age = 

wetland age (years); Area = wetland area (hectares). 

 

Water -0.24* -0.11 0.18 -0.14 0.11 0.15 -0.05 

 Wetland -0.02 -0.38* 0.03 -0.34* 0.30* 0.09 

  Forest -0.43* -0.13 -0.41* 0.34* -0.05 

  Anthropogenic -0.34* 0.86* -0.41* -0.05 

   Agriculture -0.30* 0.05 0.07 

     Road -0.43* -0.06 

      Age 0.07 

       Area 
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Table 4f: Correlations (Pearson‟s correlation coefficient) between the explanatory variables of 

the BRT model built using the environmental DNA data (eDNA). Asterisk (*) represents 

significant correlation (p < 0.05). Water = open water proportion; Wetland = wetland proportion; 

Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = 

agricultural land proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = 

wetland area (hectares). 

 

Water -0.31* -0.21 0.17 0.20 -0.03 0.16 -0.05 

 Wetland 0.40* -0.51 -0.42* -0.49* 0.50* 0.17 

  Forest -0.49* -0.50* -0.48* 0.40* -0.09 

  Anthropogenic -0.11 0.83* -0.47* -0.06 

   Agriculture 0.01 -0.28 -0.07 

     Road -0.55* -0.07 

      Age 0.10 

       Area 
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7 FIGURES 

 

 
 

Figure 1: A Blanding‟s turtle (Emydoidea blandingii) nesting on the shoulder of a road in eastern Ontario, Canada. 
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Figure 2: Map of the study area where the effect of landscape composition on the probability of wetland (n = 155) occupancy by 

Blanding‟s turtles was studied in eastern Ontario, Canada.
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Figure 3: The frequency of quantification cycle values (Cq values) for the 92 of 345 positive 

control replicates that registered a Cq value. 
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Figure 4a: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „Visual + ORAA‟ data. Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural 

land proportion; Road = road density (km/km
2
). 
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Figure 4b: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „Comprehensive‟ data. Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural 

land proportion; Road = road density (km/km
2
). 
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Figure 4c: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „eDNA + ORAA‟ data. Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural 

land proportion; Road = road density (km/km
2
). 
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Figure 4d: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „Visual‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
). 
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Figure 4e: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „Visual + eDNA‟ data. Water = open water proportion; 

Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural 

land proportion; Road = road density (km/km
2
). 
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Figure 4f: Point biserial correlations between wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada, and six landscape 

variables measured in buffers of increasing size (meters), calculated from „eDNA‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
).
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Figure 5: Percent deviance explained (based on cross-validation (CV) deviance; grey bars) and 

cross-validation area under the receiver operating curve (CV AUC; hollow bars) for the six BRT 

models used to predict wetland occupancy by Blanding‟s turtles in eastern Ontario, Canada. 

Models are identified by their source data: Visual = data from the visual surveys; eDNA = data 

from the eDNA sampling; ORAA = data from the Ontario Reptile and Amphibian Atlas; 

Comprehensive = data from Visual, eDNA, and ORAA. Error bars represent standard error. 
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Figure 6: Relative influence (%) of the explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the six BRT models. „a‟ = Visual + ORAA model; „b‟ = Comprehensive model; „c‟ = eDNA + 

ORAA model; „d‟ = Visual model; „e‟ = Visual + eDNA model; „f‟ = eDNA model. Visual = data from the visual surveys; eDNA = 

data from the eDNA sampling; ORAA = data from the Ontario Reptile and Amphibian Atlas; Comprehensive = data from Visual, 

eDNA, and ORAA. Water = open water proportion; Wetland = wetland proportion; Forest = forest proportion, Anthropogenic = 

anthropogenic land proportion; Agriculture = agricultural land proportion; Road = road density (km/km
2
); Age = wetland age (years); 

Area = wetland area (hectares). 
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Figure 7a: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „Visual + ORAA‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 7b: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „Comprehensive‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 7c: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „eDNA + ORAA‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 7d: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „Visual‟ data. Water = open water proportion; Wetland = wetland 

proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land proportion; 

Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 7e: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „Visual + eDNA‟ data. Water = open water proportion; Wetland = 

wetland proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land 

proportion; Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 7f: The marginal effects of the eight explanatory variables used to predict wetland occupancy by Blanding‟s turtles in eastern 

Ontario, Canada, as determined by the BRT model built using the „eDNA‟ data. Water = open water proportion; Wetland = wetland 

proportion; Forest = forest proportion, Anthropogenic = anthropogenic land proportion; Agriculture = agricultural land proportion; 

Road = road density (km/km
2
); Age = wetland age (years); Area = wetland area (hectares). 
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Figure 8: Probability of wetland occupancy by Blanding‟s turtles for all 155 wetlands, as 

predicted by the BRT model built using data from the visual surveys, the eDNA data, and the 

Ontario Reptile and Amphibian Atlas (Comprehensive). Wetlands are sorted by Blanding‟s turtle 

occupancy (0 = unoccupied; 1 = occupied). Filled circles represent the mean values (0.33 for 

unoccupied wetlands; 0.74 for occupied wetlands) with 95% confidence intervals. 

 

 

 

 

 



57 

 

 

 

Figure 9: Kernel density plots for the probability of wetland occupancy by Blanding‟s turtles as 

predicted by 100 BRT models, each built using a different random subset of 100 wetlands from 

the 155 wetlands of the Comprehensive dataset (visual surveys, eDNA data, and the Ontario 

Reptile and Amphibian Atlas). Wetlands are sorted by Blanding‟s turtle occupancy (blue = 

unoccupied; red = occupied) and data source (solid = training wetlands; dashed = validation 

wetlands). All density curves have a bandwidth of 0.025 and n = 4329 for unoccupied training, n 

= 5671 for occupied training, n = 2371 for unoccupied validation, and n = 3129 for occupied 

validation. 
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Figure 10: Probability of wetland occupancy by Blanding‟s turtles (%) predicted to 1 km grid cells across the study area. Predictions 

were made using a BRT model built using the „Comprehensive‟ data and wetland proportion, forest proportion, anthropogenic land 

proportion, agricultural land proportion, and road density as explanatory variables.
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