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MAT2377 Probability and Statistics for Engineers Lecture 9-1,2,3; 9-5; 5-1,2,3

Hypothesis Testing

Hypothesis testing is a procedure that leads us to decide if experimen-
tal data supports a hypothesis concerning population(s) parameter(s). We
will consider hypotheses concerning a population mean µ or a population
proportion p. What is a hypothesis? Just a statement about the parameters
of one or several populations.

Stating the Hypotheses: Often the researcher would like to verify a
change in the unknown parameter under new experimental conditions. For
example, a manufacturer of a new fiberglass tire claims that the mean
life of the new tires is greater than the mean life of tires using the old
manufacturing process. The previous mean life was 65, 000 km.

Let µ denote the mean life of the new tires. The no change hypothesis
(that we will call the null hypothesis) is H0 : µ = 65, 000 and the claim
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or research hypothesis (that we will call the alternative hypothesis) is
H1 : µ > 65, 000.

We want to test: H0 : µ = 65, 000 against H1 : µ > 65, 000.

Now we consider an example involving a proportion. Suppose that we
would like to test the hypothesis that the proportion of defective items pro-
duced at a particular plant is p = 2%. Then, we would test:

H0 : p = 0.02 against H1 : p 6= 0.02.

Null Hypothesis: The null hypothesis will always be a simple statement
concerning the unknown parameter θ. That is, it is a statement of the form
θ = θ0, where θ0 is some real number. For example, H0 : µ = 65, 000 or
H0 : p = 0.02. The value of the parameter in the null hypothesis will be
the boundary value of the parameter from the alternative hypothesis.

Alternative Hypothesis: The alternative hypothesis will be a composite
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statement concerning θ. It is often the research hypothesis, i.e. the
hypothesis that we would like to support with the data. We will consider
three types of alternatives : (θ is the unknown parameter and θ0 is some
real number)

H1 : θ < θ0 is a left-sided alternative;

H1 : θ > θ0 is a right-sided alternative;

H1 : θ 6= θ0 is a two-sided alternative.

Collecting Evidence: We select a random sample of n observations and
compute a point estimate for the unknown parameter θ.

Example:[Tire Example] We collect a random sample of n = 45 of the
new fiberglass tires and observe a lifetime of 65, 158.7 km. This is a point
estimate for the true mean lifetime of such tires. Note that this evidence
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is in favour of the alternative hypothesis that µ > 65, 000. However we
should not yet state that the data supports H1.

Suppose that we decide to say that the data support H1 : µ > 65, 000
if x > 65, 000. Now suppose that H0 : µ = 65, 000 is true. What are our
chances that we will say that the data support H1? Well

P (X > 65, 000) = P (Z > 0) = 1− Φ(0) = .5

So there is a 50% chance that we say that the data support H1 when in
fact H0 is true. We need to come up with a way to properly analyze the
evidence.

Definitions: — A test statistic is a statistic that is used to test
hypotheses.

— The critical region of the test statistic is a set of possible values of
the test statistic such that if the observed value of the test statistic falls in
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the critical region we will reject H0 and accept H1.

— If we reject H0 when H0 is true, we say that we have committed an
error of type I and we define:

α = P (type I error) = P (reject H0 when H0 is true)

— If the observed value of the test statistic does not fall in the critical
region, then we fail to reject H0. If we fail to reject H0 when H0 is false,
then we say that we have committed an error of type II and

β = P (type II error) = P (fail to reject H0 when H0 is false)

Example 1: [Tire Example Continued] Suppose that the population
standard deviation is σ = 1000 km. Suppose that we use X as a test
statistic.

(a) For the following critical region: x > 65, 400
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(i) Compute the probability of committing an error of type I.

(ii) If the true mean life is µ = 66, 000, then compute the probability of
committing an error of type II.

(iii) If the true mean life is µ = 67, 000, then compute the probability of
committing an error of type II.

(b) For the following critical region: x > 65, 750.

(i) Compute the probability of committing an error of type I.

(ii) If the true mean life is µ = 66, 000, then compute the probability of
committing an error of type II.

(iii) If the true mean life is µ = 67, 000, then compute the probability of
committing an error of type II.

SOL: σ = 1000, and the test statistic is X.
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a) α = P (type I error) = P (reject H0 when H0 is true) = P (X >

65400;µ = 65000) = P (X−65000
1000 > 65400−65000

1000 ) = P (Z > 0.4) = 1 −
P (Z ≤ 0.4) = 1− 0.655422 = 0.344578

ii) β = P (type II error) = P (fail to reject H0 when H0 is false) =
P (X ≤ 65400, µ = 66000) = P (X−66000

1000 < 65400−66000
1000 ) = P (Z <

−0.6) = 0.245097;

iii) β = P (type II error) = P (fail to reject H0 when H0 is false) =
P (X ≤ 65400, µ = 67000) = P (X−67000

1000 < 65400−67000
1000 ) = P (Z <

−1.6) = 0.045514 — compare with ii).

b) α = P (type I error) = P (reject H0 when H0 is true) = P (X >

65750;µ = 65000) = P (X−65000
1000 > 65750−65000

1000 ) = P (Z > 0.75) = 1 −
P (Z ≤ 0.75) = 1− 0.773373 = 0.226627.

ii) β = P (type II error) = P (fail to reject H0 when H0 is false) =
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P (X ≤ 65750, µ = 66000) = P (X−66000
1000 < 65750−66000

1000 ) = P (Z <
−0.25) = 0.401294;

iii) β = P (type II error) = P (fail to reject H0 when H0 is false) =
P (X ≤ 65750, µ = 67000) = P (X−67000

1000 < 65750−67000
1000 ) = P (Z <

−1.25) = 0.105650 — compare with a).

Remarks:

— H1 is a composite statement, i.e. a set of values. Hence β is a
function of µ1 (i.e. a possible value of µ in the alternative). If the true
value of µ is close to µ0, then β will be large, and if the true value of µ is
far from µ0, then β will be small. Since we do not know the true value of µ
when H1 is true, we cannot know the probability of making an error of type
II. So if the observed value of the test statistic does not fall in the critical
region, we say that we fail to reject H0 (and never say that we accept H0)
since we cannot evaluate our chances of being wrong.
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— Since H0 : θ = θ0 is a simple statement, we can compute α. So if
the observed value falls in the critical region and we reject H0, we say that
we reject H0 and accept H1, since we can compute our chances of being
wrong in this case.

— As we increase (decrease) our chances of making an error of type I,
we increase (decrease) our chances of making an error of type II (n does
not change)

— Taking these remarks into consideration, in practice, we fix the
probability of making an error of type I, i.e. α. We then call, α the
level of significance of the test. Furthermore, α should be small, but not
too small, some common values are α = 10%, α = 5% or α = 1%.

Test Statistic for a hypothesis concerning µ: It will be easier to
construct a critical region when using a standardized test statistic. Depen-
ding on the experimental conditions we will use one of three test statistics.
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(i) Conditions: — the population is normal or n ≥ 30;

— σ is known.

We will use the following test statistic:

Z0 = X−µ0
σ/
√
n

which follows a N(0,1) distribution if µ = µ0.

(ii)Conditions: — n ≥ 40;

— σ is unknown.

We will use the following statistic

Z0 = X−µ0
S/
√
n

which follows a N(0, 1) distribution if µ = µ0.

(iii) Conditions:

— the population is normal;
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— σ is unknown.

We will use the following statistic T0 = X−µ0
S/
√
n

which follows a t

distribution with ν = n−1 degrees of freedom if µ = µ0 (i.e., if H0 : µ = µ0

is true)

Critical Region: Suppose that the test statistic is Z0 which follows a
standard normal distribution under H0. Let z0 be the observed value of Z0.

(i) [Right-Sided Alternative] H1 : µ > µ0. The critical region is

z0 > zα.

(ii) [Left-Sided Alternative] H1 : µ < µ0. The critical region is

z0 < −zα.

(iii) [Two-Sided Alternative] H1 : µ 6= µ0. The critical region is
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z0 < −zα/2 or z0 > zα/2.

Critical Region: Suppose that the test statistic is T0 which follows a t
distribution with ν = n − 1 degrees of freedom under H0. Let t0 be the
observed value of T0.

(i) [Right-Sided Alternative] H1 : µ > µ0. The critical region is

t0 > tα,n−1.

(ii) [Left-Sided Alternative] H1 : µ < µ0. The critical region is

t0 < −tα,n−1.

(iii) [Two-Sided Alternative] H1 : µ 6= µ0. The critical region is

t0 < −tα/2,n−1 or t0 > tα/2,n−1.
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Example 2: We would like to test the claim that the mean life of the
new fiberglass tires is greater than 65, 000 km at a level of significance of
5%. A sample of n = 45 tires yielded a mean of 65158.7 km and a standard
deviation of 1120.5 km. What are the conclusions of the test ?

Sol: From the statement we get H0 : µ = 65000, H1 : µ > 65000,
α = 0.05, n = 45, x = 65158.7, σ = 1120.5. We compute z0 =
x−65000

1120.5/
√

45
= 65158.7−65000

1120.5/
√

45
= 0.9501 and we know that zα = z0.05 = 1.645.

We reject H0 if z0 > zα, BUT that is NOT the case since 0.9501 is not
greater than 1.645. So we say: we fail to reject H0.

Example 3: A company manufactures 6-meter tubes. We randomly
selected n = 10 tubes and computed x = 5.7m and s = 0.2m. Can we
conclude that the mean population length is not 6m at a level of significance
of 5%? Assume that the population is normally distributed.

Sol: n IS NoT bigger than 40, population IS normal; σ IS unknown!
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We get from the statement H0 : µ = 6, H1 : µ 6= 6, α = 0.05, n = 10,
x = 5.7, s = 0.2.

What they asked? Can we reject H0, and accept H1 at that given level of
significance? Let us see! We compute first t0 = x−6

s/
√

10
= −0.3

0.0632 = −4.7468,

and we have tα/2,n−1 = t0.025,9 = 2.262. Since t0 < −tα/2,n−1 (indeed:
−4.7468 < −2.262) we reject H0 and accept H1 with 0.05 level of
signifiance!

P-value Method: The modern approach to hypothesis testing is to use
a p-value instead of a critical region. The p-value is the probability that the
test statistic will take on a value that is at least as extreme as the observed
value of the statistic when the null hypothesis H0 is true.

Def: The p-value is the smallest level of signifiance that would lead to
rejection of the null hypothesis H0 with the given data.
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We compute the p-value as follows:

— If the test statistic is Z0 which follows a N(0,1) when H0 is true,
then the p-value of the test is:

p =


2[1− Φ(|z0|)] for a two-sided alternative,

1− Φ(z0) for a right-sided alternative,

Φ(z0) for a left-sided alternative,

— If the test statistic is T0 which follows a t distribution with ν = n− 1
degrees of freedom when H0 is true, let T be a t random variable with n−1
degrees of freedom. Then the p-value of the test is:

p =


2P (T > |t0|) for a two-sided alternative,

P (T > t0) for a right-sided alternative,

P (T < t0) for a left-sided alternative,
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Decision Rule: p < α is equivalent to the observed value falling in the
critical region. Hence, we will reject H0 if p < α.

Example 4: Answer Exp 2 using the p-value method.

Sol: Same data as in Exp 2, so take from there z0 = 0.9501. Compute
p = 1−Φ(0.9501) ∼= 1−Φ(0.95) = 1−0.828944 = 0.171056. Comparison:
since p = 0.171056 IS not < than α = 0.05, we conlcude that we fail to
reject H0 (as in the previous solution).

Example 5: Answer Exp 3 using the p-value method.

Sol: Same data as in Exp 3, so take from there t0 = −4.7468. We
compute p = 2P (T > |t0|) = 2P (T > | − 4.7468|) = 2P (T > 4.7468) =
2P (Tα,n−1 > 4.7468) = 2P (T0.05,9 > 4.7468) = 2 × 0.0005 = 0.001.
Comparison: since p = 0.001 < α = 0.05 we reject H0, as in the previous
solution!
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Type II error and Choice of Sample Size:

We will only discuss type II error and the choice of sample size for a normal
population with σ known.

Suppose that we would like to find the probability of making a type
II error (recall β) when we assume that the true mean is µ1. In other
words: H0 : µ = µ0; H1 : µ 6= µ0. Define δ = µ1 − µ0. The test statistic

Z0 = X−µ0
σ/
√
n

= X+δ−µ1
σ/
√
n

= X−µ1
σ/
√
n

+ δ
σ/
√
n

. Since the population is normal

(and the true mean is µ1) we get that X follows a N(µ1, σ
2/n), and thus

(by the old tricks) Z0 follows a N(δ
√
n
σ , 1) distribution.

How do we compute β? Recall the critical regions and so

β =P (type II error) = P (−zα/2 ≤ Z0 ≤ zα/2) = P (−zα/2 − δ
√
n
σ ≤

Z0 − δ
√
n
σ ≤ zα/2 − δ

√
n
σ ) = P (−zα/2 − δ

√
n
σ ≤ Z ≤ zα/2 − δ

√
n
σ ) =

Φ(zα/2 − δ
√
n
σ )− Φ(−zα/2 − δ

√
n
σ ), where Z is standard normal...

Catalin Rada 17



MAT2377 Probability and Statistics for Engineers Lecture 9-1,2,3; 9-5; 5-1,2,3

Example 6: Suppose that we are testing H0 : µ = 5 against H1 : µ 6= 5
at α = 5%. The population is normal with σ = 0.5. If the sample size is
n = 10, what is the probability of committing an error of type II when the
true mean is 6?

sol: β = Φ(z0.025 − (6−5)
√

10
0.5 ) − Φ(−z0.025 − (6−5)

√
10

0.5 ) = etc (use
z0.025 = 1.96)
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Sample Size:

To control the probability of error of type II, that is to obtain a particular
value of β for a given α and δ, at µ1 = µ0+δ, we can choose an appropriate
sample size:

For a two-sided alternative: We require the following sample size:

n ≈ (zα/2+zβ)2σ2

δ2 ,

For a one-sided alternative: We require the following sample size

n = (zα+zβ)2σ2

δ2 .

Example 7: Suppose that we are testing H0 : µ = 5 against H1 : µ 6= 5
at α = 5%. The population is normal with σ = 0.5. We want to design
the experiment in such way that if µ = 6, then we want the probability of
failing to reject H0 to be 2%. Determine the required sample size.
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Sol: by the definition of β we have β = 0.02. So n ≈ (zα/2+zβ)2σ2

δ2 =
(z0.01+z0.02)2(0.5)2

(6−5)2 = (2.32 + 2.055)2 × (0.5)2 = 4.7851, so we round up
n = 5.

9-5 Hypothesis testing concerning a proportion p

Suppose that we want to test the null hypothesis H0 : p = p0, where
p is an unknown population proportion. We will use a test statistic based
upon the sample proportion P̂ . (Recall that P̂ = X

n ) The test statistic (in
this case) is

Z0 = P̂−p0√
p0(1−p0)/n

, and it follows approximately a N(0, 1) distribution

when H0 is true and np0 ≥ 5 and n(1− p0) ≥ 5.

Critical Region: Let z0 be the observed value of Z0.
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(i) [Right-Sided Alternative] H1 : p > p0. The critical region is
z0 > zα.

(ii) [Left-Sided Alternative] H1 : p < p0. The critical region is
z0 < −zα.

(iii) [Two-Sided Alternative] H1 : p 6= p0. The critical region is
z0 < −zα/2 or z0 > zα/2.

Example 8: Suppose that we would like to test the hypothesis that
the proportion of defective items produced at a particular plant is p = 2%.
From n = 500 random selected items there are 8 which are defective. Do
the data suggest that p 6= .02 at α = 5%?

Sol: from the statement we see that we are dealing with a 2-sided
alternative! We have H0 : p = 0.02, H1 : p 6= 0.02, α = 0.05, so
α/2 = 0.025; n = 500, X = 8, so P̂ = X

n = 8
500. So we get z0 =
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8
500−0.02√

0.02(1−0.02)/500
= −0.004√

0.0000392
∼= −0.6388766. Recall that zα/2 = z0.025 =

1.96.

Question? Is our observed value z0 in (−∞,−1.96) or in (1.96,∞)?
NO! So the observed is not the critical region, hence we fail to reject H0.

Sample Size:

To control the probability of error of type II, that is to obtain a particular
value of β for a given α, using the same type of ideas as in the previous
lecture one can choose an appropriate sample size (where H1 : p 6= p0, and
p is the true value of the population proportion):

n =
[
zα/2
√
p0(1−p0)+zβ

√
p(1−p)

p−p0

]2

If the alternative is a one sided alternative, then n =
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zα
√
p0(1−p0)+zβ

√
p(1−p)

p−p0

]2

Exp 9: (see page 330) Assume that 500 beers are tested and 10 are
rejected. Test the hypothesis H0 : p = 0.03 against H1 : p < 0.03 at
α = 0.05.

Sol: We are interested in the proportion of rejected beers; H0 : p = 0.03,
H1 : p < 0.03 (one sided alternative); α = 0.05, p0 = 0.03. Let us compute

our point estimate as follows: z0 = P̂−p0√
p0(1−p0)/n

=
10
500−0.03√

(0.03×0.97)/500
=

−0.01
0.007629

∼= −1.31.

Question? Is z0 < −zα? OR: is −1.31 < −z0.05? OR: is −1.31 <
−1.65? NO! So we fail to reject H0; there is not enough evidence at this
level of signifiance!

Exp: 10 (regarding the previous lecture) Components are manufactured
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to have strength normally distributed with mean µ = 40 units and standard
deviation σ = 1.2 units. A modification has been tried, for which an increase
in mean strength is claimed (the standard deviation remains the same). A
random sample of n = 12 components produced using the modified process
had strength

42.5, 39.8, 40.3, 43.1, 39.6, 41.0, 39.9, 42.1, 40.7, 41.6,
42.1, 40.8,

Do the data provide strong evidence that the mean strength exceeds 40
units? (Use α = 0.05)

Sol: H0 : µ = 40, H1 : µ > 40, and the test statistics is Z0 = X̄−µ0
σ/
√
n
∼

N (0, 1) under H0. Then we have x̄ = 41.125. Then we compute the
observed value z0 = 3.248. We do have a one-sided alternative, so the
critical region is in this case: z0 > zα. Since α = 0.05, we get zα = 1.65.
Now just do the comparison: since indeed z0 = 3.248 > 1.65 = zα we
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reject H0 and accept H1.

One more Exp (11) Assume we have the following data

18.0 17.4 15.5 16.8 19.0 17.8 17.4 15.8
17.9 16.3 16.9 18.6 17.7 16.4 18.2 18.7

from N (µ, σ2) with completely unknown µ and σ2. Test H0 : µ = 16.6
against H1 : µ > 16.6. Use α = 0.05.

Sol: The easy part: H0 : µ = 16.6, H1 : µ > 16.6, α = 0.05;
n = 16. Hard part (?): we are in the case iii)/page 10. So we use

T0 = X̄−µ0
S/
√
n
∼ N (0, 1) under H0. We have x̄ = 17.4 and s2 = 1.039. The

observed value t0 of this statistics is t0 = 17.4−16.6√
1.039/

√
16

= 3.081.

Since α = 0.05 and n = 16, we get tα,n−1 = t0.05,15 = 1.753 (keep in
mind that you do have a one-sided alternative, so you should know that the
critical region is in this case:t0 > tα,n−1) We reject H0 because t0 > tα,n−1.
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Joint Probability Distributions

For discrete distributions : Refer to Section 5-1; For continuous
distributions : Refer to Section 5-2

Def: Suppose that we have two random variables X,Y defined on a
common sample space Ω, then we say that (X,Y ) is a random vector.

Discrete Joint distribution: Let X and Y be two discrete random va-
riables. The joint probability mass function of X and Y is defined as:

fXY (x, y) = P (X = x, Y = y) = P (X = x and Y = y).

The range of the random vector (X,Y ) is RXY = {(x, y) : fXY (x, y) 6=
0}. Properties of the joint distribution:

1. (non-zero probability) fXY (x, y) ≥ 0
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2. (total mass =1)
∑

(x,y)∈RXY fXY (x, y) = 1

3. (computational property) P ((X,Y ) ∈ A) =∑
(x,y)∈A∩RXY fXY (x, y).

Definition: If X and Y are discrete random variables with joint proba-
bility mass function fXY , then the marginal probability mass functions of
X and Y are respectively:

fX(x) = P (X = x) =
∑
y fXY (x, y) and fY (y) = P (Y = y) =∑

x fXY (x, y)

Independence: We will say that X and Y are independent if:

fXY (x, y) = fX(x)fY (y), for all x and y.

Example 1: Consider the following joint probability mass function:
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x y fXY (x, y)
1 1 1/4
1.5 2 1/8
1.5 3 1/4
2.5 4 1/4
3 5 1/8

Determine the following probabilities : (a) P (X < 2.5, Y < 3)

(b) P (X < 2.5), (c) P (X > 1.8, Y > 4.7)

(d) P (Y > 2|X = 1.5), (e) Find the marginal distribution of X.

(f) Compute the mean of X; (g) Are X and Y independent ?

Sol: a) P (X < 2.5, Y < 3) = P ((X,Y ) ∈ {(1, 1), (1.5, 2)}) =
fXY (1, 1) + fXY (1.5, 2) = 1/4 + 1/8 = 3/8; b) P (X < 2.5) =
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P (X < 2.5, Y any ) = P ((X,Y ) ∈ {(1, 1), (1.5, 2), (1.5, 3)}) = f(1, 1) +
f(1.5, 2) + f(1.5, 3) = 1/4 + 1/8 + 1/4 = 5/8; (c) P (X > 1.8, Y > 4.7) =
P ((X,Y ) = (3, 5)) = 1/8; (d) P (Y > 2|X = 1.5) = P (Y >2 and X=1.5)

P (X=1.5) =
P ((X,Y )=(1.5,3))∑

y f(1.5,y) = 1/4
f(1.5,2)+f(1.5,3) = 1/4

1/8+1/4 = 2/3;

e) fX(1) = P (X = 1) =
∑
y fXY (1, y) = f(1, 1) = 1/4; fX(2.5) =

P (X = 2.5) =
∑
y fXY (2.5, y) = f(2.5, 4) = 1/4; fX(3) = P (X = 3) =∑

y fXY (3, y) = f(3, 5) = 1/8; the rest is above...

f) E(X) =
∑
x xfX(x) = 1× 1

4 + (1.5)× 3
8 + (2.5)× 1

4 + 3× 1
8 = . . .

g) Note that fY (1) = P (Y = 1) = P ((X,Y ) = (1, 1)) = fXY (1, 1) =
1/4, and so fXxfY y = 1

4×
1
4 6= 1/4 = fXY (1, 1), therefore not independent!

Continuous Joint distribution: Let X and Y be two continuous
random variables. To specify the probabilities associated with the random
vector (X,Y ) we can define a probability density function fXY such that:
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P [(X,Y ) ∈ R] =
∫ ∫

R
fXY (x, y)dxdy, where R is just a subset: R ⊆

R2 = {(x, y) : x ∈ R and y ∈ R}.

Properties of the joint distribution:

1. (non-zero density) fXY (x, y) ≥ 0;

2. (total mass =1)
∫ +∞
−∞

∫ +∞
−∞ fXY (x, y) = 1;

3. (computational property) P [(X,Y ) ∈ R] =
∫ ∫

R
fXY (x, y)dxdy.

Definition: If X and Y are continuous random variables with joint
probability density function fXY , then the marginal probability density
functions of X and Y are respectively:

fX(x) =
∫
y
fXY (x, y)dy and fY (y) =

∫
x
fXY (x, y)dx.

Independence: We will say that X and Y are independent if:
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fXY (x, y) = fX(x)fY (y), for all x and y.

Example 3: Consider the joint probability density function

fXY (x, y) = cxy, 0 < x < 1, x < y < x+ 2.

(a) Determine the value of the constant c.

(b) Determine P (Y −X > 1).

(c) Determine the marginal probability density functions fX and fY .

Sol: at the blackboard: for a) integral is 1, so c = 3/5; for b) do a

picture; c) fX(x) =
∫ x+2

x
fXY (x, y)dy and the more complicated part is:

fY (y) =


∫ y

0
3
5xydx if y ∈ (0, 1],∫ 1

0
3
5xydx if y ∈ (1, 2],∫ 1

y−2
3
5xydx if y ∈ (2, 3).
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Finish the computations! One may integrate both marginal p.d.f.s and one
gets 1 in both cases (as we expected!). Always draw a picture when not
sure about the subets of R2. For a): changing the order of integration
implies that the limits of integration (the boundaries) are changing!
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5-3 Covariance and Correlation

Goal: Try to describe the relationship between Y and X.

A common measure of the relationship between two random variables is
the covariance. Before we can define the covariance we need to define the
expectation of a function of two random variables.

Definition: Let X and Y be two random variables. The expectation of
h(X,Y ) is defined by:

E[h(X,Y )] =
∑ ∑

h(x, y)fXY (x, y), if the rvs X, Y are discrete;

E[h(X,Y )] =
∫ ∫

h(x, y)fXY (x, y)dxdy, if the rvs X, Y are
continuous.
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Interpretation: E[h(X,Y )] is the average value of h(X,Y ) that is ex-
pected in a long sequence of repeated trials of the random experiment.

Example 1: Let X and Y be two discrete random variables. Show that
E[aX + bY ] = aE[X] + bE[Y ]. (the same holds for continuous rvs, just
replace in the proof sum by integral)

sol: at the blackboard

Example 2: Let X and Y be two random variables. Show that
V [X + Y ] = V [X] + V [Y ] + 2E[(X − µX)(Y − µY )].

Remark : The quantity in the last term will be used as a measure of the
linear relationship between X and Y .

Sol: at blackboard.

Definition: The covariance between the random variables X and Y is
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σXY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY .

Example 3: Consider the following joint distribution:

x y fXY (x, y)
1 1 1/4
1.5 2 1/8
1.5 3 1/4
2.5 4 1/4
3 5 1/8

Find the covariance between X and Y .

Sol: Using f) from the previous table we get µX = 29/16. From g) we
know already fY (1) = 1/4. Similarly one gets: fY (2) = 1/8, fY (3) = 1/4,
fY (4) = 1/4, fY (5) = 1/8. Hence µY = 1×1

4+2×1
8+3×1

4+4×1
4+5×1

8 =
23/8.
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Looking at the table one gets: E(XY ) = 1×1× 1
4 + 1.5×2× 1

8 + 1.5×
3× 1

4 + 2.5× 4× 1
4 + 3× 5× 1

8 = 6.125.

So, the covariance between X and Y is 6.125 − 29/16 × 23/8 =
6.125− 5.210 = 0.915.

Remark: In practice, we often use a unit-less version of the covariance
which is called the correlation coeficient. It is easier to interpret it since it
can be shown to fall between −1 and 1.

Definition: The correlation coeficient between X and Y is ρXY =
σXY
σXσX

, where σX and σY are respectively the standard deviation for X and
Y .

Properties of the correlation coeficient:

1. −1 ≤ ρ ≤ 1,
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2. If the points taken by (X,Y ) fall exactly on a line, then ρXY = 1 or
ρXY = −1. The sign will be positive if the slope is positive and negative if
the slope is negative.

3. If X and Y are independent, then ρXY = σXY = 0.

Note: However, ρXY = σXY = 0, does not necessarily imply the
independence of X and Y .

Remarks: — If X and Y have a non-zero correlation, then we say that
they are correlated and thus not dependent ;

— If X and Y have a zero correlation, then we say that they are
uncorrelated. However, we cannot say anything about independence.

Example 4: (a) Find the correlation coeficient between X and Y from
example 3;
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(b) Are X and Y independent ?

Sol: a) We have σX =
√
V ar(X) =

√
E(X − µX)2 =√∑

x x
2fX(x)− µ2

X =
√

12 × 1
4 + (1.5)2 × 3

8 + (2.5)2 × 1
4 + 32 × 1

8 − (29
16)2

by pages 29 and 35. So σX = 0.7043.

We have σY =
√
V ar(Y ) =

√
E(Y − µY )2 =

√∑
y y

2fY (y)− µ2
Y =√

12 × 1
4 + (2)2 × 1

8 + (3)2 × 1
4 + 42 × 1

4 + 52 × 1
8 − (23

8 )2 by page 35. So

σY = 1.3636.

Hence (by page ): ρXY = σXY
σXσX

= 0.915
0.7043×1.3636 = 0.95275 6= 0, thus

not independent, i.e., dependent, i.e., X and Y are correlated!

Example 5: Consider the joint distribution:
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x -1 0 0 1
y 0 -1 1 0

fXY (x, y) 1/4 1/4 1/4 1/4

Show that the correlation coeficient between X and Y is zero, but X
and Y are not independent.

Sol: Since ρXY = σXY
σXσX

, we compute σXY = E(XY ) − µXµY as

follows: E(XY ) =
∑
x,y xyfXY (x, y) = (−1) × 0 × 1

4 + (0) × −1 × 1
4 +

(0) × 1 × 1
4 + (1) × 0 × 1

4 = 0 (wow), then E(X) =
∑
x,y xfXY (x, y) =

(−1)× 1
4 +(0)× 1

4 +(0)× 1
4 +(1)× 1

4 = 0, and E(Y ) =
∑
x,y yfXY (x, y) =

(0) × 1
4 + (−1) × 1

4 + (1) × 1
4 + (0) × 1

4 = 0. We get that σXY =
E(XY )− µXµY = 0, so ρXY = 0.

For the second part note that fX(−1) =
∑
y fXY (−1, y) = f(−1, 0) =

1/4 and that fY (0) =
∑
x fXY (x, 0) = f(−1, 0) + f(1, 0) = 1

4 + 1
4 = 1/2.
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Since fX(−1)fY (0) = 1
4×

1
2 6= 1/4 = fXY (−1, 0) we get that X and Y are

not independent.
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