MAT 1322

SAMPLE EXAMINATION

- Time: 3 hours
\bullet Calculators are permitted. (Non-programmable, non-graphing, no differentiation or integration capability.) Notes or books are not permitted.
- Work the problems in the space provided. Use the back-pages for rough work if necessary. Do not use any other paper. Show all work.
- Circle the correct answers for multiple choice problems. Numerical answers are rounded. Work on multiple choice problems will be examined in case of suspected fraud.

1. [4 points] The finite region bounded by curves $y=x^{2}$ and $y=4$ is rotated about the line $y=-2$. Sketch the region. Find the volume of the resulting solid.

Work.
2. [4 points] An object is taken from an oven at a temperature of $300^{\circ} \mathrm{C}$ to a room at $20^{\circ} \mathrm{C}$. Its temperature $u=u(t)$ then decreases according to Newton's law of cooling $\frac{d u}{d t}=k(u-20)$. After 15 minutes its temperature is $200^{\circ} \mathrm{C}$.
(a)Find the temperature $u(t)=\square$
(b)When will the temperature reach $100{ }^{\circ} \mathrm{C} ? t=\square$
(c)Sketch the graph of $u(t)$ showing the values for $t=0$ and as $t \rightarrow \infty$.

Work.
3. [4 points] Determine if the following series are convergent or divergent and state the name of the test you used for that purpose. (Record you answer next to the series below.)

> conv./div. test used
(a) $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n\left(n^{3}+5\right)^{1 / 3}}$

Work.
4. [4 points] Let $f(x, y)=\frac{x^{2}}{4}+\frac{y^{2}}{9}$.
(a)Sketch at least three labeled level curves of f and the gradient vector at a point on each of them. (All in one sketch, on the same axes.)
(b)Find the equation of the tangent plane to the graph of f at the point where $(x, y)=$ $(2,3)$.

Work.
5. [2 points] Evaluate $\int_{0}^{3} \frac{2}{(x-2)^{4 / 3}} d x$ if possible.
A. -10.76
B. 1.24
C. -1.24
D. 2.40
E. -2.40
F. divergent
6. [2 points] Find the area of the region enclosed by the curves $y=x$ and $y=7 x-3 x^{2}$.
A. 2
B. 4
C. 6
D. 8
E. 9
F. 11
7. [2 points] Consider the initial value problem $y^{\prime}=x+y, y(0)=1$. Use Euler's method with step size 0.1 to approximate $y(0.2)$.
A. 1.2000
B. 1.1000
C. 1.2200
D. 1.2300
E. 1.0100
F. 1.0200
8. [2 points] Solve the initial value problem $\frac{d y}{d x}=\frac{y}{1+x^{2}}, y(0)=2$ to find $y(1)$.
A. 2.19
B. 2.00
C. 4.39
D. 4.00
E. 3.14
F. undefined
9. [2 points] Let $f(x)=e^{x^{3}}$. Calculate the 9th derivative $f^{(9)}(0)$ using the exponential series and Taylor's formula.
A. 0
B. 350
C. 810
D. 3490
E. 60480
F. 78520
10. [2 points] If $\left(1+x^{3}\right)^{0.6}=\sum_{n=0}^{\infty} b_{n} x^{n}$ then $b_{3}=$
A. -1.00
B. -0.05
C. 0.00
D. 0.05
E. 0.60
F. 1.00
11. [2 points] Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(-5)^{n}(x+3)^{n}}{n}$.
A. 1
B. 5
C. $1 / 5$
D. 3
E. $1 / 3$
F. ∞
12. [2 points] Evaluate $\sum_{n=0}^{\infty} \frac{2^{n}+3^{n+1}}{7^{n}}$.
A. divergent
B. 3.15
C. 1.40
D. 7.35
E. $6.65 \quad$ F. 5.25
13. [2 points] Determine which of the series converge.
(1) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 100}{n}$
(2) $\sum_{n=1}^{\infty} \frac{n}{5^{n}}$
(3) $\sum_{n=1}^{\infty} \frac{n^{2}}{(n+100)^{2}}$
A. (1) and (2)
B. (1) and (3)
C. (2) and (3)
D. (1) only
E. (2)only
F. (3) only
14. [2 points] Use the linear approximation of $f(x, y)=2 x^{2} y^{2}+3 x y+x$ at $(1,1)$ to approximate $f(0.9,1.1)$.
A. 5.8302
B. 5.9000
C. 6.1000
D. 6.0302
E. 6.0000
F. 5.9302
15. [2 points] Find the equation of the tangent plane of the surface $z^{2}+x^{2}-4 x y+y^{2}=2$ at the point $(1,1,2)$.
A. $2 z-x-y=2$
B. $2 z+x+y=6$
C. $z+x+y=4$
D. $z=2$
E. $2 x+2 y-z=2$
F. $z-x-y=0$
16. [2 points] Let $f(x, y, z)=2 x^{2} y^{2} z+4 x y^{3} z^{2}$. Find $f_{x y z}(2,1,1)$.
A. 28
B. 32
C. 36
D. 24
E. 38
F. 40
17. [2 points] Find the directional derivative of $f(x, y)=x^{2} y+4 y^{2}$ at the point $(2,1)$ in the direction of the vector $\langle 1, \sqrt{3}\rangle$.
A. $2-6 \sqrt{3}$
B. $2+3 \sqrt{3}$
C. $2-3 \sqrt{3}$
D. $2+6 \sqrt{3}$
E. $4+12 \sqrt{3}$
F. $2-\sqrt{3}$
18. [2 points] Suppose $z=f(x, y)$ where $x=g(t)$ and $y=h(t)$. Given the data

$$
\begin{aligned}
& g(1)=1, g^{\prime}(1)=2 \\
& h(1)=2, h^{\prime}(1)=3 \\
& f_{x}(1,2)=-1, f_{y}(1,2)=2
\end{aligned}
$$

Find $\frac{d z}{d t}$ when $t=1$.
A. -1
B. 1
C. 4
D. -4
E. 8
F. impossible

