Vertical and Horizontal Asymptotes

Definition 2.1 The line $x = a$ is a **vertical asymptote** of the function $y = f(x)$ if y approaches $\pm \infty$ as x approaches a from the right or left.

This graph has a vertical asymptote at $x = 1$.

Definition 2.2 The line $y = b$ is a **horizontal asymptote** of the function $y = f(x)$ if y approaches b as x approaches $\pm \infty$.

This graph has a horizontal asymptote at $x = 1$.

Example: Let $f(x) = \frac{1}{x}$.
The domain of \(f(x) \) is \(D_f = \{ x \in \mathbb{R} \mid x \neq 0 \} \).

Let’s look at how \(f \) behaves near 0.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.1</td>
<td>−10</td>
</tr>
<tr>
<td>−0.01</td>
<td>−100</td>
</tr>
<tr>
<td>−0.001</td>
<td>−1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>0.001</td>
<td>1000</td>
</tr>
</tbody>
</table>

As the \(x \) values get closer and closer to 0 from the negative side, \(f \)'s values get closer and closer to \(-\infty\). On the other hand, as \(x \) values get closer and closer to 0 from the positive side, \(f \)'s values get larger and larger. This means we have a vertical asymptote at \(x = 0 \).

Now let us look at what \(f \) does as \(x \) gets very large in both directions.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>−10</td>
<td>−0.1</td>
</tr>
<tr>
<td>−100</td>
<td>−0.01</td>
</tr>
<tr>
<td>−1000</td>
<td>−0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>1000</td>
<td>0.001</td>
</tr>
</tbody>
</table>

So as \(x \) goes to either \(+\infty\) or \(−\infty\), the values of \(f \) approach 0. This means we have a horizontal asymptote at \(x = 0 \).

To sketch the rest we can do a table of values. What we end up with is

![Graph](image)

This graph never crosses either of the axes but gets close to both of them.
Transformations of \(\frac{1}{x} \)

Any rational function of the form \(r(x) = \frac{ax + b}{cx + d} \) with \(a, b, c, d \in \mathbb{R} \) can be graphed by shifting, stretching, and/or reflecting the graph of \(f(x) = \frac{1}{x} \). The way we do this is by polynomial division.

Examples: Let \(f(x) = \frac{1}{x} \)

1. Sketch \(g(x) = \frac{2}{x - 3} \).

 solution: \(g(x) = \frac{2}{x - 3} = 2 \left(\frac{1}{x - 3} \right) = 2f(x - 3) \).

 According to our rules about transforming functions, we can obtain the graph of \(g \) by shifting the graph of \(f(x) = \frac{1}{x} \) by 3 units to the right, and stretching vertically by a factor of 2. Here, \(g(x) \) has a vertical asymptote at \(x = 3 \) and a horizontal asymptote at \(y = 0 \).

![Graph of \(g(x) \)](image)

2. Sketch \(h(x) = \frac{3x + 5}{x + 2} \)

 solution: Here we start by dividing the two polynomials

 \[
 \begin{array}{c|cc}
 & 3 & \\
 \hline
 x + 2) & 3x + 5 & \\
 & -3x - 6 & \\
 \hline
 & -1 & \\
 \end{array}
 \]

 The remainder is \(-1\), so

 \[
 \frac{3x + 5}{x + 2} = 3 + \frac{-1}{x + 2} = -f(x + 2) + 3
 \]
According to our rules about transforming functions, we can obtain the graph of \(h \) by shifting the graph of \(f(x) = \frac{1}{x} \) by 2 units to the left, shifting 3 units up, and reflecting in the \(x \)-axis. Here, \(h(x) \) has a vertical asymptote at \(x = -2 \) and a horizontal asymptote at \(y = 3 \).

3. Sketch \(r(x) = \frac{2x^2 - 4x + 5}{x^2 - 2x + 1} \).

solution: We have to find a few things first.

- **Domain** – the denominator factors into \((x - 1)^2\), so the only \(x \) value that is not allowed is \(x = 1 \). Thus
 \[D_r = \{ x \in \mathbb{R} \mid x \neq 1 \} \]

- **Vertical asymptotes** – these occur when the denominator is 0. Thus we have a vertical asymptote at \(x = 1 \).

- **Horizontal asymptote** – to find this we divide each term by the highest exponent in the denominator and look at when \(x \to \infty \).
 \[
 r(x) = \frac{2x^2 - 4x + 5}{x^2 - 2x + 1} = \frac{2x - 4 + \frac{5}{x^2}}{x - 2 + \frac{1}{x^2}} = 2 - \frac{4}{x} + \frac{5}{x^2}
 \]
 As \(x \to \infty \), all the terms in that quotient disappear except for the 2 on the top and the 1 on the bottom. Hence, as \(x \to \infty \), \(r(x) \to \frac{2}{1} = 2 \).

- **Behaviour near asymptotes** – now we have to look at what is happening to our function near our asymptotes.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>0.9</td>
<td>302</td>
</tr>
<tr>
<td>0.99</td>
<td>50,002</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>14</td>
</tr>
<tr>
<td>1.1</td>
<td>302</td>
</tr>
<tr>
<td>1.01</td>
<td>30,002</td>
</tr>
</tbody>
</table>
In general, let \(r(x) \) be a rational function

1. The vertical asymptotes of \(r(x) \) are the roots of the denominator.

2. The horizontal asymptotes are determined as follows:
 - If the degree of the top is larger than the degree of the bottom, there are no horizontal asymptotes.
 - If the degree of the top is smaller than the degree of the bottom, there is a horizontal asymptote at \(y = 0 \).
 - If the degrees of the top and bottom are the same, then there is a horizontal asymptote at \(y = \frac{a}{b} \), where \(a \) is the leading coefficient of the top and \(b \) is the leading coefficient of the bottom.

Example: \(\frac{3x^2 - 2x - 1}{2x^2 + 3x - 2} \)

- Vertical asymptotes – we use the quadratic equation to find the roots of the denominator
 \[
x = \frac{-3 \pm \sqrt{9 - 4(2)(-2)}}{2(2)} = \frac{-3 \pm 5}{4} = -2, \frac{1}{2}
\]
 So \(x = -2 \) and \(x = \frac{1}{2} \) are the vertical asymptotes.

- Horizontal asymptotes – the degrees are the same, so the horizontal asymptote occurs at the ratio of the leading coefficients, in this case the leading term on the top is \(3x^2 \) while that on the bottom is \(2x^2 \), so the ratio of the coefficients is \(\frac{3}{2} \). Thus the horizontal asymptote is at \(y = \frac{3}{2} \).
Sketching Graphs of Rational Functions

- Find the domain of f by factoring the denominator.
- Factor the numerator.
- Find the x- and y-intercepts.
- Find the vertical asymptotes.
- Find the horizontal asymptotes.
- Analyze the behaviour of f around the asymptotes.
- Sketch the graph.

Example: Sketch $r(x) = \frac{2x^2 + 7x - 4}{x^2 + x - 2}$

- $x^2 + x - 2 = (x - 1)(x + 2)$. So $D_r = \{x \in \mathbb{R} \mid x \neq 1, -2\}$

-
 \[
 x = \frac{-7 \pm \sqrt{49 - 4(2)(-4)}}{2(2)} = \frac{-7 \pm 9}{4} = -4, \frac{1}{2}
 \]

 This means that $2x^2 + 7x - 4 = 2(x - 1)(x + 4) = (2x - 1)(x + 4)$. Thus so far we have

 \[
 r(x) = \frac{(2x - 1)(x + 4)}{(x - 1)(x + 2)}
 \]

- The x-intercepts are the roots of the numerator. In this case, the roots are $x = -4$ and $x = \frac{1}{2}$.

 The y-intercept we get by subbing in $x = 0$:

 \[
 r(x) = \frac{2(0)^2 + 7(0) - 4}{0^2 + 0 - 2} = 2
 \]

 So the y-intercept is $y = 2$.

- We have vertical asymptotes where the denominator is 0, ie, at $x = 1$ and $x = -2$.

<table>
<thead>
<tr>
<th>x</th>
<th>-2 from the left</th>
<th>-2 from the right</th>
<th>1 from the left</th>
<th>1 from the right</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(x)$</td>
<td>$(-)(+)$</td>
<td>$(-)(+)$</td>
<td>$(+)(+)$</td>
<td>$(+)(+)$</td>
</tr>
<tr>
<td>y</td>
<td>$-\infty$</td>
<td>∞</td>
<td>$-\infty$</td>
<td>∞</td>
</tr>
</tbody>
</table>