University of Ottawa
 Department of Mathematics and Statistics

MAT 2348:
Instructor: Catalin Rada
Homework 1 - January 26, 2012

Surname \qquad First Name \qquad

Student \# \qquad

ONLY QUESTION 9 NEEDS A COMPLETE SOLUTION. FOR THE REST OF THE PROBLEMS JUST WRITE DOWN THE ANSWER, WITHOUT JUSTIFICATIONS! For a set X we denoted by $P(X)$ the collection of all subsets of X.

1. Find the following sets $\bigcap_{t \in \mathbf{R}}\left[\frac{1}{t^{2}+1}, 3+(t-5)^{2}\right]$ and $\bigcup_{t \in \mathbf{R}}\left[\frac{1}{t^{2}+1}, 3+(t-5)^{2}\right]$. In each case the answer is an interval!
2. Are the following statements true for all sets A, X, Y ? Answer by YES or NO!
(a) $A \subseteq X$ and $A \subseteq Y \Rightarrow A \subseteq X \bigcap Y$
(b) $A \subseteq X \bigcup Y \Rightarrow$ either $A \subseteq X$ or $A \subseteq Y$
(c) $X \bigcap Y \subseteq A \Rightarrow$ either $X \subseteq A$ or $Y \subseteq A$
(d) $A \backslash(X \bigcup Y) \subseteq A \backslash Y$
(e) $A \Delta(X \bigcup Y)=(A \Delta X) \bigcup(A \Delta Y)$
3. Let $f: \mathbf{R} \rightarrow \mathbf{Z}$ be the function given by $f(x)=$ the smallest integer $n \in \mathbf{Z}$ such that $3 x<n$. So, $f\left(\frac{-4}{5}\right)=-2$. Which of the following statments are true?
(a) f is injective, but not bijective
(b) f is onto, but not bijective
(c) f is bijective
(d) f is not $1-1$ and f is not onto
(e) f is bijective, but it is not onto
4. Consider the function in exercise 3.
(a) Find $f([-1,1])$
(b) Find $f^{-1}(\{2,3,4\})$
5. Consider the function in exercise 3. Let $g: \mathbf{Z} \rightarrow \mathbf{R}$ be the function given by $g(n)=\frac{n}{3}$ for all $n \in \mathbf{Z}$.
(a) Find the domain and codomain of $f \circ g$
(b) For every x in the domain of $f \circ g$ find a formula for $f \circ g(x)$
6. Let $\mathbf{N}=\{0,1,2,3, \ldots\}$ and let $f: \mathbf{N} \rightarrow P(\mathbf{N})$ be the function given by $f(n)=\{x \in$ $\mathbf{N} \mid x<n\}$ for all $n \in \mathbf{N}$. Which of the following statements are true?
(a) f is injective, but not bijective
(b) f is onto, but not bijective
(c) f is bijective
(d) f is not $1-1$ and f is not onto
(e) f is bijective, but it is not onto
7. Below you will find 7 tentatives to define a function. In each case indicate if one can or not define a function. Answer by YES or NO. We denote by B^{A} the set of functions defined on A with values on B.
(a) $f: \mathbf{N} \rightarrow \mathbf{R}, f(n)=$ the number $y \in \mathbf{R}$ such that $y^{2}+n y-1=0$
(b) $f: \mathbf{N} \rightarrow \mathbf{R}, f(n)=$ the smallest number $y \in \mathbf{R}$ such that $y^{2}+n y-1=0$
(c) $f: \mathbf{N} \rightarrow[0, \infty), f(n)=$ the smallest number $y \in \mathbf{R}$ such that $y^{2}+n y-1=0$
(d) $f: \mathbf{N} \rightarrow \mathbf{R}, f(n)=$ the largest number $y \in \mathbf{R}$ such that $y^{2}+n y-1<0$
(e) $f: \mathbf{N} \rightarrow \mathbf{R}, f(n)=$ the number $y \in \mathbf{R}$ such that $(n-1) y=n+1$
(f) $\Phi: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{R}, \Phi(f)=f(3)$
$(\mathrm{g}) \Phi: \mathbf{R}^{\mathbf{N}} \rightarrow \mathbf{N}, \Phi(f)=f(3)$
8. Consider the functions $f: \mathbf{N} \rightarrow P(\mathbf{N})$ given by $f(n)=\{x \in \mathbf{N} \mid x<n\}$ for all $n \in \mathbf{N}$ and $g: P(\mathbf{N}) \rightarrow \mathbf{N}$ given by $g(A)=|A|$ if A is finite and $g(A)=0$ if A is not finite, for any subset A of \mathbf{N}.

Indicate which of the following statements are true.
(a) $g \circ f=1_{\mathbf{N}}$ and $f \circ g=1_{P(\mathbf{N})}$
(b) $f \circ g=1_{\mathbf{N}}$ and $g \circ f=1_{P(\mathbf{N})}$
(c) $g \circ f=1_{\mathrm{N}}$ and $f \circ g$ is not injective and g is surjective
(d) $f \circ g \circ f$ is injective and $g \circ f \circ g$ is not onto
(e) $f \circ g \circ f$ is not injective and $g \circ f \circ g$ is onto
9. Let A, B, C be sets and f, g, h be functions as in the following diagram :

Assume that the following 3 functions $h \circ g \circ f: A \rightarrow A, f \circ h \circ g: B \rightarrow B, g \circ f \circ h:$ $C \rightarrow C$ are bijective. Show that f, g, h are bijective. Hint: Think about the associativity of composition, think about exercise (and its proof done in class) 8 on page 288.

More space for exercise 9

