
MAT 2377 (Summer 2009)
Simple Linear Regression (Inference)

Sections 11.4.1, 11.5, 11.6, 11.8

§11-4: Hypothesis tests in simple linear regression

§11-4.1: t-test concerning β0 or β1.

The Simple Linear Regression Model with normal random errors is

Y = β0 + β1 x+ ε,

where β0 and β1 are unknown constants, x is a value taken by the predictor X
and ε is random error.

What is new? We will assume that ε is a normal random variable with mean
0 and variance σ2 (ε ∼ N(0, σ2)). That is, we assume:

E(ε) = 0 and V (ε) = σ2

Consequences (see 5-5):

• Y is follows N(β0 + β1 x, σ
2) distribution.

• The estimators β̂0 and β̂1 are linear combinations of Y1, . . . , Yn, that is
linear combinations of independent normals (recall last lecture formulae on
page 9), thus they are both normal random variables. That is,

β̂1 ∼ N(β1, σ
2
β̂1

) and β̂0 ∼ N(β0, σ
2
β̂0

).

Recall that σβ̂1
=
√

σ2

Sxx
and E(β̂1) = β1, AND

σβ̂0
=

√
σ2
[

1
n

+ x2

Sxx

]
and E(β̂0) = β0.

• The standardized estimators are standard normals, i.e.

β̂0 − β0

σβ̂0

∼ N(0, 1) and
β̂1 − β1

σβ̂1

∼ N(0, 1).

1



• As we replace the standard errors (see definition on page 10—last lecture:
the standard deviation of the estimator) by the estimated standard errors
we get t random variables with ν = n− 2 degrees of freedom, that is

β̂0 − β0

σ̂β̂0

∼ t(n− 2) and
β̂1 − β1

σ̂β̂1

∼ t(n− 2),

where

σ̂β̂1
=

√
σ̂2

Sxx
, σ̂β̂0

=

√
σ̂2

[
1

n
+

x2

Sxx

]
and σ̂2 =

SSE
n− 2

• Recall that σ̂2 = SSE
n−2

= Syy−β̂1Sxy
n−2

.

t-tests concerning β0: Suppose that we have a hypothesis test with the
following null hypothesis H0 : β0 = β0,0 where β0,0 is some real number. We will
use the following test statistic

T0 =
β̂0 − β0,0

σ̂β̂0

=
β̂0 − β0,0√
σ̂2
[

1
n

+ x 2

Sxx

] .
where T0 follows a t distribution with ν = n− 2 degrees of freedom when H0 is
true.

t-tests concerning β1: Suppose that we have a hypothesis test with the
following null hypothesis H0 : β1 = β1,0 where β1,0 is some real number. We will
use the following test statistic

T0 =
β̂1 − β1,0

σ̂β̂1

=
β̂1 − β1,0√
σ̂2/Sxx

.

where T0 follows a t distribution with ν = n− 2 degrees of freedom when H0 is
true.

Test For the Significance of the Regression: The following test allows
us to test the significance of the predictor X in predicting the response Y .

H0 : β1 = 0 against H1 : β1 6= 0.

Interpretation:
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• Failure to reject H0 means that there is no linear relationship between Y
and X.

• Rejecting H0 means the linear relationship between Y and X is significant.

We are going to recall here the critical regions for the t tests: Let t0
be the observed value of our test statistic T0. Then

• Suppose that H0 : β1 = β1,0 and H1 : β1 6= β1,0. Then we would reject
H0 : β1 = β1,0 IF |t0| > tα/2,n−2 (just recall page 12 from Lecture June
16, 2009) Of course:

[Right-Sided Alternative] t0 > tα,n−2, where H1 : β1 > β1,0,

[Left-Sided Alternative] t0 < −tα,n−2, where H1 : β1 < β1,0;

• Suppose that H0 : β0 = β0,0 and H1 : β0 6= β0,0. Then we would reject
H0 : β0 = β0,0 IF |t0| > tα/2,n−2. Again:

[Right-Sided Alternative] t0 > tα,n−2, where H1 : β0 > β0,0

[Left-Sided Alternative] t0 < −tα,n−2, where H1 : β0 < β0,0
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Example 1: Consider the data from Examples 1, 2 and 3 from Lecture
June 23, 2009. Recall that the point estimates for β0 and β1 are respectively
β̂0 = 0.05 and β̂1 = 0.0039. Furthermore, the estimated standard errors are
σ̂β̂0

= 0.081453 and σ̂β̂1
= 0.000370.

(a) Test for the significance of the regression with α = 5%.

(b) Do the data support the claim that β0 > 0.1 at a level of significance of
5%?

Sol: a) We have α = 0.05, H0 : β1 = 0, H1 : β1 6= 0, so β1,0 = 0 in this
2-sided hypothesis. Compute:

• t0 = β̂1−β1,0

σ̂
β̂1

= 0.0039−0
0.000370

= 10.54054054,

• t0.05/2,11−2 = t0.025,9 = 2.262

Since |t0| = 10.5405 > 2.262 = t0.05/2,11−2 we reject H0 : β1 = 0, i.e., the
linear relationship between Y and X is significant. (See again the picture in the
previous lecture, see the dots, and see that indeed the slope of the best fitted
line is NOT zero!)

b) We have α = 0.05, H0 : β0 = 0.1, H1 : β0 > 0.1, so β0,0 = 0.1 in this
right-sided hypothesis! Compute:

• t0 = β̂0−β0,0√
σ̂2

[
1
n

+ x2

Sxx

] = 0.05−0.1
0.081453

= −0.613850,

• tα,n−2 = t0.05,9 = 1.833.

Since t0 = −0.613850 is NOT greater than t0.05,9 = 1.833, we fail to reject

H0 : β0 = 0.1. Anyway we got the estimation β̂1 = 0.05 which is close to 0.1.
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§11.5: Interval Estimation

In other words, we want to get the confidence intervals! We known that

β̂0 − β0

σ̂β̂0

∼ t(n− 2) and
β̂1 − β1

σ̂β̂1

∼ t(n− 2),

where the estimated standard errors are given by:

σ̂β̂1
=

√
σ̂2

Sxx
and σ̂β̂0

=

√
σ̂2

[
1

n
+

x2

Sxx

]
.

Hence a (1− α)× 100% confidence interval for β0 is

β̂0 ± tα/2,n−2 σ̂β̂0
= β̂0 ± tα/2,n−2

√
σ̂2

[
1

n
+

x2

Sxx

]
,

and a (1− α)× 100% confidence interval for β1 is

β̂1 ± tα/2,n−2 σ̂β̂1
= β̂1 ± tα/2,n−2

√
σ̂2

Sxx
.
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Example 2: Consider the data from Examples 1, 2 and 3 from Lecture
June 23, 2009. Recall that the point estimates for β0 and β1 are respectively
β̂0 = 0.05 and β̂1 = 0.0039. Furthermore, the estimated standard errors are
σ̂β̂0

= 0.081453 and σ̂β̂1
= 0.000370.

(a) Construct a 95% confidence interval for β0.

(b) Give a 95% confidence interval for β1.
Sol: a) α = 0.05 and the CI is

[
β̂0 − tα/2,n−2

√
σ̂2

[
1

n
+

x2

Sxx

]
, β̂0 + tα/2,n−2

√
σ̂2

[
1

n
+

x2

Sxx

]]
=

[
0.05− t0.05/2,9 × 0.081453, 0.05 + t0.05/2,9 × 0.081453

]
=[

0.05− 2.262× 0.081453, 0.05+2.262× 0.081453
]

=
[
− 0.134246, 0.234246

]
.

b) α = 0.05 and the CI is:

[
β̂1 − tα/2,n−2

√
σ̂2

Sxx
, β̂1 + tα/2,n−2

√
σ̂2

Sxx

]
=

[
0.0039−2.262×0.000370, 0.0039+2.262×0.000370

]
= [0.003063, 0.039837].

Compare this intervals to our β̂0 and β̂1.
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Estimating the mean response

Given a specified value of the predictor X, say x0, we would like to estimate
the mean response, that is

µY |x0 = β0 + β1 x0.

We can use the value on the estimated regression line as a point estimate,
i.e.

µ̂Y |x0 = β̂0 + β̂1 x0.

Properties of the estimated mean response:

• Its expectation is

E[µ̂Y |x0 ] = β0 + β1 x0 = µY |x0 . Why?

Hence it is unbiased for estimating µY |x0 .

• Its variance is

V [µ̂Y |x0 ] = σ2

[
1

n
+

(x0 − x)2

Sxx

]
— see page 9 of last lecture!

• Standardization with the estimated standard error:

µ̂Y |x0 − µY |x0√
σ̂2
[

1
n

+ (x0−x)2
Sxx

] ∼ t(n− 2).

Interval Estimation:

A 100 (1−α)% confidence interval for the mean response at a value x = x0,
say µY |x, is

µ̂Y |x0 ± tα/2,n−2

√
σ̂2

[
1

n
+

(x0 − x)2

Sxx

]
.
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§Section 11.6: Prediction of new observations

Goal: To predict a new or future response Y0 corresponding to a specified
level x0 of the predictor.

Prediction: We can use the following

Ŷ0 = β̂0 + β̂1 x0

as a point estimator of the new or future value of the response Y0.

Error in Prediction: We will define the error in prediction as

e = Y0 − Ŷ0.

The expectation of the error in prediction is

E[e] = E[Y0]− E[Ŷ0] = (β0 + β1 x0)− (β0 + β1 x0) = 0

and the variance of the error in prediction is

V [e] = V [Y0] + V [Ŷ0] = σ2 + σ2

[
1

n
+

(x0 − x)2

Sxx

]
= σ2

[
1 +

1

n
+

(x0 − x)2

Sxx

]
,

since we are assuming that new or future value Y0 is independent of the current
observations Y1, . . . , Yn.

If we use σ̂2 to estimate σ2, it can be shown that then we have:

Y0 − Ŷ0√
σ̂2
[
1 + 1

n
+ (x0−x)2

Sxx

] ∼ t(n− 2).

A 100 (1−α)% PREDICTION interval for new or future value response
Y0 at the value x0 is given by

ŷ0 ± tα/2,n−2

√
σ̂2

[
1 +

1

n
+

(x0 − x)2

Sxx

]
where ŷ0 = β̂0 + β̂1x0 (recall here the estimated regression line ŷ = β̂0 + β̂1x).
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Example 3: Consider the data from Examples 1, 2 and 3 of the previous
lecture. Recall that the estimated regression line is

ŷ = 0.05 + 0.0039x,

the point estimate for σ2 is σ̂2 = 0.0231. Furthermore, n = 11, Sxx = 168363.64
and x = 2000/11 = 181.818.

(a) Give a 95% confidence interval for the mean evaporation coefficient at a
velocity of x0 = 140.

(b) Give a 95% prediction interval for a new or future evaporation coefficient
at a velocity of x0 = 140.

Sol: a) We have α = 0.05, x0 = 140, and the CI is:

[
µ̂Y |x0−tα/2,n−2

√
σ̂2

[
1

n
+

(x0 − x)2

Sxx

]
, µ̂Y |x0+tα/2,n−2

√
σ̂2

[
1

n
+

(x0 − x)2

Sxx

]]
=

[
β̂0 + β̂1x0 − t0.025,9

√
0.0231{ 1

11
+

(140− 181.818)2

168363.64
},

β̂0 + β̂1x0 + t0.025,9

√
0.0231(

1

11
+

(140− 181.818)2

168363.64
)
]

= [0.596 − 0.00529308, 0.596 + 0.00529308] = [0.59070692, 0.60129308] — a
small interval around our estimate 0.596.

b) We have α = 0.05, x0 = 140, and the CI is:

[
ŷ0−tα/2,n−2

√
σ̂2

[
1 +

1

n
+

(x0 − x)2

Sxx

]
, ŷ0+tα/2,n−2

√
σ̂2

[
1 +

1

n
+

(x0 − x)2

Sxx

]]

=
[
β̂0 + β̂1x0 − t0.025,9

√
0.0231

[
1 +

1

11
+

(x0 − x)2

Sxx

]
,

β̂0 + β̂1x0 + t0.025,9

√
0.0231

[
1 +

1

11
+

(x0 − x)2

Sxx

]]
= [0.596− 0.360787, 0.596+0.360787] = [0.235213, 0.956787] — of course the
second interval is larger: it is about a prediction!
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§Section 11-8: Correlation Analysis

Scenario: We will assume that both X and Y are random variables. We
would like to measure the linear association between the two random variables.

We could use the correlation coefficient

ρ =
σXY
σX σY

to measure the linear association between X and Y . In practice, the joint dis-
tribution of X and Y is unknown so we must estimate ρ.

Consider the following random sample (X1, Y1), . . . , (Xn, Yn), we define the
sample correlation coefficient as

R =

∑n
i=1(Xi −X) (Yi − Y )√∑n

i=1(Xi −X)2 ·
∑n

i=1(Yi − Y )2

=

=

∑n
i=1(Xi −X)Yi√∑n

i=1(Xi −X)2 ·
∑n

i=1(Yi − Y )2

=
SXY√
SXX SY Y

.

Remark: Recall that the slope of the estimated regression line is

β̂1 =
SXY
SXX

.

Thus,

R =
SXY√
SXX SY Y

=
SXY
SXX

√
SXX
SY Y

= β̂1

√
SXX
SY Y

.

Hence R and β̂1 are closely related.

Testing ρ = 0: Suppose that we would like to test

H0 : ρ = 0 against H1 : ρ 6= 0.

We will use the following test statistic

T0 =
R
√
n− 2√

1−R2
=
β̂1 − 0

σ̂β̂1

∼ t(n− 2).
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Critical regions (rule):
Since we are dealing with a t distribution with n− 2 degrees of freedom, we

would reject the null hypothesis (H0 : ρ = 0) if the observed value t0 of the
test statistic T0 satisfies |t0| > tα/2,n−2.

Example 4: Consider the data from Examples 1, 2 and 3 from previous
lecture. Recall that

Sxx = 168363.64, Sxy = 657.22, Syy = 2.7713.

Indeed, Syy = (
∑11

i=1 y
2
i ) − ny2 = 9.1097 − 8.352

11
= 9.1097 − 6.3384 = 2.7713.

(a) Compute the sample correlation coefficient between X and Y .

(b) Test H0 : ρXY = 0 against H1 : ρXY 6= 0 at α = 5%.
Sol: a) R = Sxy√

SxxSyy
= 657.22√

168363.64×2.7713
= 657.22

683.071
∼= 0.962155 ∈ [−1, 1].

b) We compute t0 = R
√
n−2√

1−R2 = 0.962155×
√

9√
1−0.925742

= 10.592415 and t0.025,9 = 2.262.

Since |t0| > t0.025,9 we reject the null hypothesis H0 : ρXY = 0. (Recall the
picture in the previous lecture!)

DO 11-65/page 425 From the statement we got: R = 0.75, n = 20,
α = 0.05, H0 : ρ = 0 and H1 : ρ > 0 (right-sided hypothesis). We compute:

• t0 = 0.75
√

20−2√
1−0.752 = 0.75

√
18√

0.4375
= 3.181980515

0.661437827
= 4.81,

• Since it is right-sided we have tα,n−2 = t0.05,18 = 1.734 by table V.

• Compare: since t0 = 4.81 > 1.734 = tα,n−2 (recall the critical regions!)
we reject H0 and accept H1.
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