Introduction

Applications of transition metal cyanides are widespread in chemistry, with recent interest in such diverse areas as molecular magnetism and the synthesis of porous supramolecular assemblies. Several recent papers have examined specifically the chemistry of silver cyanides and gold cyanides, including the observation of strong photoluminescence in solutions of [KAg(CN)₂] and K[Ag(CN)₂].

The structure of silver cyanide has been investigated by solid-state multinuclear magnetic resonance spectroscopy. Carbon-13 and nitrogen-15 NMR spectra of magic-angle-spinning (MAS) and stationary powder samples of isotopically enriched Ag¹³CN, Ag¹⁵CN, and AgC¹⁵N have been acquired at the external applied magnetic field strengths 4.7, 7.05, and 9.4 T. Axially symmetric carbon and nitrogen chemical shift (CS) tensors provide evidence for linearity of the polymeric (‒Ag–CN‒)ₙ chains. A two-site model is required to successfully simulate the ¹³C MAS NMR line shape, which is dominated by indirect nuclear spin–spin coupling between ¹⁰⁰Ag and ¹³C nuclei. In combination with relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations on model AgCN fragments, the ¹³C MAS NMR results show that 30 ± 10% of the silver sites are disordered, that is, either –NC–Ag–CN– or –CN–Ag–NC–, and 70 ± 10% of the silver sites are ordered, that is, –NC–Ag–NC–. Effective dipolar coupling data extracted from ¹³C NMR spectra of stationary samples allow an upper limit of 1.194 Å to be placed on the carbon–nitrogen internuclear distance. After incorporation of the effects of anisotropic indirect nuclear spin–spin coupling and motional averaging on the NMR-derived distance, a corrected value of \(r_{CN} = 1.16 \pm 0.03 \) Å is obtained. This work provides an example of the type of information which may be obtained from solid-state NMR studies of disordered materials and how such information may complement that available from diffraction studies.

(18) For a recent perspective on gold chemistry, see: Schmidbaur, H. Nature 2001, 413, 31–33.

Inorganic Chemistry, Vol. 41, No. 16, 2002 4131
of importance in the self-assembled metal colloid monolayer approach to surface-enhanced Raman scattering experiments.

Interestingly, the structures of some "simple" inorganic compounds are not well understood, for example, silver cyanide, AgCN, and gold cyanide, AuCN. Only recently has the structure of solid copper cyanide been determined. Characterization of these prototypical transition metal complexes is of importance to provide a foundation for the understanding of more complex structures.

In 1999, Bowmaker et al. published powder neutron diffraction structures of AuCN and AgCN and found that both systems exist as "infinite" linear chains of alternating metal and cyanide moieties. Silver cyanide was found to be translationally disordered, with adjacent chains displaced along their long axis relative to each other. However, the possibility of so-called cyanide "head−tail" disorder, that is, −CN−Ag−CN− versus −NC−Ag−CN− versus −CN−Ag−NC− (see Table 1), was not addressed. In the present work, we define an ordered silver site to be one for which the two directly bonded cyanide groups are oriented in the same direction such that the silver atom is bonded to one carbon atom and one nitrogen atom (see also model A in Table 4). We define cyanide head–tail "disorder" as the case where there is not perfect parallel ordering of the cyanide groups within a given AgCN chain. Thus a "disordered" silver site refers to the situation shown here, where Ag is bonded to either two carbon atoms or two nitrogen atoms. We note that in the context of these definitions it is possible to have a perfectly "disordered" AgCN chain wherein the orientation of each cyanide moiety alternates with respect to its nearest neighbor, resulting in an antiparallel arrangement of cyanides. Nevertheless, this antiparallel arrangement is labeled as 100% disordered for the purposes of discussion (see model D in Table 4).

In 2002, Hibble and co-workers carried out a total neutron diffraction study of AgCN and reported bond lengths, r_{AgC} = 2.06 Å, r_{AgN} = 1.16 Å, r_{CN} = 1.16 Å, and r_{CN} = 1.26(9) Å. The study of Hibble makes reference to the possibility of head−tail disorder in AgCN, and their model correlation function, $T(r)$, incorporates the assumption of random ordering of the CN groups.

Hibble suggests that a nuclear magnetic resonance study of AgCN may be useful in providing additional information from a different perspective on the structure of AgCN, in particular the head−tail cyanide disorder. Solid-state NMR is indeed well-suited for probing disordered materials and has been applied to elucidate the structure and nature of the disorder in solid copper cyanide. Beneficial insights into the structure and bonding in several ordered, crystalline cyanometalates have also been provided by solid-state multinuclear magnetic resonance. Through the analysis of second-rank NMR interaction tensors such as chemical shift (CS) tensors, direct dipolar coupling tensors, and indirect nuclear spin−spin coupling tensors (J), the opportunity exists under favorable circumstances to provide information on molecular geometry, connectivity, and ordering in solid silver cyanide.

In the present work, we present a 13C and 15N solid-state NMR study of various isotopomers of silver cyanide: AgCN in natural abundance, Ag13CN (99%), Ag13C15N (99%), and Ag15N (99%). The study of several isotopomers at three different external applied magnetic field strengths will allow for a precise determination of several important NMR parameters which may be interpreted to provide information on the structure of silver cyanide. In particular, the present work endeavors to provide structural information which is complementary to the neutron diffraction studies, to resolve the discrepancy of 0.1 Å in the reported carbon−nitrogen bond lengths from these studies, and to provide a clearer picture of the nature of the disorder in silver cyanide.

Theory

There are five spin-active isotopes to consider when carrying out solid-state NMR spectroscopy of silver cyanide: $^{109/107}$Ag ($I = 1/2, NA = 48.18\%$), 107Ag ($I = 1/2, NA = 51.82\%$), 13C ($I = 1/2, NA = 1.108\%$), 15N ($I = 1/2, NA = 0.37\%$), and 14N ($I = 1, NA = 99.63\%$). By selectively isotopically enriching the carbon and/or nitrogen sites, different and complementary information may be obtained from NMR experiments.

The NMR interactions of interest in the present work are the direct dipolar interaction, the indirect nuclear spin−spin (J) coupling interaction, and the chemical shift (CS) interaction. Each of these interactions has the ability to provide unique information on the structure of silver cyanide.

Direct Dipolar and Indirect Nuclear Spin−Spin Coupling Interactions

The direct dipolar coupling interaction is analogous to the classical magnetic interaction between two bar magnets and depends intimately on the motionally averaged inverse cube of the internuclear distance of the two coupled nuclei, $r_{i,j}^{-3}$. This interaction is quantified by the...
direct dipolar coupling constant, R_{DD}:

$$R_{DD} = \frac{\mu_0}{4\pi} \frac{\gamma_1 \gamma_2 \mathbf{J}}{2\pi} (\mathbf{r}_{12}^{-1})$$

(1)

Here, γ_1 and γ_2 are the magnetogyric ratios of the coupled nuclei.

The \mathbf{J} coupling interaction may be described as the sum of isotropic, J_{iso}, and anisotropic, ΔJ, parts. The isotropic coupling constant is well-known from solution NMR spectroscopy, where it manifests itself as a field-independent splitting. The Hamiltonian describing the anisotropic part of the \mathbf{J} coupling tensor is identical in form to the Hamiltonian describing the direct dipolar interaction, and as a result, the two interactions cannot be separated. This phenomenon is represented by the following equation,

$$R_{eff} = R_{DD} - \frac{\Delta J}{3}$$

(2)

where the effective dipolar coupling constant, R_{eff}, is the quantity which is measured experimentally. Thus, when attempting to extract internuclear distances from solid-state NMR experiments, two issues must be considered: (i) the magnitude of ΔJ and (ii) the extent to which motional averaging affects R_{DD}.

Chemical Shift Interaction. Typically the dominant NMR interaction in the spectra of spin-$\frac{1}{2}$ nuclei is the chemical shift (CS) interaction. The chemical shift interaction is properly described by a second-rank tensor. In its principal axis system, the symmetric part of the CS tensor may be described by three principal components, $\delta_{11} \geq \delta_{22} \geq \delta_{33}$. The isotropic chemical shift, δ_{iso} is the average of these three components. It is also convenient to define two derived quantities, the span (Ω) and the skew (κ), which help in describing the CS tensor:

$$\Omega = \delta_{11} - \delta_{33}$$

(3)

$$\kappa = \frac{3(\delta_{22} - \delta_{iso})}{\Omega}$$

(4)

For an axially symmetric CS tensor, there are only two unique principal components which are commonly represented as δ_{0} and δ_{1}. In such cases, $\kappa = \pm 1$.

Dipolar–Chemical Shift Method. For an isolated AX spin pair, the dipolar–CS method allows, under favorable conditions when symmetry dictates the orientation of one of the principal components of the CS tensor, for the determination of the effective dipolar coupling constant, the principal components of the CS tensor, and the orientation of the CS tensor with respect to the dipolar vector. Considerable simplifications result for heteronuclear spin pairs in an axially symmetric environment, as is the case for the 13C–15N spin pair in Ag13C15N; the effective dipolar coupling constant manifests itself as a readily measurable splitting in the stationary powder pattern.

Experimental and Computational Details

Sample Preparation. A typical synthesis of silver cyanide involved mixing equimolar amounts of silver nitrate (5.06 g, 29.8 mmol) and potassium cyanide (1.98 g, 30.4 mmol) dissolved in water. Upon mixing, silver cyanide precipitates immediately as a white powder. The product was collected by filtration, washed several times with water and ethanol, and dried on a high-vacuum line. For the natural-abundance sample, IR spectra (Nujol mull) were recorded, giving peaks at 2163 and 478 cm$^{-1}$, which have been assigned previously to C–N stretching and Ag–C bending modes, respectively. Preparations of 13C- and 15N-enriched samples, Ag13CN (99%), AgC15N (99%), and Ag13C15N (99%), were carried out using the appropriate 99% isotopically enriched potassium cyanide.

Solid-State NMR Spectroscopy. Carbon-13 NMR spectra of solid Ag13C15N (MAS and stationary) were acquired at 4.7 T ($\nu_L^{(13)C}$ = 50.33 MHz) on a Chemagnetics CMX Infinity 200 spectrometer using a 5 mm (rotor o.d.) MAS probe. At 7.05 T ($\nu_L^{(13)C}$ = 75.43 MHz) on a Bruker AMX300 spectrometer using a 7 mm (rotor o.d.) MAS probe, and at 9.4 T ($\nu_L^{(13)C}$ = 100.6 MHz) on a Bruker AMX400 spectrometer using a 4 mm (rotor o.d.) MAS probe. For all spectrometers, adamantane was used as an external 13C reference, with peaks at 38.56 and 29.50 ppm relative to TMS. The magic angle was set by maximizing the number of rotational echoes in the 23Na FID of solid sodium nitrate. Carbon-13 $\pi/2$ pulse widths were approximately 5.0 µs on all spectrometers. In practice, shorter pulses (e.g., 2 µs) were used to acquire spectra of stationary samples in order to provide a more uniform and complete excitation of the powder pattern. Recycle delays were typically 100–200 s. A variety of MAS rates ranging from 2.1 to 7.6 kHz were employed. Carbon-13 NMR spectra of MAS and stationary samples of solid Ag13CN were also acquired at 4.7 and 9.4 T.

Nitrogen-15 NMR spectra of solid AgC15N and Ag13C15N were acquired at 4.7 T ($\nu_L^{(15)N}$ = 20.29 MHz) and 9.4 T ($\nu_L^{(15)N}$ = 40.6 MHz) using the same 5 and 4 mm MAS probes described above. The 15N ammonium resonance of solid 15NH$_3$,15NO$_3$ was used as an external reference and set to 23.8 ppm with respect to neat ammonia. Nitrogen-15 labeled ammonium nitrate was also used to establish the 15N $\pi/2$ pulse width as approximately 5.0 µs on both spectrometers. Recycle delays were 200–300 s. A variety of MAS rates ranging from 2.5 to 6.2 kHz were employed.

Spectral simulations were carried out using the programs WSOLIDS and HBA, both of which were developed in our laboratory. The HBA program is based on the method of Herzfeld and Berger for the determination of the principal components of chemical shift tensors for spin-3/2 nuclei from spectra of MAS samples.

ZORA-DFT Calculations. Indirect nuclear spin–spin coupling tensors were calculated using the CPL coupling module of the Amsterdam density functional program running on an IBM RS/6000 workstation or a PC with an AMD Athlon microprocessor. The couplings are calculated on the basis of the spin–orbit relativistic ZORA-DFT implementation of Autschbach and Ziegler. The Fermi-contact (FC), spin-dipolar (SD), and diamagnetic and paramagnetic spin–orbit (DSO and PSO) coupling mechanisms were included in the calculations. All DFT calculations used the VWN + Becke88 and Perdew86 generalized gradient approximation (GGA). The triple-polarized ADF ZORA Slater-type basis sets available within the ADF package were used on all atoms.

Simple models for the infinite linear chain structure of silver cyanide were used to provide some insight into the dependence of the silver–carbon J coupling on the local structure. To this end, calculations based on the bond lengths reported by Hibble et al. and of Hibble that silver cyanide exists as an infinite linear chain. The principal components of the carbon nuclear magnetic shielding tensor, as discussed for the one-bond Ag–N coupling in AgCN, are averaged to zero and do not contribute to the observed spectrum. In combination with other 13C MAS NMR spectra acquired at 7.05 and 9.4 T were also examined, and it was found that the splitting (in Hz) is field independent and maintains its asymmetry. The fact that it is field independent indicates that the splitting arises because of J coupling between carbon and silver rather than because of significantly different carbon chemical shifts for different sites in AgCN. Indeed, the approximate splitting of 280 Hz is within the typical range observed for one-bond 109Ag–13C coupling constants, approximately 100–245 Hz.

If there were perfect head-to-tail cyanide ordering in AgCN, wherein all cyano moieties are oriented in the same direction (i.e., in a parallel orientation) such that all silver atoms are directly bonded to one carbon atom and one

Table 2. Solid-State NMR Results for Silver Cyanide

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{iso}/ppm)</td>
<td>157 ± 1 (^a)</td>
</tr>
<tr>
<td>(\delta_{\perp}/ppm)</td>
<td>276 ± 2</td>
</tr>
<tr>
<td>(\delta_{\parallel}/ppm)</td>
<td>-79 ± 3</td>
</tr>
<tr>
<td>(C_{q}(13\text{C})/\text{MHz}^a)</td>
<td>(-2.9) ± 1.0</td>
</tr>
<tr>
<td>(R_{eff}(13\text{C}, 15\text{N})/\text{Hz})</td>
<td>(-1800) ± 50</td>
</tr>
<tr>
<td>(r_{sv}/\text{Å})</td>
<td>1.16 ± 0.03</td>
</tr>
</tbody>
</table>

\(^a\) Simulations of 13C NMR spectra of stationary samples are based on a one-site model. Simulations of 13C MAS NMR spectra required the use of a two-site model using the data given in Table 3. The electric field gradient asymmetry parameter, \(\eta\), was set to zero in accordance with the linear geometry of AgCN. See text for a discussion of the corrections made to \(R_{sd}\) to obtain this bond length.

\(\pm 3\) ppm, are identical within error to those reported for copper cyanide, \(\delta_{\perp} = 267 \pm 10\) ppm and \(\delta_{\parallel} = -84 \pm 10\) ppm. The large deshielding perpendicular to the AgCN and CuCN chains is due to paramagnetic contributions to the nuclear magnetic shielding tensor, as discussed for CuCN. Shown in Figure 2a is the reconstructed isotropic resonance of the spectrum shown in Figure 1; that is, the sidebands have been summed into the centerband to provide the total 13C MAS NMR line shape. The isotropic resonance appears as an asymmetric doublet with an approximate splitting of 280 Hz. To determine the origin of the asymmetric doublet, 13C MAS spectra acquired at 7.05 and 9.4 T were also examined, and it was found that the splitting (in Hz) is field independent and maintains its asymmetry. The fact that it is field independent indicates that the splitting arises because of J coupling between carbon and silver rather than because of significantly different carbon chemical shifts for different sites in AgCN. Indeed, the approximate splitting of 280 Hz is within the typical range observed for one-bond 109Ag–13C coupling constants, approximately 100–320 Hz.

If there were perfect head-to-tail cyanide ordering in AgCN, wherein all cyano moieties are oriented in the same direction (i.e., in a parallel orientation) such that all silver atoms are directly bonded to one carbon atom and one

Figure 1. Carbon-13 NMR spectrum of solid 13C- and 15N-enriched (99%) silver cyanide, AgCN, acquired at 4.7 T with an MAS re relaxation of 6.20 kHz. The spectrum is the sum of 336 scans acquired with a recycle delay of 200 s. The axial symmetry of the spinning sideband pattern is indicative of the linearity of the AgCN chains. The asymmetric doublet arises as a result of cyanide “head–tail” disorder and indirect nuclear spin–spin coupling to the abundant 109Ag and 107Ag isotopes (see text and Figure 2).

Table 2. Solid-State NMR Results for Silver Cyanide

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{iso}/ppm)</td>
<td>157 ± 1</td>
</tr>
<tr>
<td>(\delta_{\perp}/ppm)</td>
<td>276 ± 2</td>
</tr>
<tr>
<td>(\delta_{\parallel}/ppm)</td>
<td>-79 ± 3</td>
</tr>
<tr>
<td>(C_{q}(13\text{C})/\text{MHz}^a)</td>
<td>-2.9 ± 1.0</td>
</tr>
<tr>
<td>(R_{eff}(13\text{C}, 15\text{N})/\text{Hz})</td>
<td>-1800 ± 50</td>
</tr>
<tr>
<td>(r_{sv}/\text{Å})</td>
<td>1.16 ± 0.03</td>
</tr>
</tbody>
</table>

\(^a\) Simulations of 13C NMR spectra of stationary samples are based on a one-site model. Simulations of 13C MAS NMR spectra required the use of a two-site model using the data given in Table 3. The electric field gradient asymmetry parameter, \(\eta\), was set to zero in accordance with the linear geometry of AgCN. See text for a discussion of the corrections made to \(R_{sd}\) to obtain this bond length.

\(\pm 3\) ppm, are identical within error to those reported for copper cyanide, \(\delta_{\perp} = 267 \pm 10\) ppm and \(\delta_{\parallel} = -84 \pm 10\) ppm. The large deshielding perpendicular to the AgCN and CuCN chains is due to paramagnetic contributions to the nuclear magnetic shielding tensor, as discussed for CuCN.

Shown in Figure 2a is the reconstructed isotropic resonance of the spectrum shown in Figure 1; that is, the sidebands have been summed into the centerband to provide the total 13C MAS NMR line shape. The isotropic resonance appears as an asymmetric doublet with an approximate splitting of 280 Hz. To determine the origin of the asymmetric doublet, 13C MAS spectra acquired at 7.05 and 9.4 T were also examined, and it was found that the splitting (in Hz) is field independent and maintains its asymmetry. The fact that it is field independent indicates that the splitting arises because of J coupling between carbon and silver rather than because of significantly different carbon chemical shifts for different sites in AgCN. Indeed, the approximate splitting of 280 Hz is within the typical range observed for one-bond 109Ag–13C coupling constants, approximately 100–320 Hz.
The experimental isotropic resonance is successfully fit with the experimental spectrum only when the two sites are weighted in the ratio 70 ± 10% (site 1) to 30 ± 10% (site 2).

The observation of silver–carbon coupling implies silver–carbon connectivity and indicates that the cyanide groups are in a state of static disorder rather than dynamic disorder. That is, any reorientation of CN groups is slow with respect to $J_{\text{iso}(109/107 \text{Ag}, 13\text{C})}$ at room temperature. This conclusion is identical to what has been found for solid CuCN21 and contrasts with the situation in solid alkali metal cyanides, where the cyano groups are indeed in a state of dynamic disorder.55,56

Shown in Table 4 are various cyanide ordering scenarios for an “infinite” chain of AgCN. If the cyanide ligands are completely ordered such that all cyanide groups are oriented in the same direction and all silver atoms are bonded to one carbon and one nitrogen (model A), only one type of carbon site would be apparent in the ^{13}C MAS NMR spectrum. Model D features cyanide ligands of alternating orientation such that all silver atoms are in disordered sites and each similarly has only one carbon site which would also give rise to a single resonance in the ^{13}C MAS NMR spectrum. The true percentage of ordered and disordered silver sites therefore lies between these two extremes such that ^{13}C resonances from both NC–Ag–CN and NC–Ag–NC sites have been observed. On the basis of the NMR data, we may conclude that the true ordering scenario is approximately as shown in either model B or C. Here, ratios of 1:2 and 2:1 have been used to represent the two types of carbon sites; this, within experimental error, is what has been observed.

Certainly, $^{109/107}\text{Ag}$ MAS NMR of solid silver cyanide would provide great insight into the nature and distribution of the silver sites. While both silver nuclei are approximately 50% abundant, $^{109/107}\text{Ag}$ NMR of silver cyanide poses several challenges. First, the resonance frequency of ^{109}Ag in a magnetic field of 9.4 T is only 18.7 MHz, resulting in technical difficulties such as probe ringing. Second, the coils in many NMR probes contain silver, thus introducing a bound to the silver atom significantly influences the NMR spectrum of the ^{13}C nucleus under consideration. This corresponds to the existence of both ordered and disordered sites (see Table 1). This model neglects small longer-range effects on the ^{13}C NMR interaction tensors, such as those induced by interchain translational disorder. Shown in Figure 2 is a simulated unbroadened ^{13}C MAS NMR spectrum based on two sites with approximately identical chemical shifts, 157.0 ppm (site 1) and 157.8 ppm (site 2), and significantly different silver–carbon spin–spin coupling constants. For site 1, $J_{\text{iso}(109\text{Ag}, 13\text{C})}$ is $\pm(262 \pm 15)$ Hz, and for site 2, $J_{\text{iso}(107\text{Ag}, 13\text{C})}$ is $\pm(201 \pm 15)$ Hz (Table 3). The simulation also incorporates $J_{\text{iso}(107\text{Ag}, 13\text{C})}$ coupling, as fixed by the relative magnetogyric ratios of ^{109}Ag and ^{107}Ag. The simulated broadened two-site spectrum shown in Figure 2 agrees with the experimental spectrum only when the two sites are weighted in the ratio 70 ± 10% (site 1) to 30 ± 10% (site 2).

The experimental isotropic resonance (the MAS spinning sidebands have been added to the isotropic centerband as described in the text) for ^{13}C in AgCN. The simulated isotropic resonance of the ^{13}C MAS NMR spectrum of solid Ag$^{13}\text{C}^{15}\text{N}$ based on a typical $J_{\text{iso}(109\text{Ag}, 13\text{C})}$ of 280 Hz and the corresponding $J_{\text{iso}(107\text{Ag}, 13\text{C})}$ 243 Hz is shown on the left for a single carbon site. The J coupling between ^{13}C and the two silver isotopes results in four peaks, as shown in the unbroadened spectrum. The asymmetry of the reconstructed experimental isotropic ^{13}C resonance shown in part (a) cannot be reproduced on the basis of a one-site model, as evidenced by the disagreement between the experimental spectrum and the broadened “one-site” simulated spectrum. The simulated isotropic resonances of the ^{13}C MAS NMR spectrum of solid Ag$^{13}\text{C}^{15}\text{N}$ based on a two-site model, where the isotropic chemical shift and silver–carbon J coupling are slightly different for carbon sites depending on the orientation of the nearest neighbor cyanide ligand, are shown on the right. The experimental spectrum is successfully simulated as the sum of two distinct ^{13}C sites in the approximate ratio 2:1. See text for details.

Figure 2. (a) Experimental ^{13}C MAS NMR isotropic resonance (the MAS spinning sidebands have been added to the isotropic centerband as described in the text) for Ag$^{13}\text{C}^{15}\text{N}$. The simulated isotropic resonance of the ^{13}C MAS NMR spectrum of solid Ag$^{13}\text{C}^{15}\text{N}$ based on a typical $J_{\text{iso}(109\text{Ag}, 13\text{C})}$ of 280 Hz and the corresponding $J_{\text{iso}(107\text{Ag}, 13\text{C})}$ 243 Hz is shown on the left for a single carbon site. The J coupling between ^{13}C and the two silver isotopes results in four peaks, as shown in the unbroadened spectrum. The asymmetry of the reconstructed experimental isotropic ^{13}C resonance shown in part (a) cannot be reproduced on the basis of a one-site model, as evidenced by the disagreement between the experimental spectrum and the broadened “one-site” simulated spectrum. The simulated isotropic resonances of the ^{13}C MAS NMR spectrum of solid Ag$^{13}\text{C}^{15}\text{N}$ based on a two-site model, where the isotropic chemical shift and silver–carbon J coupling are slightly different for carbon sites depending on the orientation of the nearest neighbor cyanide ligand, are shown on the right. The experimental spectrum is successfully simulated as the sum of two distinct ^{13}C sites in the approximate ratio 2:1. See text for details.

Table 3. Experimental and Calculated Silver—Carbon Indirect Nuclear Spin—Spin Coupling Constants, $J_{\text{ind}}^{(109}\text{Ag},^{13}\text{C})$ for Silver Cyanide

<table>
<thead>
<tr>
<th>Model</th>
<th>$J_{\text{ind}}^{(109}\text{Ag},^{13}\text{C})/{\text{Hz}}$</th>
<th>Difference in $J_{\text{ind}}^{(109}\text{Ag},^{13}\text{C})/{\text{Hz}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$(-297 \pm 15$ (site 1)</td>
<td>$(-201 \pm 15$ (site 2)</td>
</tr>
<tr>
<td>B</td>
<td>-308 (model I)</td>
<td>-234 (model II average)*</td>
</tr>
</tbody>
</table>

* This represents the average J coupling for both carbon nuclei coupled to silver in model II.

Table 4. Cyanide "Head—Tail" Ordering in Silver Cyanide

<table>
<thead>
<tr>
<th>Model</th>
<th>% of ^{13}C NMR-active silver sites*</th>
<th>% of Ag in disordered sites*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\ldots—Ag\ldots—NC—Ag\ldots—CN—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots—CN—Ag\ldots—NC—Ag\ldots</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>\ldots—Ag\ldots—NC—Ag\ldots—CN—Ag\ldots—CN—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots</td>
<td>33</td>
</tr>
<tr>
<td>C</td>
<td>\ldots—Ag\ldots—NC—Ag\ldots—CN—Ag\ldots—CN—Ag\ldots—CN—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots</td>
<td>66</td>
</tr>
<tr>
<td>D</td>
<td>\ldots—Ag\ldots—CN—Ag\ldots—CN—Ag\ldots—NC—Ag\ldots—NC—Ag\ldots—CN—Ag\ldots</td>
<td>100</td>
</tr>
</tbody>
</table>

* The percentages listed here are attributable to the total number of silver sites which may be probed by NMR observation of directly bonded ^{13}C nuclei. Therefore, the disordered "—Ag—N—" sites are unavoidably not included in these percentages. b The percentages listed here are attributable to the total number of silver sites. c As mentioned in Table 1, model D may be considered as an arrangement of perfectly antiparallel-ordered silver cyanide; however, in the present work we use the definitions of "ordered" and "disordered", as shown in Table 1, to refer to the silver environments. Therefore, it is true that 100% of the silver sites are in disordered environments.

The known experimental range, and the difference in the spin—spin coupling constants for an ordered site and a disordered site, 74 Hz, is in good agreement with the experimental value of 96 ± 30 Hz. Site 1 from the ^{13}C MAS NMR simulations may be assigned to model I from the ZORA-DFT calculations, and site 2 may be assigned to model II. Thus, we conclude that model B shown in Table 4 is in best agreement with the ^{13}C MAS NMR data. Model B features 33% of all silver atoms in disordered sites, that is, either $—\text{NC}—\text{Ag}—\text{CN}—$ or $—\text{CN}—\text{Ag}—\text{NC}—$. This is an identical result to what was obtained in solid copper cyanide.21 If the cyanide ordering were completely random, one would expect 50% of the silver atoms to occupy disordered sites; thus, it may be concluded that there is a measurable preference for the cyanide groups to be ordered.

On the basis of the ^{13}C NMR parameters determined from the analysis of Ag$^{13}\text{C}^{15}\text{N}$ described above, a successful simulation of ^{13}C MAS NMR spectra of Ag$^{13}\text{C}^{14}\text{N}$ was also possible. For the latter isotopomer, residual dipolar coupling between ^{13}C and the quadrupolar ^{14}N nucleus contributes to the ^{13}C MAS NMR spectrum in addition to the silver—carbon spin—spin coupling interactions described above for Ag$^{13}\text{C}^{15}\text{N}$. While the experimental uncertainties in $J_{\text{ind}}^{(109}\text{Ag},^{13}\text{C})$ and the relative intensities of site 1 and site 2 preclude an extremely precise measurement of the ^{14}N nuclear quadrupolar coupling constant, a value of -2.9 ± 1.0 MHz may nevertheless be extracted from spectral simulations. This may be compared, for example, to the value 2.284 MHz reported for the cyanate nitrogen in solid ammonium thiocyanate.37 The asymmetry parameter, η, of the ^{14}N electric field gradient tensor in AgCN was set to zero in accordance with the axial symmetry observed for both carbon and nitrogen (vide infra) CS tensors.

Nitrogen-15 NMR Spectroscopy. Presented in Figure 3 is a ^{15}N MAS NMR spectrum of solid ^{15}N-enriched (99%) silver cyanide. In combination with other ^{15}N NMR spectra of static and MAS samples obtained at 4.7 and 9.4 T,
interactions involving 13 C must be considered. The relevant
parameters of nitrogen are similar to the results reported for solid CuCN,
and 109/107 Ag, 15 N iso (15 N, 13 C) is typically on the order of 10 Hz and as such
will not make any noticeable impact on the ~30 kHz-wide static 13 C NMR line shape.

The 13 C NMR spectrum presented in Figure 4 may therefore be properly analyzed on the basis of the assumption of an effectively “isolated” 13 C–15 N spin pair, with the silver–carbon spin–spin coupling interactions resulting in a broadening of the discontinuities in the spectrum but without affecting the magnitude of the splitting due to 15 N.

The effective dipolar coupling between 13 C and 15 N manifests itself as a splitting \(R_{\text{eff}} \) at the high-frequency side of the powder pattern and 2\(R_{\text{eff}} \) at the low-frequency side. \(^{37}\) In 13 C NMR spectra of stationary samples of Ag\(^{13}\)C\(^{15}\)N (see inset of Figure 4), the dipolar splitting between 13 C and the 99.6% abundant 14 N nucleus manifests itself in a similar manner; however, the powder pattern is split into three rather than two because of the three allowed spin states of 14 N. In combination with the CS tensor parameters measured from MAS samples, the spectra shown in Figure 4 may be successfully simulated to extract the effective 13 C–15 N dipolar coupling constant. The accuracy and precision of the final reported value of \(R_{\text{eff}}(13 \text{C}, 15 \text{N}) \), \(-1800 \pm 50 \text{ Hz} \) (Table 2), are based on simulations of 13 C NMR spectra of stationary samples of both Ag\(^{13}\)C\(^{15}\)N and Ag\(^{13}\)C\(^{14}\)N obtained at multiple field strengths. The agreement in values of \(R_{\text{eff}}(13 \text{C}, 15 \text{N}) \) determined from the splittings in the 13 C spectra of both Ag\(^{13}\)C\(^{15}\)N and Ag\(^{13}\)C\(^{14}\)N further demonstrates the validity of treating the system as an AX spin pair.

Determination of a carbon–nitrogen bond length from the measured value of \(R_{\text{eff}} \) necessitates a detailed discussion of the factors which will affect the accuracy of the final result. As mentioned in the Theory section, two factors exist which must be considered when converting a measured effective dipolar coupling constant to a bond length: (i) the value of

Figure 3. Nitrogen-15 NMR spectrum of solid \(^{15}\)N-enriched (99%) silver cyanide, Ag\(^{13}\)C\(^{15}\)N, acquired at 9.4 T with an MAS rate of 2.52 kHz. The spectrum is the sum of 459 scans acquired with a recycle delay of 200 s. The axial symmetry of the spinning sideband pattern is indicative of the linearity of the AgCN chains. Also shown is the best-fit simulated spectrum based on the nitrogen chemical shift tensor parameters given in Table 2.

Figure 4. Carbon-13 NMR spectrum of a stationary sample of solid \(^{13}\)C- and \(^{15}\)N-enriched (99%) silver cyanide, Ag\(^{13}\)C\(^{15}\)N, acquired at 7.05 T. The spectrum is the sum of 733 scans acquired with a recycle delay of 120 s. The axial symmetry of the powder pattern is indicative of the linearity of the AgCN chains. Splittings due to direct dipolar coupling between 13 C and 15 N are indicated. Also shown is the best-fit simulated spectrum. Shown in the inset are the high-frequency discontinuities of the 13 C NMR spectrum of a stationary sample of solid \(^{13}\)C-enriched (99%) silver cyanide, Ag\(^{13}\)C\(^{15}\)N, acquired at 4.7 T. Splittings due to direct dipolar coupling between 13 C and \(^{14}\)N are indicated. Also shown is the best-fit simulated spectrum.
ΔJ and (ii) the extent to which motional averaging affects the dipolar coupling constant. An experimental liquid crystal NMR investigation of methyl isocyanide, $\text{H}_2\text{C}^-\text{NC}$, provides a value of -60.0 ± 3.9 Hz for $\Delta J^{(13}\text{C},^{15}\text{N})$ for the cyano group. Multiconfigurational self-consistent field calculations of $\Delta J^{(13}\text{C},^{15}\text{N})$ for the cyano groups in HCN, CH$_2$CN, HNC, and CH$_3$NC range from -47.1 to -54.6 Hz. The ZORA-DFT calculations on models I and II (Table 1) provide a value of -42 Hz. Thus, it is reasonable to suggest an upper limit of approximately -60 Hz for $\Delta J^{(13}\text{C},^{15}\text{N})$ in silver cyanide. This corresponds to a maximum contribution to R_{DD} and a corresponding apparent increase in r_{CN} (cf. eq 1). Before considering the effects of motional averaging in detail, it is therefore possible to place an upper limit on the value of r_{CN} of about 0.3% or 0.004 Å. Clearly, ΔJ will not be a major source of uncertainty in the final value of r_{CN}.

Accounting for the effects of motional averaging is less straightforward. Nevertheless, motional averaging will inevitably result in a reduction in R_{DD} and a corresponding apparent increase in r_{CN} (cf. eq 1). Before considering the effects of motional averaging in detail, it is therefore possible to place an upper limit on the value of r_{CN} by applying eq 1 directly. Using $R_{\text{eff}} = -1800$ Hz and neglecting ΔJ, an upper limit value of $r_{\text{CN}} = 1.194$ Å is obtained.

Bond lengths obtained from room-temperature NMR experiments are known to be 1–4% larger than those obtained from X-ray or neutron diffraction experiments. While molecular “stretching” vibrations contribute in part to a partial averaging of the direct dipolar interaction, bending and torsional librations are primarily responsible. Incorporation of librational effects increases the accuracy but reduces the precision of the NMR result. Starting with the experimental value $R_{\text{eff}} = -1800 \pm 50$ Hz, incorporating a value of -60 Hz for ΔJ, and making a librational correction of 2.5 ± 1.5% to r_{CN}, the observed NMR result from the present work is $r_{\text{CN}} = 1.16 \pm 0.03$ Å. This result is in agreement with the recent neutron diffraction value of Hibble et al., 1.16 Å.

Conclusions

Solid-state 13C and 15N NMR spectroscopy of several isotopomers of silver cyanide has provided unique insights into its structure. The NMR experiments have provided information in agreement with and complementary to the recent total neutron diffraction study of Hibble and coworkers.

The axial symmetry of carbon and nitrogen chemical shift tensors provides evidence for linearity in the structure of AgCN. Carbon-13 MAS NMR spectra, in combination with relativistic ZORA-DFT calculations, indicate that the cyanide ligands in AgCN do not align themselves in a completely random fashion but rather express a measurable preference for parallel cyanide ordering. The number of silver atoms that reside in disordered sites of the type $-\text{NC}-\text{Ag}-\text{CN}-$ and $-\text{CN}-\text{Ag}-\text{NC}-$ is 30 ± 10%. This is in complete analogy with the situation in solid copper cyanide.

Carbon-13 NMR spectroscopy of stationary samples of silver cyanide provides an upper limit on the carbon–nitrogen bond length, r_{CN}, of 1.194 Å. After accounting for anisotropic J coupling and, more importantly, the effects of librational averaging on the NMR bond length, a more accurate NMR result of 1.16 ± 0.03 Å is obtained. This is in agreement with the result of Hibble.

The present work demonstrates the ability of multinuclear magnetic resonance spectroscopic investigations to provide information on disordered and amorphous materials which are not easily studied by conventional diffraction methods. In cases where diffraction data are available, NMR has the potential to provide complementary novel information from a different perspective.

Acknowledgment. The authors thank Kris Harris, Dr. Igor Moudrakovski, and Professor Scott Kroeker for helpful discussions. We thank Dr. Jim Frye and Professor Glenn Penner for valiant efforts to obtain 109Ag MAS NMR spectra of silver cyanide. We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for research grants. R.E.W. is a Canada Research Chair in Physical Chemistry at the University of Alberta and thanks the University of Alberta for support. D.L.B. thanks NSERC, Dalhousie University, the Izaak Walton Killam Trust, and the Walter C. Sumner Foundation for postgraduate scholarships.