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1. Consider the matrix

A =


1 0 −1 2
−1 1 3 −2
−2 0 1 −3
0 2 4 5

 .

(a) [3 points] Calculate detA by using the cofactor expansion method.

Solution: We use cofactor expansion along the second column:

detA = −0

∣∣∣∣∣∣
−1 3 −2
−2 1 −3
0 4 5

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
1 −1 2
−2 1 −3
0 4 5

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
1 −1 2
−1 3 −2
0 4 5

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
1 −1 2
−1 3 −2
−2 1 −3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 −1 2
−2 1 −3
0 4 5

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
1 −1 2
−1 3 −2
−2 1 −3

∣∣∣∣∣∣ .
Now we have∣∣∣∣∣∣

1 −1 2
−2 1 −3
0 4 5

∣∣∣∣∣∣ = 0

∣∣∣∣−1 2
1 −3

∣∣∣∣−4

∣∣∣∣ 1 2
−2 −3

∣∣∣∣+5

∣∣∣∣ 1 −1
−2 1

∣∣∣∣ = (−4)(1)+(5)(−1) = −9 (last row expansion)

and∣∣∣∣∣∣
1 −1 2
−1 3 −2
−2 1 −3

∣∣∣∣∣∣ = 1

∣∣∣∣3 −2
1 −3

∣∣∣∣−(−1)

∣∣∣∣−1 −2
−2 −3

∣∣∣∣+2

∣∣∣∣−1 3
−2 1

∣∣∣∣ = (−1)(−7)+(1)(−1)+(2)(5) = 2. (first row)

Therefore detA = (−9) + 4 = −5.
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(b) [2 points] This part is independent of part (a).

Let P,Q,R be 3× 3 matrices such that det(P ) = −1
2
, det(Q) = 5, and det(R) = −10.

Compute det(−1
2
P 2RQ−2RT ).

Solution:

det(−1

2
P 2RQ−2RT ) = (−1

2
)3(−1

2
)2(−10)(

1

5
)2(−10) = −1

8
.
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2. [3 points] Let A =

[
1 −2
−1 3

]
, B =

[
0 1
2 2

]
and C =

[
1 0 3
2 0 1

]
. Solve the following

matrix equation for X:
A(XT − C) = −BC

Solution:

A(XT − C) = −BC ⇒ A−1A(XT − C) = −A−1BC ⇒ XT − C = −A−1BC

⇒ XT = C − A−1BC ⇒ X = CT − CTBT (A−1)T

Now we have

A−1 =
1

1

[
3 2
1 1

]
=

[
3 2
1 1

]
⇒ (A−1)T =

[
3 1
2 1

]
and therefore

CTBT (A−1)T =

1 2
0 0
3 1

[0 2
1 2

] [
3 1
2 1

]
=

18 8
0 0
19 9


and

X =

1 2
0 0
3 1

−
18 8

0 0
19 9

 =

−17 −6
0 0
−16 −8


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3. Determine if the following sets are subspaces of R3 or not. Justify your answer.

(a) [1 point]

U =


 a + b
−b + 2c
−2c

 ∣∣∣∣∣ a, b, c ∈ R


Solution: U is a subspace because every vector in V can be written as a + b

−b + 2c
−2c

 = a

1
0
0

+ b

 1
−1
0

+ c

 0
2
−2


and therefore

U = Span


1

0
0

 ,

 1
−1
0

 ,

 0
2
−2


(b) [1 point] V =


a2 + b2

b− c
c

 ∣∣∣∣∣ a, b, c ∈ R


Solution: The top entry of every vector in V is a2 + b2 ≥ 0. Therefore V is not a

subspace because it is not closed under scaling:1
0
0

 is in V for a = 1, b = c = 0

but

(−1)

1
0
0

 =

−1
0
0

 is not in V.
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(c) [1 point]

W =


x1

x2

x3

 ∣∣∣∣∣ x1, x2, x3 ∈ R and

 1 1 −3
−2 −7 2
5 15 −7

x1

x2

x3

 =

 0
0
0


Solution: Note that W = NulA where A is the given 3× 3 matrix. Therefore A is a

subspace.
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4. [3 points] Find the inverse of the matrix

A =

 1 2 −1
0 2 −1
1 0 −1

2

 .

Solution:[
A|I
]

=

1 2 −1 | 1 0 0
0 2 −1 | 0 1 0
1 0 −1

2
| 0 0 1

 R3→R3−R1−−−−−−−→

1 2 −1 | 1 0 0
0 2 −1 | 0 1 0
0 −2 1

2
| −1 0 1


R3→R3+R2−−−−−−−→

1 2 −1 | 1 0 0
0 2 −1 | 0 1 0
0 0 −1

2
| −1 1 1

 R3→−2R3−−−−−−→

1 2 −1 | 1 0 0
0 2 −1 | 0 1 0
0 0 1 | 2 −2 −2


R1→R1+R3

R2→R2+R3−−−−−−−→

1 2 0 | 3 −2 −2
0 2 0 | 2 −1 −2
0 0 1 | 2 −2 −2

 R2→ 1
2
R2−−−−−→

1 2 0 | 3 −2 −2
0 1 0 | 1 −1

2
−1

0 0 1 | 2 −2 −2


R1→R1−2R2−−−−−−−→

1 0 0 | 1 −1 0
0 1 0 | 1 −1

2
−1

0 0 1 | 2 −2 −2


Therefore A−1 =

1 −1 0
1 −1

2
−1

2 −2 −2


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5. Let A =

 1 −1 2 0 3
0 0 −1 1

2
0

0 0 2 −1 1

.

(a) [3 points] Find a basis for NulA. Solution: The reduced echelon form of A is as

follows:1 −1 2 0 3
0 0 −1 1

2
0

0 0 2 −1 1

 R3→R3+2R2−−−−−−−→

1 −1 2 0 3
0 0 −1 1

2
0

0 0 0 0 1

 R1→R1−3R3−−−−−−−→

1 −1 2 0 0
0 0 −1 1

2
0

0 0 0 0 1


R2→−R2−−−−−→

1 −1 2 0 0
0 0 1 −1

2
0

0 0 0 0 1

 R1→R1−2R2−−−−−−−→

1 −1 0 1 0
0 0 1 −1

2
0

0 0 0 0 1


In the corresponding homogeneous linear system, the variables x1, x3, and x5 are basic,
and x2, x4 are free. The general solution is

x1 = x2 − x4

x3 = 1
2
x4

x5 = 0

and its vector parametric form is
x1

x2

x3

x4

x5

 = x2


1
1
0
0
0

+ x4


−1
0
1
2
1
0

 .

Therefore a basis for NulA is 


1
1
0
0
0

 ,


−1
0
1
2
1
0


 .

(b) [1 point] What is rankA? Justify your answer.

Solution: By the rank-nullity theorem we know that

rankA + dim NulA = 5 ⇒ rankA = 5− 2 = 3.
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6. An economy consists of two sectors: the Construction sector and the Service sector.
We know that:

• For each unit of output, Construction requires
1

3
units from itself and

1

2
units from

Service.

• For each unit of output, Service requires
1

6
units from Construction and

3

4
units

from iteself.

(a) [1 point] What is the consumption matrix C for this economy?

(b) [2 points] Find I − C and (I − C)−1.

(c) [1 point] Determine what intermediate demands are created if Construction wants
to produce 6 units and Service wants to produce 36 units.

(d) [1 point] Find the production levels that will satisfy the final demand of 3 units from
Construction and 12 units from Service.

Solution: (a) The consumption matrix of this economy is:

C =

[
1
3

1
6

1
2

3
4

]
.

(b)

I − C =

[
1 0
0 1

]
−

[
1
3

1
6

1
2

3
4

]
=

[
2
3
−1

6

−1
2

1
4

]
.

(I − C)−1 =
1

2
12
− 1

12

[
1
4

1
6

1
2

2
3

]
= 12

[
1
4

1
6

1
2

2
3

]
=

[
3 2
6 8

]
.

(c)

6

[
1
3

1
2

]
+ 36

[
1
6

3
4

]
=

[
8

30

]
(d) Let x1 and x2 be the outputs of Construction and Service respectively. Let x =[
x1

x2

]
be the production vector. Note that d =

[
3
12

]
.

x = (I−C)−1d =

[
3 2
6 8

] [
3
12

]
=

[
33
114

]
.

Page 9 of 9


