MAT2377

Catalin Rada

Version 2009/07/02

Two Sample Test 10-3.1

Assumptions:

- $X_{11}, \ldots, X_{1 n_{1}}$ is a random sample from population 1 , so the size is n_{1},
- $X_{21}, \ldots, X_{2 n_{2}}$ is a random sample from population 2 , so the size is n_{2},
- the two populations are independent and normal with means μ_{1} and μ_{2}, respectively.
- Variances are unknown

We want to test

$$
H_{0}: \mu_{1}=\mu_{2}, \quad H_{1}: \mu_{1} \neq \mu_{2} .
$$

Let

$$
\bar{X}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} X_{1 i}, \quad \bar{X}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} X_{2 i}
$$

The pooled variance is

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

where S_{1}^{2} and S_{2}^{2} are sample variances for the respective samples, i.e.

$$
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{1 i}-\bar{X}_{1}\right)^{2}, \quad S_{2}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(X_{2 i}-\bar{X}_{2}\right)^{2}
$$

The test statistics is

$$
T_{0}=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}
$$

Example: Two catalysts are analyzed to determine how they affect the mean yield of a chemical process. A test is run and the results are $n_{1}=n_{2}=8, \bar{x}_{1}=92.255, s_{1}=2.39, \bar{x}_{2}=92.733, s_{2}=2.98$. Is there any difference between the mean yields? Use $\alpha=0.05$. Solution:

We have $s_{p}^{2}=7.29625 \cong 7.3$. The observed value of test statistics is

$$
t_{0}=\frac{\bar{x}_{1}-\bar{x}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=-0.35
$$

We have $t_{0.025,14}=2.145$. We reject H_{0} if $\left|t_{0}\right|>2.145$. Don't reject.

Paired test

Assumptions:

- $X_{11}, \ldots, X_{1 n}$ is a random sample from population 1
- $X_{21}, \ldots, X_{2 n}$ is a random sample from population 2
- Two populations are not independent and normal with means μ_{1} and μ_{2}, respectively.
- Variances are unknown

We want to test

$$
H_{0}: \mu_{1}=\mu_{2}, \quad H_{1}: \mu_{1} \neq \mu_{2}
$$

Solution: Compute differences $D_{i}=X_{1 i}-X_{2 i}$ and consider the t-test. The test statistics is

$$
T_{0}=\frac{\bar{D}}{S_{D} / \sqrt{n}} \sim t_{n-1}
$$

where

$$
\begin{gathered}
\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i} \\
S_{D}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}
\end{gathered}
$$

the standard deviation of the differences.
So, what is the rule for rejection? This:
Rule: either $t_{0}>t_{\alpha / 2, n-1}$ or $t_{0}<-t_{\alpha / 2, n-1}$
Note: You can also consider one-sided alternatives for both two-sample and paired test.

For the last test we have discussed here, these are the rejection rules:
$-H_{1}: \mu_{1}>\mu_{2}, t_{0}>t_{\alpha, n-1} ;$
$-H_{1}: \mu_{1}<\mu_{2}, t_{0}<-t_{\alpha, n-1} ;$

Exc: Do the one-sided rejection rules for the first test done today!
Exp Consider the data:

	$X_{1 i}$	$X_{2 i}$	D_{i}
1	1.186	1.061	0.125
2	1.151	0.992	0.159
3	1.322	1.063	0.259
4	1.339	1.062	0.277
5	1.200	1.065	0.135
6	1.402	1.178	0.224
7	1.365	1.037	0.328
8	1.537	1.086	0.451
9	1.559	1.052	0.507

Determine whether there is any difference (on the average) between the 2 sets of numbers, (assume $\alpha=0.05$).

Sol: We have from the statement $H_{0}: \mu_{1}=\mu_{2}, H_{1}: \mu_{1} \neq \mu_{2}$, $\alpha=0.05$. We compute $\bar{D}=\frac{1}{9} \sum_{i=1}^{9} D_{i}=\frac{1}{9}\{0.125+\cdots+0.507\} \cong 0.2739$.

Then the observed standard deviation is $\sqrt{S_{D}^{2}}=\sqrt{\frac{1}{9-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}}=$ $\sqrt{\frac{1}{8}\left\{(0.125-0.2739)^{2}+\cdots+(0.507-0.2739)^{2}\right\}}=0.1351$

The observed valur of the test statistic is $t_{0}=\frac{\bar{D}}{s_{D} / \sqrt{n}}=\frac{0.2739}{0.1351 / \sqrt{9}}=6.08$.
We have $t_{0.025,8}=2.306$. Comapare now: since $t_{0}=6.08>t_{\alpha / 2, n-1}=$ 2.306 (so we are getting the observed value of the test statistic in the critical region) we reject H_{0}, i.e., the 2 data sets yield different means!

16-10: Cummulative Sum Control Chart

The control charts \bar{X} have a major disadvantage: they are not efficient in detecting small shifts (for mean) in the process. A better tool is the Cummulative Sum Control Chart (CUSUM).

Let μ_{0} be the target for the process mean (mean quality under control). We say that the sum:

$$
C_{i}=\sum_{j=1}^{i}\left(\bar{x}_{j}-\mu_{0}\right)=\left(\bar{x}_{i}-\mu_{0}\right)+\sum_{j=1}^{i-1}\left(\bar{x}_{j}-\mu_{0}\right)=\left(\bar{x}_{i}-\mu_{0}\right)+C_{i-1}
$$

is called the cumulative sum, where \bar{x}_{j} is the mean of the j th sample. Cumulative sums are more effective for detecting small process shifts since each sum combines information from several samples.

If the experiment is under control at the target value μ_{0}, then the CUSUMs should fluctuate around 0 . IF the mean shifts upward to some
number $\mu_{1}>\mu_{0}$, then an upward or positive drift will develop in the CUSUMs C_{i}; IF the mean shifts downward to some number $\mu_{1}<\mu_{0}$, then a downward or negative drift will develop in the CUSUMs C_{i}. If we observe a trend in the plotted $C_{i} \mathrm{~s}$ either downward or upward, then we take this as evidence that the process/experiment has shifted, and we must search for assignable causes.

Example 1: let us say the size is $n=4$, and we compute the CUSUMs when the target mean $\mu_{0}=10$, and then one more time when $\mu_{0}=9.5$.

		$\mu_{0}=10$		$\mu_{0}=9.5$	
i	\bar{x}_{i}	$\bar{x}_{i}-\mu_{0}$	C_{i}	$\bar{x}_{i}-\mu_{0}$	C_{i}
1	9.4	-0.6	-0.6	-0.1	-0.1
2	11.1	1.1	0.5	1.6	1.5
3	9.1	-0.9	-0.4	-0.4	1.1
4	8.7	-1.3	-1.7	-0.8	0.3
5	11.6	1.6	-0.1	2.1	2.4
6	12.1	2.1	2	2.6	5
7	7.9	-2.1	-0.1	-1.6	3.4
8	10.9	0.9	0.8	1.4	4.8
9	9.5	-0.5	0.3	0	4.8
10	7.8	-2.2	-1.9	-1.7	3.1
11	10.5	0.5	-1.4	1	4.1
12	10.5	0.5	-0.9	1	5.1
13	11.4	1.4	0.5	1.9	7

For $\mu_{0}=10$ you may see the fluctuation around 0 , for $\mu_{1}=9.5$ the CUSUMs are on average increasing, and this tells us that probably the true mean is bigger than 9.5 , so there is a shift in the mean quality.

There is a problem: no LIMITS OF CONTROL!!! SO, we are introducing a Tabular CUSUM.

A change of 0.1 cm in mean quality may not be so important, while a change of 1.0 cm may be important. So:

Terminology: Say μ_{1} is the value of the mean corresponding to the out-of-control state. The value of the shift is $\Delta=\left|\mu_{1}-\mu_{0}\right|, n$ is the size of sample; μ_{0} target mean; \bar{x}_{i} the mean of the i th sample; reference value $K=\frac{\Delta}{2}$.
N.B. One may also use $K=\sigma_{\bar{X}} / 2$, or $\sigma /(2 \sqrt{n})$.

Tabular CUSUM is (for sample i):
$S_{H}(i)$ - upper one-sided CUSUM;
$S_{L}(i)$ - lower one-sided CUSUM; where
$S_{H}(i)=\max \left[0, \bar{x}_{i}-\left(\mu_{0}+K\right)+S_{H}(i-1)\right]$ and
$S_{L}(i)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{i}+S_{L}(i-1)\right]$.
The initial values are $S_{H}(0)=0=S_{L}(0)$.
Warning of instability: We are saying that the process is not stable (or out of control) if either $S_{H}(i)>H$ or $S_{L}(i)>H$, where the constant H is the decision interval.

Choosing H and K
Define $H=h \sigma_{\bar{X}}=h \sigma / \sqrt{n}$ and $K=k \sigma_{\bar{X}}=k \sigma / \sqrt{n}$, where h and k are constants.

Empirical Rule: $k=1 / 2$ and $h=4$ or 5 .
EXC: Suppose that $\mu_{0}=9.5, \sigma=3, n=4$. Use the first 5 samples in the previous example and create a chart of CUSUM when $h=5$. Is the process out of control?

Sol: We have $K=\frac{1}{2} \frac{3}{\sqrt{4}}=0.75$ and $H=5 \times \frac{3}{\sqrt{4}}=7.5$. Then we compute: $S_{H}(0)=0=S_{L}(0)$. Moreover,

$$
S_{H}(1)=\max \left[0, \bar{x}_{1}-\left(\mu_{0}+K\right)+S_{H}(0)\right]=\max [0,9.4-(9.5+0.75)+0]=
$$ $\max [0,-0.85]=0$,

$$
S_{L}(1)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{1}+S_{L}(0)\right]=\max [0,(9.5-0.75)-9.4+0]=
$$ $\max [0,-0.65]=0$;

$$
\begin{aligned}
& \quad S_{H}(2)=\max \left[0, \bar{x}_{2}-\left(\mu_{0}+K\right)+S_{H}(1)\right]=\max [0,11.1-(9.5+0.75)+ \\
& 0]=\max [0,0.85]=0.85
\end{aligned}
$$

$$
S_{L}(2)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{2}+S_{L}(1)\right]=\max [0,(9.5-0.75)-11.1+0]=
$$ 0 ;

$$
S_{H}(3)=\max \left[0, \bar{x}_{3}-\left(\mu_{0}+K\right)+S_{H}(2)\right]=\max [0,9.1-(9.5+0.75)+
$$ $0.85]=0$,

$$
S_{L}(3)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{3}+S_{L}(2)\right]=\max [0,(9.5-0.75)-9.1+0]=
$$ 0 ;

$$
S_{H}(4)=\max \left[0, \bar{x}_{4}-\left(\mu_{0}+K\right)+S_{H}(3)\right]=\max [0,8.7-(9.5+0.75)+0]=
$$ 0 ,

$$
S_{L}(4)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{4}+S_{L}(3)\right]=\max [0,(9.5-0.75)-8.7+0]=
$$ 0.05 ;

$$
\begin{aligned}
& \quad S_{H}(5)=\max \left[0, \bar{x}_{5}-\left(\mu_{0}+K\right)+S_{H}(4)\right]=\max [0,11.6-(9.5+0.75)+ \\
& 0]=1.35
\end{aligned}
$$

$S_{L}(5)=\max \left[0,\left(\mu_{0}-K\right)-\bar{x}_{5}+S_{L}(4)\right]=\max [0,(9.5-0.75)-11.6+$ $0.05]=0$;

Since no value above exceeds H we conclude (based on the first 5 samples) that there is no warning of instability, the process is not out of control.

Review, statements:

Exc. 1 The average length of stay at a general hospital (on planet MathematiX) of a sample of 20 patients was 7 days with a sample standard deviation of 2 days. Assuming normality, find a 95% confidence interval for the average length of stay of a patient discharged from the hospital.

Exc. 2 Consider a random variable X with the following probability density function: $f(x)=\frac{3}{4}\left(1-x^{2}\right)$ if $-1<x<1$, and $f(x)=0$ elsewhere. Calculate the expected value and the variance of X.

Exc. 3 A certain company claims that they receive complaint-related phone calls at a mean rate of 2 per week. Find the probability that they receive at most 2 of these calls in the next 4 weeks. Assume Poisson!

Exc. 4 A diastolic blood pressure reading of less than 90 mm is considered normal. Assume that two-thirds of the participants in a very
large study have diastolic blood pressure readings of less than 90 mm . For a random sample of 75 participants, approximate the probability that 45 or more will have normal diastolic readings.

Exc. 5 A chronic condition improves spontaneously in 45% of people. We would like to test the claim that a new medication could increase this percentage. Of 75 patients tested with the new medication, 38 improve. For $\alpha=0.025$ what are the conclusions of the testing?

Exc. 6 The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint:
$3.4,2.5,4.8,2.9,3.6$
$2.8,3.3,5.6,3.7,2.8$
The data is summarized as follows: $\sum_{i} x_{i}=35.4, \sum_{i} x_{i}^{2}=133.84$.

Assuming that the measurements represent a random sample from a normal population, find a 95% confidence interval of the mean drying time of this brand.

Exc. 7 The results of a study to determine patterns of drug use in adolescents were published. Of the 4145 seventh graders in a random sample, 124 reported using alcohol on a weekly basis. Give a 90% confidence interval for the percent of weekly alcohol use among all seventh graders.

Exc. 8 The use of polymers in medicine, especially in the area of drug delivery, is one of the fastest growing areas of polymer chemistry. A study experiment different formulations used in a passive plus-delivery device. A sample was taken from one formulation on the first total-drug reading (in milligrams):

$$
\begin{aligned}
& 603,534,542,591,680 \\
& 489,516,570,592,654
\end{aligned}
$$

The desired result was for the mean of this measurement to exceed 550 mg . Using a level of significance of $\alpha=5 \%$, test to see if the formulation appears to be delivering the desired mean. Assume normality.

Exc. 9 Consider the random variables X and Y such that $E[X]=0.5$, $E[Y]=1.5, \operatorname{Var}[X]=0.25, \operatorname{Var}[Y]=35$ and the covariance is $\sigma_{X Y}=$ -1.1 . Consider the following two random variables:

$$
W_{1}=X+Y \text { and } W_{2}=2 X+5 Y
$$

1. Are X and Y independent? 2. Compute the expectations and the variances of W_{1} and W_{2}.

Exc. 10 A study used X-ray computed tomography to collect data on brain volumes for a group of patients with obsessive-compulsive disorders and a control group of healthy persons. Sample results (in mL) are given below for total brain volumes:

Obsessive-compulsive patients: $n=10, \bar{x}=1390.03, s=156.84$;
Control Group: $n=10, \bar{x}=1268.41, s=137.97$
Assume that the populations are normal with equal variances. At a level of significance of 5%, can we accept the hypothesis that the mean brain volume of obsessive-compulsive patients is larger than the mean brain volume of healthy persons?

Review:

Exc. 1 The average length of stay at a general hospital (on planet MathematiX) of a sample of 20 patients was 7 days with a sample standard deviation of 2 days. Assuming normality, find a 95% confidence interval for the average length of stay of a patient discharged from the hospital.

Sol: see pages 3,4 on the lecture June 2 . We have $\alpha=0.05$, and the C.I. is $\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}$. So we get $7 \pm t_{0.025,19} \frac{2}{\sqrt{20}}=7 \pm 2.093 \frac{2}{\sqrt{20}}=$ [6.064, 7.936]. Please note the word "normality". See pages 3,4!

Exc. 2 Consider a random variable X with the following probability density function: $f(x)=\frac{3}{4}\left(1-x^{2}\right)$ if $-1<x<1$, and $f(x)=0$ elsewhere. Calculate the expected value and the variance of X.

> Sol: $E(X)=\int_{-1}^{1} x \frac{3}{4}\left(1-x^{2}\right) d x=\frac{3}{4} \int_{-1}^{1} x\left(1-x^{2}\right) d x=\frac{3}{4} \int_{-1}^{1}\left(x-x^{3}\right) d x=$ $\left.\frac{3}{4}\left\{\frac{x^{2}}{2}-\frac{x^{4}}{4}\right\}\right|_{-1} ^{1}=0$. Now $E\left(X^{2}\right)=\int_{-1}^{1} x^{2} \frac{3}{4}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left\{\frac{x^{3}}{3}-\frac{x^{5}}{5}\right\}\right|_{-1} ^{1}=\frac{1}{5}$.

Hence $\operatorname{Var}(X)=\frac{1}{5}-0^{2}=\frac{1}{5}$.
Exc. 3 A certain company claims that they receive complaint-related phone calls at a mean rate of 2 per week. Find the probability that they receive at most 2 of these calls in the next 4 weeks. Assume Poisson!

Sol: If N is the rv the number of calls in 4 weeks, then N is Poisson with $\lambda=\frac{2 \times 4}{1}=8$. Hence we compute: $P(N \leq 2)=e^{-8 \frac{8^{0}}{0!}}+e^{-8 \frac{8^{1}}{1!}}+e^{-8 \frac{8^{2}}{2!}}=$ 0.0138. Recall that if X is Poisson with λ, then $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$.

Exc. 4 A diastolic blood pressure reading of less than 90 mm is considered normal. Assume that two-thirds of the participants in a very large study have diastolic blood pressure readings of less than 90 mm . For a random sample of 75 participants, approximate the probability that 45 or more will have normal diastolic readings.

Sol: Let $N=\#$ among 75 with normal diastolic readings. Then N
follows a binomial with $n=75$ and $p=2 / 3$. We do have $P(N \geq 45)=$ $1-P(N \leq 44)=1-P(N \leq 44.5)$. Now we do have: $n p=75 \times \frac{2}{3}$, and $n p(1-p)=75 \times \frac{2}{3} \times \frac{1}{3}$. Hence:

$$
P(N \geq 45)=1-\Phi\left(\frac{44.5-\frac{75 \times 2}{3}}{\sqrt{75 \times \frac{2}{3} \times \frac{1}{3}}}\right)=1-\Phi(-1.35)=1-0.088508=
$$

0.911492 . So we have used the normal approximation to binomial!

Exc. 5 A chronic condition improves spontaneously in 45% of people. We would like to test the claim that a new medication could increase this percentage. Of 75 patients tested with the new medication, 38 improve. For $\alpha=0.025$ what are the conclusions of the testing?

Sol: We have $H_{0}: p=0.45, H_{1}: p>0.45, \alpha=0.025, n p_{0}>$ $5, n\left(1-p_{0}\right)>5$. The observed value if the test statistics is: $z_{0}=$ $\frac{\frac{38}{75}-0.45}{\sqrt{0.45 \times(1-0.45) / 75}}=0.98644005$. IS $z_{0}>z_{\alpha}=z_{0.025}=1.96$? NO! So we fail to reject H_{0} at this given level.

Exc. 6 The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint:
$3.4,2.5,4.8,2.9,3.6$
$2.8,3.3,5.6,3.7,2.8$
The data is summarized as follows: $\sum_{i} x_{i}=35.4, \sum_{i} x_{i}^{2}=133.84$.
Assuming that the measurements represent a random sample from a normal population, find a 95% confidence interval of the mean drying time of this brand.

Sol: We compute the sample mean $\bar{x}=\frac{1}{10} \sum_{i} x_{i}=35.4=3.54$. The sample mean is computed as follows: $s=\sqrt{\frac{\left(\sum x_{i}^{2}\right)-n \bar{x}^{2}}{n-1}}=$ $\sqrt{\frac{133.84-(10) \times(3.54)^{2}}{10-1}}=0.97320$. Then a 95% confidence interval for μ is $\bar{x} \pm t_{0.025,9} \frac{s}{\sqrt{n}}=3.54 \pm 2.262 \times \frac{0.97320}{\sqrt{10}}=[2.84387,4.23613]$.

Exc. 7 The results of a study to determine patterns of drug use in adolescents were published. Of the 4145 seventh graders in a random sample, 124 reported using alcohol on a weekly basis. Give a 90% confidence interval for the percent of weekly alcohol use among all seventh graders.

Sol: See our lecture on section 8-5 and recall that a 90% confidence interval is given by: $\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\frac{124}{4145} \pm z_{0.05} \sqrt{\frac{\frac{124}{4145}\left(1-\frac{124}{4145}\right)}{4145}}$. Since $z_{0.05}=1.645$ we get the following interval: $[0.025562878,0.034268243]$.

Exc. 8 The use of polymers in medicine, especially in the area of drug delivery, is one of the fastest growing areas of polymer chemistry. A study experiment different formulations used in a passive plus-delivery device. A sample was taken from one formulation on the first total-drug reading (in milligrams):

$$
603,534,542,591,680
$$

$489,516,570,592,654$
The desired result was for the mean of this measurement to exceed 550 mg . Using a level of significance of $\alpha=5 \%$, test to see if the formulation appears to be delivering the desired mean. Assume normality.

Sol: The sample mean is $\bar{x}=\frac{1}{10} \sum_{i} x_{i}=\frac{5771}{10}=577.1$. The sample standard deviation is $s=\sqrt{\frac{\left(\sum x_{i}^{2}\right)-n \bar{x}^{2}}{n-1}}=\sqrt{\frac{(3362667)-(10)(577.1)^{2}}{10-1}}=$ 59.83579 .

We test $H_{0}: \mu=550$ against $H_{1}: \mu>550$, where $\alpha=5 \%$. The observed value of the test statistic is $t_{0}=\frac{\bar{x}-550}{s / \sqrt{n}}=\frac{577.1-550}{59.83579 / \sqrt{10}}=1.43$. QUESTION: Is t_{0} greater than $t_{0.025,10-1}=t_{0.025,9}=2.262$? ANSWER: NO! So we fail to reject H_{0}, i.e., we cannot conclude that $\mu>550$.

Exc. 9 Consider the random variables X and Y such that $E[X]=0.5$, $E[Y]=1.5, \operatorname{Var}[X]=0.25, \operatorname{Var}[Y]=35$ and the covariance is $\sigma_{X Y}=$

-1.1 . Consider the following two random variables:

$$
W_{1}=X+Y \text { and } W_{2}=2 X+5 Y
$$

1. Are X and Y independent? 2. Compute the expectations and the variances of W_{1} and W_{2}.

Sol: 1) since $\sigma_{X Y} \neq 0$, then X and Y are not independent.
2) $E\left[W_{1}\right]=E[X]+E[Y]=2.0, E\left[W_{2}\right]=2 E[X]+5 E[Y]=8.5$, $\operatorname{Var}\left[W_{1}\right]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \sigma_{X Y}=33.05$ (recall chapter 5-5)! By the same section 5-5 (page 189) one gets: $\operatorname{Var}\left[W_{2}\right]=\operatorname{Var}[2 X]+$ $\operatorname{Var}[5 Y]+2 \sigma_{2 X, 5 Y}=2^{2} \operatorname{Var}[X]+5^{2} \operatorname{Var}[Y]+2(2)(5) \sigma_{X, Y}=854$. WHY? Imagine this: $\quad \sigma_{2 X, 5 Y}=E(2 X 5 Y)-E(2 X) E(5 Y)=2 \times 5 E(X Y)-$ $2 E(X) 5 E(Y)=2 \times 5 \sigma_{X Y}$.

Exc. 10 A study used X-ray computed tomography to collect data on brain volumes for a group of patients with obsessive-compulsive disorders
and a control group of healthy persons. Sample results (in mL) are given below for total brain volumes:

Obsessive-compulsive patients: $n=10, \bar{x}=1390.03, s=156.84$;
Control Group: $n=10, \bar{x}=1268.41, s=137.97$
Assume that the populations are normal with equal variances. At a level of significance of 5%, can we accept the hypothesis that the mean brain volume of obsessive-compulsive patients is larger than the mean brain volume of healthy persons?

Sol: We want to test $H_{0}: \mu_{1}-\mu_{2}=0$ against $H_{1}: \mu_{1}-\mu_{2}>0$ (i.e. $\mu_{1}>\mu_{2}$). The test statistic is $T_{0}=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{1}}}}$ and observed value is $t_{0}=\frac{1390.03-1268.41}{147.70665 \sqrt{\frac{1}{10}+\frac{1}{10}}}=1.8412$. Since $t_{0}>t_{\alpha, 10+10-2}=1.734$ we reject H_{0} and accept H_{1}, i.e. $\mu_{1}>\mu_{2}$. In other words (at a 5% significance level)
the mean brain volume of obsessive-compulsive patients is larger than the mean brain volume of healthy persons!

Some important facts:

Probability

- Sample spaces and events
- Approaches to probability:

Classical Approach: If can think of the outcomes as equally likely, then $P(A)=\frac{\text { \# of outcomes in } A}{\text { \# of total possible outcomes }}$
Relative Frequency Approach: Consider n trials of the random experiment, then $P(A) \cong \frac{f_{n}(A)}{n}$, where $f_{n}(A)=\#$ of times that A occurs among the n trials.

- Operations on events: unions, intersections, complements
- Mutually exclusive events.
- Exhaustive events.
- The three axioms of probability: (Certainty): $P(S)=1$
(Positivity): $P(A) \geq 0$ for all events A
(Additivity): if A_{1}, A_{2}, \ldots are mutually exclusive events then $P\left(A_{1} \cup\right.$ $\left.A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots$
- The direct consequences of the axioms and the addition rules: $P(A \cup$ $B)=$?
- Conditional Probability: The probability that A occurs given that B occurs is $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$;
- multiplication rule
- rule of total probability
- Bayes' theorem
- Independent events

Discrete random variables

- The probability mass function (p.m.f.) f_{X} of the discrete random variable X is defined as $f_{X}(x)=P(X=x)$;
- Properties of the density of a discrete random variable: 1 . $0 \leq f_{X}(x) \leq$ 1;

2. $\sum_{x} f_{X}(x)=1$; i.e. total mass is 1
3. (Computational Property): $P(X \in A)=\sum_{x \in A} f_{X}(x)$

- expectation, mean, variance, standard deviation
- Discrete distributions to know:

1. binomial with parameters n and p, p.m.f., mean, variance, standard deviation;
2. geometric with parameter p, p.m.f., mean , variance, standard deviation, see lecture 3;
3. Poisson distribution with parameter λ, p.m.f., mean, variance and standard deviation

Continuous random variables

- prob. density function f_{X} of a continuous random variable X is defined as $f_{X}(x)=\frac{d F_{X}(x)}{d x}$; where F_{X} is the cumulative distribution function of X.
- Properties of the density of a continuous random variable:

1. $f_{X}(x) \geq 0$
2. $\int_{-\infty}^{\infty} f_{X}(x) d x=1$; i.e. total mass is 1
3. Computational Property: $P(X \in A)=\int_{A} f_{X}(x) d x$
4. $P(X=x)=0$, i.e. a point has no mass
5. $P(a<X<b)=\int_{a}^{b} f_{X}(x) d x=F_{X}(b)-F_{X}(a)$

- expectation, mean, variance, standard deviation
- The exponential distribution with parameter λ
- The gamma distribution with parameters λ and r;
- The uniform distribution
- The normal distribution $N\left(\mu ; \sigma^{2}\right)$:

1. the percentiles and the table;
2. 5-5 for expectation and variance of linear combos!
3. Central Limit Theorem;
4. Normal approximation of binomials (recall the correction, discrete vs continuous)

- Independent Random Variables

Other important facts:

Random Sampling

- X_{1}, \ldots, X_{n} is a random sample if the variables are independent and identically distributed
- The underlying distribution (or the common distribution) is called the population
- A few common statistics, i.e. functions of a random sample,
— sample mean $\bar{X}=\frac{1}{n}\left\{X_{1}+\cdots+X_{n}\right\}$
— sample variance $S^{2}=\frac{\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n(\bar{X})^{2}}{n-1}$
- sample standard deviation $S=\sqrt{S^{2}}$
— the sample proportion is $\hat{p}=x / n$, where $x=\#$ of successes among n independent Bernoulli trials.

Estimation of the population proportion p

- estimation
- sample size, error
- interval estimation (confidence interval)

Estimation of the population mean μ

- estimation
- interval estimation (confidence interval)

Hypothesis Testing: Understand the following concepts:

- null hypothesis H_{0} and alternative hypothesis H_{1} (research hypothesis)
- errors of type I and II
- right-tailed, left-tailed or two-tailed test
- test statistic
- critical region when testing a hypothesis on μ
- p-value of the test
- Significance level α
- reject H_{0} and accept H_{1}, only if p-value $<\alpha$

Comparing Two Means:

- Unpaired data: We collect two independent samples, i.e from population 1 and from population 2. - Note that for the normal populations with equal variances case, we will compute the pooled sample standard deviation.
- Paired data: We collect a sample of n subjects from a population and take two measurements from each subject under different conditions. We compute the observed differences $D_{i}=X_{1 i}-X_{2 i}$.

More exercises:

Exc. 11 Let X and S be the sample mean and sample standard deviation (respectively) for a sample of size $n=15$ from a normal population of mean $\mu=10$. Define the statistic $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$. Find t such that a) $P(T>t)=0.05 ;$ b) $P(T \leq t)=0.10$.

Exc. 12 A random sample of 100 two-month-old babies is obtained, and the mean head circumference is found to be 40.6 cm . Assume that the population standard deviation is known to be 1.6 cm . Find a 95% confidence interval for the true mean head circumference of two-month-old babies.

Exc. 13 In attempting to control the strength of the wastes discharged into a nearby river, a paper firm has taken a number of measures. Members of the firm believe that they have reduced the oxygen- consuming power of their wastes from a previous mean of 500 (measured in permanganate in parts per million). To prove their claim, they plan to take reading on

25 consecutive days, giving a sample mean of 579.11 . Assume that these readings can be treated as a random sample and that we can safely assume that the oxygen-consuming power of their wastes is normally distributed with variance 13225 . (Use $\alpha=1 \%$)
(a) State the hypotheses.
(b) What is the test statistic?
(c) Give the critical region for this test.
(d) Give the p-value.
(e) Can we accept the firm's claim?

Exc. 14 A study of body characteristics and performance is conducted among master-class Olympic weight lifters. Two variables studied are $X=$
the subject's body weight, and $Y=$ his best reported clean and jerk lift. The data (in pounds) is recorded:

x	y
134	185
138	238
154	260
178	290
176	312
190	336
190	339
205	341
205	358
206	359

Calculate the estimated regression line.

Exc. 15 A certain steel bar is measured with a device which has a known precision $\sigma=0.25 \mathrm{~mm}$. Suppose we want to estimate the mean "measurement" with an error at most 0.2 mm at the level of significance $\alpha=0.05$. What sample size is required? Assume normality.

Exc. 16 It is claimed that the breaking strength of yarn used in manufacturing drapery material is normally distributed with mean 97 and $\sigma=2$ psi. A random sample of nine specimens is tested and the average breaking strength is found to be $\bar{x}=98 \mathrm{psi}$. If $\alpha=0.05$, the p-value and a conclusion for the appropriate one-sided test is what?

Exc. 17 A medical review board approves a mean stay in the hospital after a particular operation as 6.0 days. The board claims that the average for Medicare patients has been substantially longer that 6.0 days. To examine this claim a sample of 25 Medicare patients who have had this operation in the past year is selected. The sample mean and standard deviation (in days) respectively are 6.32 and 1.62 . We want to test, if
there is enough evidence to support Boards claim, i.e. we test $H_{0}: \mu=6$ against $H_{1}: \mu>6$, where μ is the mean stay length. Find the appropriate one-sided confidence interval for μ and the conclusion of the testing (use $\alpha=0.01$).

Exc. 18 Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a population having mean μ and variance σ^{2}. Consider the following estimators of μ : $\hat{\Theta}_{1}=\left(X_{1}+X_{22}\right) / 2, \hat{\Theta}_{2}=2 X_{5}-X_{1}$. Comparing the MSE of the estimators, which estimator is better?

Exc. 19 Twenty five preliminary samples of size $n=5$ have been taken and the following quantities have been computed: $\sum_{i=1}^{25} \bar{x}_{i}=362.75$; $\sum_{i=1}^{25} r_{i}=8.60 ; \sum_{i=1}^{25} s_{i}=3.64$.
(a) Determine the control chart for X (from R);
(b) Determine the control chart for R;
(c) Determine the control chart for X (from S);
(d) Determine the control chart for S.

Exc. 20 On average, one person in 1 hundred will carry a certain mutant gene. 60 people are tested. What is the approximate probability that 5 or more of these people will be found to carry the gene?

Exc. 21 Let us say that on planet MathematiX some aliens are born on 2666. Suppose that X represents the weight of a (randomly chosen) alien at birth. The following data gives the weights at birth (in grams), for a sample of $n=5$ aliens: $x_{1}=785, x_{2}=825, x_{3}=671, x_{4}=981, x_{5}=732$. Suppose that the alien weight X at birth is a normal random variable with standard deviation $\sigma=115 \mathrm{~g}$. Find a 95% confidence interval for the average alien weight μ at birth.

Exc. 22 Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and
pavement deflection (y). Summary quantities were $n=20, \sum_{i} y_{i}=12.75$, $\sum_{i} y_{i}^{2}=8.86, \sum_{i} x_{i}=1478, \sum_{i} x_{i}^{2}=143215.8$, and $\sum_{i} x_{i} y_{i}=1083.67$. Compute the sample correlation coeficient R.

Exc. 23 A machine produces metal rods used in an automobile suspension system. A random sample of 8 rods is selected, and the diameter is measured. The resulting data (in millimeters) are as follows:
8.24, 8.25, 8.20, 8.23,
8.21, 8.26, 8.26, 8.28.

Assume that the population is normally distributed. a) Can we reject the claim that the mean rod diameter is 8.25 mm at a level of significance of 5% ? (hint: use a critical region). b) Calculate a 95% confidence interval for the mean rod diameter. Does the confidence interval support the conclusion from part (a)?

Exc. 24 A textile fiber manufacturer is investigating a new drapery yarn. The company wishes to test the hypothesis $H 0: \mu=12$ against $H_{1}: \mu<12$, using a random sample of 16 specimens. Assume a normal population with a standard deviation of 0.5 kilograms.
(a) What is the type I error probability if the critical region is defined as $\bar{x}<11.5$ kilograms.
(b) Find β for the case where the true mean elongation is 11.25 kilograms.
(c) Find β for the case where the true mean is 11.5 kilograms.

Solutions:

Exc. 11 Let X and S be the sample mean and sample standard deviation (respectively) for a sample of size $n=15$ from a normal population of
mean $\mu=10$. Define the statistic $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$. Find t such that a) $P(T>t)=0.05 ;$ b) $P(T \leq t)=0.10$.

Sol: We know from ch. 8 (8-3.1) that $T \sim t$ with $\nu=n-1$ degrees of freedom. So 14 degrees of freedom; a) By table V one gets that $t=1.761$; for $\mathbf{b})$ note that $1-P(T>t)=0.1$ implies that $P(T>t)=0.9$, hence $t=t_{0.9,14}=-t_{0.1,14}=-1.345$. What did we use here? This formula: $t_{1-\alpha, n-1}=-t_{\alpha, n}$.

Exc. 12 A random sample of 100 two-month-old babies is obtained, and the mean head circumference is found to be 40.6 cm . Assume that the population standard deviation is known to be 1.6 cm . Find a 95% confidence interval for the true mean head circumference of two-month-old babies.

Sol: Since $\sigma=1.6$ is known and that the sample size $n=100>30$ is large, then a 95% C.I. for the population mean μ is given by(see 8-2.1):
$\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}=40.6 \pm z_{0.025} \frac{1.6}{\sqrt{100}}=[40.29,40,91]$, a very short interval!
Exc. 13 In attempting to control the strength of the wastes discharged into a nearby river, a paper firm has taken a number of measures. Members of the firm believe that they have reduced the oxygen- consuming power of their wastes from a previous mean of 500 (measured in permanganate in parts per million). To prove their claim, they plan to take reading on 25 consecutive days, giving a sample mean of 579.11 . Assume that these readings can be treated as a random sample and that we can safely assume that the oxygen-consuming power of their wastes is normally distributed with variance 13225 . (Use $\alpha=1 \%$)
(a) State the hypotheses.
(b) What is the test statistic?
(c) Give the critical region for this test.
(d) Give the p-value.
(e) Can we accept the firm's claim?

Sol: a) Let μ be true mean oxygen-consuming power of their wastes measured in permanganate in parts per million. Then we will test $H_{0}: \mu=$ 500 against $H_{1}: \mu<500$.
b) Since the population is normal and that the population standard deviation $\sigma=\sqrt{13225}$ is known, then we can use the following test statistic: $Z_{0}=\frac{\bar{X}-500}{\sqrt{13225} / \sqrt{25}}=\frac{\bar{X}-500}{23}$.
c) Since $H_{1}: \mu<500$, then this is a left-tailed test. Then, the critical region is:
we reject H_{0}, if $z_{0}<-z_{0.01}=-2.326$, where z_{0} is the observed value of the Z_{0} test statistic.
d) The observed value of the Z_{0} test statistic is $z_{0}=\frac{579.11-500}{23}=3.43$.

Since this is a left-tailed test, then the p-value is $p=P\left(Z<z_{0}\right)=$ $\Phi(3.44) \cong 1$. See page 15 of $2009 / 06 / 16$ Lecture (ch. 9)
e) [Using the p-value:] Since the p-value is very large, i.e. $p>\alpha=$ 0.01 , we cannot reject the null hypothesis. So at a level of significance of 1%, we cannot accept the firm's claim.
[Using the critical region:] Since $z_{0} \geq-2.326$, we cannot reject the null hypothesis. So at a level of significance of 1%, we cannot accept the firm's claim.

Exc. 14 A study of body characteristics and performance is conducted among master-class Olympic weight lifters. Two variables studied are $X=$ the subject's body weight, and $Y=$ his best reported clean and jerk lift. The data (in pounds) is recorded:

x	y
134	185
138	238
154	260
178	290
176	312
190	336
190	339
205	341
205	358
206	359

Calculate the estimated regression line.
Sol: $\hat{y}=2.0631 x-64.6066$. Indeed, we do have $\sum_{i} x_{i}=1776$, so $\bar{x}=177.6$. Now $S_{x x}=\left[\sum_{i} x_{i}^{2}\right]-n(\bar{x})^{2}=\cdots=6644.4 ; \bar{y}=301.8 ; S_{x y}=$
$\left[\sum_{i} x_{i} y_{i}\right]-n \bar{x} \bar{y}=13708.2$. So $\hat{\beta}_{1}=13708.2 / 6644.4=2.063120824$ and $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=301.8-2.063120824 \times 177.6=-64.61025834$.

Exc. 15 A certain steel bar is measured with a device which has a known precision $\sigma=0.25 \mathrm{~mm}$. Suppose we want to estimate the mean "measurement" with an error at most 0.2 mm at the level of significance $\alpha=0.05$. What sample size is required? Assume normality.

Sol: The formula (see section $8-2 / 263$) is: $n=\left\{\frac{z_{\alpha / 2} \sigma}{E}\right\}^{2}=$ $\left\{\frac{1.96 \times 0.25}{0.2}\right\}^{2}=6.0025$.

Exc. 16 It is claimed that the breaking strength of yarn used in manufacturing drapery material is normally distributed with mean 97 and $\sigma=2 \mathrm{psi}$. A random sample of nine specimens is tested and the average breaking strength is found to be $\bar{x}=98 \mathrm{psi}$. If $\alpha=0.05$, the p-value and a conclusion for the appropriate one-sided test is what?

Sol: We have $H_{0}: \mu=97$, and $H_{1}: \mu>97$ from the statement $(98>97)!!!$ The observed value of the test statistics (see page 10 on lecture $2009 / 06 / 16$) is $z_{0}=\frac{\bar{x}-97}{\sigma / \sqrt{9}}=\frac{98-97}{2 / 3}=1.5$. Since it is a right test, we have by page 15 (same lecture) that the p-value is $1-\Phi\left(z_{0}\right)=$ $1-0.933193=0.066807$. Since the p-value is not strictly smaller than $\alpha=0.05$ we fail to reject H_{0} !

Exc. 17 A medical review board approves a mean stay in the hospital after a particular operation as 6.0 days. The board claims that the average for Medicare patients has been substantially longer that 6.0 days. To examine this claim a sample of 25 Medicare patients who have had this operation in the past year is selected. The sample mean and standard deviation (in days) respectively are 6.32 and 1.62 . We want to test, if there is enough evidence to support Boards claim, i.e. we test $H_{0}: \mu=6$ against $H_{1}: \mu>6$, where μ is the mean stay length. Find the appropriate one-sided confidence interval for μ and the conclusion of the testing (use
$\alpha=0.01$).
Sol: There are 2 things asked here! FIRST: let us test! The critical region is $t_{0}>t_{0.01, n-1}=t_{0.01,24}=2.492$. Now the observed value of the test statistics is $t_{0}=\frac{\bar{x}-6}{1.62 / \sqrt{25}}=\frac{6.32-6}{1.62 / 5}=0.987654321$. WE FAIL to reject H_{0}.

Second part: the C.I. (by ch. 8, or lecture given on June 2) is $\left(\bar{x}-t_{0.01, n-1} \frac{s}{\sqrt{n}}, \infty\right)=(5.51, \infty)$.

Exc. 18 Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a population having mean μ and variance σ^{2}. Consider the following estimators of μ : $\hat{\Theta}_{1}=\left(X_{1}+X_{22}\right) / 2, \hat{\Theta}_{2}=2 X_{5}-X_{1}$. Comparing the MSE of the estimators, which estimator is better?

Sol: note first that they are unbiased! Indeed, $E\left(\hat{\Theta}_{1}\right)=(\mu+\mu) / 2=\mu$ and $E\left(\hat{\Theta}_{2}\right)=2 \mu-\mu=\mu$. So we just need to compare the variances.

Note that $\operatorname{Var}\left(\left(X_{1}+X_{22}\right) / 2\right)=\frac{1}{4} \sigma^{2}+\frac{1}{4} \sigma^{2}=\frac{1}{2} \sigma^{2}$ and observe that $\operatorname{Var}\left(2 X_{5}-X_{1}\right)=4 \sigma^{2}+\sigma^{2}=5 \sigma^{2}$. Since $5 \sigma^{2}>\frac{1}{2} \sigma^{2}$ we conclude that $\hat{\Theta}_{1}$ is better.

Exc. 19 Twenty five preliminary samples of size $n=5$ have been taken and the following quantities have been computed: $\sum_{i=1}^{25} \bar{x}_{i}=362.75$; $\sum_{i=1}^{25} r_{i}=8.60 ; \sum_{i=1}^{25} s_{i}=3.64$.
(a) Determine the control chart for X (from R);
(b) Determine the control chart for R;
(c) Determine the control chart for X (from S);
(d) Determine the control chart for S.

Sol: a) We get $\overline{\bar{x}}=362.75 / 25=14.51 ; \bar{r}=8.60 / 25=0.344$ and from page 732, table XI one gets $A_{2}=0.577$. So we get:
$C L=\overline{\bar{x}}=14.51 ; L C L=\overline{\bar{x}}-A_{2} \bar{r}=14.51-(0.577) 0.344 \cong 14.312$; $U C L=\overline{\bar{x}}+A_{2} \bar{r}=14.51+(0.577) 0.344 \cong 14.708$;
b) Recal that $C L=\bar{r}=0.344 ; L C L=D_{3} \bar{r}=0 ; U C L=D_{4} \bar{r}=$ $2.115 \times 0.344 \cong 0.728$;
c) We get that $\bar{s}=3.64 / 25=0.1456$. So we get $C L=\overline{\bar{x}}=14.51$; $L C L=\overline{\bar{x}}-\frac{3}{c_{4} \sqrt{n}} \bar{s}=14.51-\frac{3}{0.94 \sqrt{5}} 0.1456=14.302$, and $L C L=\overline{\bar{x}}+$ $\frac{3}{c_{4} \sqrt{n}} \bar{s}=14.51+\frac{3}{0.94 \sqrt{5}} 0.1456=14.718$.
d) Recal that $C L=\bar{s}=0.1456 ; L C L=\bar{s}\left\{1-\frac{3}{c_{4}} \sqrt{1-c_{4}^{2}}\right\}<0$, so we take $L C L=0 ; \quad U C L=\bar{s}\left\{1+\frac{3}{c_{4}} \sqrt{1-c_{4}^{2}}\right\}=0.1456+$ $3 \frac{0.1456}{0.94} \sqrt{1-(0.94)^{2}}=0.304$.

Exc. 20 On average, one person in 1 hundred will carry a certain mutant gene. 60 people are tested. What is the approximate probability that 5 or more of these people will be found to carry the gene?

Sol: Let $X=$ number of persons which carry the gene. Then $X \sim$ $B(60,0.01)$. Note that we are asked to compute $P(X \geq 5)=1-P(X \leq 4)$. We have $E(X)=n p=60 \times 0.01=0.6$ and $\operatorname{Var}(X)=n p(1-p)=$ $0.6 \times 0.99=0.594$. Since n is large we must use the continuity correction:

$$
P(X \leq 4)=P\left(Z \leq \frac{4+0.5-0.6}{\sqrt{0.594}}\right)=P(Z \leq 5.060243)=1, \text { so } P(X \geq
$$

$$
5)=1-1=0
$$

Exc. 21 Let us say that on planet MathematiX some aliens are born on 2666. Suppose that X represents the weight of a (randomly chosen) alien at birth. The following data gives the weights at birth (in grams), for a sample of $n=5$ aliens: $x_{1}=785, x_{2}=825, x_{3}=671, x_{4}=981, x_{5}=732$. Suppose that the alien weight X at birth is a normal random variable with standard deviation $\sigma=115 \mathrm{~g}$. Find a 95% confidence interval for the average alien weight μ at birth.

Sol: Note that $\bar{x}=\frac{1}{5}\{785+825+671+981+732\}=798.8 \mathrm{~g}$. The C.I.
is given by $798.8 \pm 1.96 \frac{115}{\sqrt{5}}=[688.0,899.6]$. So: with probability 95% the average alien weight lies between 688.0 g and 899.6 g on planet MathematiX!

Exc. 22 Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and pavement deflection (y). Summary quantities were $n=20, \sum_{i} y_{i}=12.75$, $\sum_{i} y_{i}^{2}=8.86, \sum_{i} x_{i}=1478, \sum_{i} x_{i}^{2}=143215.8$, and $\sum_{i} x_{i} y_{i}=1083.67$. Compute the sample correlation coeficient R.

Sol: Recall that $R=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}$. Recall from ex 11-2 solved in the slides that $S_{x y}=141.445, S_{x x}=33991.6$ and $S_{y y}=0.731875$. So $R=\frac{141.445}{\sqrt{33991.6} \sqrt{0.731875}} \cong 0.897$.

Exc. 23 A machine produces metal rods used in an automobile suspension system. A random sample of 8 rods is selected, and the diameter is measured. The resulting data (in millimeters) are as follows:
8.24, 8.25, 8.20, 8.23,
8.21, 8.26, 8.26, 8.28.

Assume that the population is normally distributed. a) Can we reject the claim that the mean rod diameter is 8.25 mm at a level of significance of 5% ? (hint: use a critical region). b) Calculate a 95% confidence interval for the mean rod diameter. Does the confidence interval support the conclusion from part (a)?

Sol: a) Note that we have from the date presented above the following computtaions: $\sum_{i} x_{i}=65.93, \sum_{i} x_{i}^{2}=543.3507$. So $\bar{x}=65.93 / 8=$ 8.24125; $s=\sqrt{\frac{\left(\sum_{i} x_{i}^{2}\right)-n \bar{x}^{2}}{n-1}}=0.02696$. Now we would like to test $H_{0}: \mu=8.25$ against $H_{1}: \mu \neq 8.25$ (See the statement to see why \neq is chosen). Next note that the population is normal and σ is unknown, so we will use the following test statistic $T_{0}=\frac{\bar{X}-8.25}{S / \sqrt{n}}$. Then we compute the
observed value: $t_{0}=-0.918$. It is a two-tailed (2-sided) test, so the critical region is given by: $t_{0}<-t_{0.025,7}=-2.365 \mathrm{OR} t_{0}>t_{0.025,7}=2.365$ by table V . Since $-2.365<t_{0}<2.365$, then we fail to reject H_{0}. Thus, we cannot reject the claim that the mean rod diameter is 8.25 mm at a level of significance of 5%.
b) A 95% confidence interval for μ is given by $\bar{x} \pm t_{0.025,7} \frac{s}{\sqrt{n}}=$ $8.24125 \pm 2.365 \times \frac{0.02696}{\sqrt{8}}=8.24125 \pm 0.02254=[8.22,8.26]$. Since 8.25 is in the interval, then we cannot conclude that $\mu \neq 8.25$. This is consistent with the conclusion in (a).

Exc. 24 A textile fiber manufacturer is investigating a new drapery yarn. The company wishes to test the hypothesis $H 0: \mu=12$ against $H_{1}: \mu<12$, using a random sample of 16 specimens. Assume a normal population with a standard deviation of 0.5 kilograms.
(a) What is the type I error probability if the critical region is defined as
$\bar{x}<11.5$ kilograms.
(b) Find β for the case where the true mean elongation is 11.25 kilograms.
(c) Find β for the case where the true mean is 11.5 kilograms.

Sol: (a) $\alpha=P($ type $\quad I \quad$ error $)=$
$P\left(\right.$ reject H_{0} when H_{0} is true $)=P(\bar{X}<11.5 \mid \mu=12)=$ $\Phi\left(\frac{11.5-12}{0.5 / \sqrt{16}}\right)=\Phi(-4) \cong 0$.
(b) $\beta=P($ type $\quad I I \quad$ error when $\quad \mu=11.25)$
$=P\left(\right.$ do not reject H_{0} when $\left.\mu=11.25\right)=P(\bar{X} \geq 11.5 \mid \mu=$ $11.25)=1-\Phi\left(\frac{11.5-11.25}{0.5 / \sqrt{16}}\right)=1-\Phi(2)=1-0.977250=0.02275$;
(c) $\beta=P$ (type $\quad I I \quad$ error when $\quad \mu=11.5)$
$=P\left(\right.$ do not reject H_{0} when $\left.\mu=11.5\right)=P(\bar{X} \geq 11.5 \mid \mu=$ $11.5)=1-\Phi\left(\frac{11.5-11.5}{0.5 / \sqrt{16}}\right)=1-\Phi(0)=1-0.5=0.5$

