University of Ottawa Department of Mathematics and Statistics

MAT 2348: Instructor: Catalin Rada

Homework 1 – January 26, 2012

Surname _____ First Name _____

Student # _____

ONLY QUESTION 9 NEEDS A COMPLETE SOLUTION. FOR THE REST OF THE PROBLEMS JUST WRITE DOWN THE ANSWER, WITHOUT JUSTIFICATIONS! For a set X we denoted by P(X) the collection of all subsets of X. 1. Find the following sets $\bigcap_{t \in \mathbf{R}} [\frac{1}{t^2+1}, 3 + (t-5)^2]$ and $\bigcup_{t \in \mathbf{R}} [\frac{1}{t^2+1}, 3 + (t-5)^2]$. In each case the answer is an interval! $\mathbf{2}$

- 2. Are the following statements true for all sets A, X, Y? Answer by YES or NO!
 - (a) $A \subseteq X$ and $A \subseteq Y \Rightarrow A \subseteq X \bigcap Y$ (b) $A \subseteq X \bigcup Y \Rightarrow$ either $A \subseteq X$ or $A \subseteq Y$ (c) $X \bigcap Y \subseteq A \Rightarrow$ either $X \subseteq A$ or $Y \subseteq A$ (d) $A \setminus (X \bigcup Y) \subseteq A \setminus Y$ (e) $A \Delta (X \bigcup Y) = (A \Delta X) \bigcup (A \Delta Y)$
- 3. Let $f: \mathbf{R} \to \mathbf{Z}$ be the function given by f(x) = the smallest integer $n \in \mathbf{Z}$ such that
- 3x < n. So, $f(\frac{-4}{5}) = -2$. Which of the following statements are true?
 - (a) f is injective, but not bijective
 - (b) f is onto, but not bijective
 - (c) f is bijective
 - (d) f is not 1 1 and f is not onto
 - (e) f is bijective, but it is not onto
- 4. Consider the function in exercise 3.
 - (a) Find f([-1,1])
 - (b) Find $f^{-1}(\{2,3,4\})$

5. Consider the function in exercise 3. Let $g : \mathbf{Z} \to \mathbf{R}$ be the function given by $g(n) = \frac{n}{3}$ for all $n \in \mathbf{Z}$.

- (a) Find the domain and codomain of $f \circ g$
- (b) For every x in the domain of $f \circ g$ find a formula for $f \circ g(x)$

6. Let $\mathbf{N} = \{0, 1, 2, 3, ...\}$ and let $f : \mathbf{N} \to P(\mathbf{N})$ be the function given by $f(n) = \{x \in \mathbf{N} | x < n\}$ for all $n \in \mathbf{N}$. Which of the following statements are true?

- (a) f is injective, but not bijective
- (b) f is onto, but not bijective
- (c) f is bijective
- (d) f is not 1 1 and f is not onto
- (e) f is bijective, but it is not onto

7. Below you will find 7 tentatives to define a function. In each case indicate if one can or not define a function. Answer by YES or NO. We denote by B^A the set of functions defined on A with values on B.

(a) $f: \mathbf{N} \to \mathbf{R}, f(n) = \text{the number } y \in \mathbf{R} \text{ such that } y^2 + ny - 1 = 0$ (b) $f: \mathbf{N} \to \mathbf{R}, f(n) = \text{the smallest number } y \in \mathbf{R} \text{ such that } y^2 + ny - 1 = 0$ (c) $f: \mathbf{N} \to [0, \infty), f(n) = \text{the smallest number } y \in \mathbf{R} \text{ such that } y^2 + ny - 1 = 0$ (d) $f: \mathbf{N} \to \mathbf{R}, f(n) = \text{the largest number } y \in \mathbf{R} \text{ such that } y^2 + ny - 1 < 0$ (e) $f: \mathbf{N} \to \mathbf{R}, f(n) = \text{the number } y \in \mathbf{R} \text{ such that } y^2 + ny - 1 < 0$ (f) $\Phi: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}, \Phi(f) = f(3)$ (g) $\Phi: \mathbf{R}^{\mathbf{N}} \to \mathbf{N}, \Phi(f) = f(3)$

8. Consider the functions $f : \mathbf{N} \to P(\mathbf{N})$ given by $f(n) = \{x \in \mathbf{N} | x < n\}$ for all $n \in \mathbf{N}$ and $g : P(\mathbf{N}) \to \mathbf{N}$ given by g(A) = |A| if A is finite and g(A) = 0 if A is not finite, for any subset A of \mathbf{N} .

Indicate which of the following statements are true.

- (a) $g \circ f = 1_{\mathbf{N}}$ and $f \circ g = 1_{P(\mathbf{N})}$
- (b) $f \circ g = 1_{\mathbf{N}}$ and $g \circ f = 1_{P(\mathbf{N})}$
- (c) $g \circ f = 1_{\mathbf{N}}$ and $f \circ g$ is not injective and g is surjective
- (d) $f \circ g \circ f$ is injective and $g \circ f \circ g$ is not onto
- (e) $f \circ g \circ f$ is not injective and $g \circ f \circ g$ is onto

9. Let A, B, C be sets and f, g, h be functions as in the following diagram :

Assume that the following 3 functions $h \circ g \circ f : A \to A$, $f \circ h \circ g : B \to B$, $g \circ f \circ h : C \to C$ are bijective. Show that f, g, h are bijective. Hint: Think about the associativity of composition, think about exercise (and its proof done in class) 8 on page 288.

4

More space for exercise 9