
MAT 2377 (Summer 2009) - June 23, 2009
Introduction to Simple Linear Regression

Sections 11.1-11.3

§11 Simple Linear Regression

§11.1-11.2 Regression Model

Introduction: We would like to analyze the relationship between two variables.
Regression is the study of the relationship between a dependent variable Y and
an independent variable X.

Example 0: In a chemical process the amount of the product is related to
the process-operating temperature. Regression analysis can be used to predict
the amount at a given temperature level!

Terminology:
Y which is the dependent variable is also called the response variable and
X which is the independent variable will be called a predictor variable.

Example 1: The following are measurements of the air velocity and evapo-
ration coefficient of burning fuel in an impulse engine:

evaporation evaporation
air velocity coefficient air velocity coefficient
cm/sec mm2/sec cm/sec mm2/sec

x y x y
20 0.18 220 0.75
60 0.37 220 0.75

100 0.35 260 1.18
140 0.78 300 1.36
180 0.56 340 1.17

380 1.65
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Here is a scatter diagram of y versus x.

Question: Does there appear to be a linear trend?
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We will suppose that there exists a linear statistical relationship between the
response Y and the predictor X. We can represent such a relationship with a
simple linear regression model.

Simple Linear Regression Model is

Y = β0 + β1 x+ ε,

where β0 and β1 are unknown constants (or: regression coefficients), x is a value
taken by the predictor X and ε is random error.

We will assume that ε is a random variable with mean 0 and variance σ2. That
is,

E(ε) = 0 and V (ε) = σ2

Interpretation of the model:

Given a value x of the predictor variable X, Y is a random variable with
mean

µY |x = E[Y |x] = β0 + β1 x.

Terminology:
µY |x = β0 + β1 x

is called the regression line with intercept β0 and slope β1. So, it is a line of
mean values!

Variation: Given a value x of the predictor, the variance of Y is

V (Y |x) = V (ε) = σ2. (WHY ?)

Note: σ2 is called the variance of the random error.
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Terminology: β0, β1 and σ2 are called parameters of the simple linear re-
gression model.

In many real-life problems β0, β1, σ
2 are NOT known, so we

must estimate them from sample data!
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Estimation of the parameters:

Sample : We select a random sample of n paired observations:

(x1, y1), (x2, y2), . . . , (xn, yn).

Assuming that the simple linear regression is appropriate, then we can express
the observations as follows:

yi = β0 + β1 xi + εi, i = 1, 2, . . . , n,

where εi represents the ith error (or deviation from the regression line).

We would like to find the line that “best” fits the data. We will use the sum of
the squared deviations from the line, that is

L =
n∑
i=1

ε2i =
n∑
i=1

[yi − (β0 + β1 xi)]
2 ,

as a measure of distance from the line.
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Least-Squares Estimation: This method of estimation consists of mini-
mizing L with respect to β0 and β1, by solving

∂L

∂β0

∣∣∣∣
β̂0,β̂1

= 0 and
∂L

∂β1

∣∣∣∣
β̂0,β̂1

= 0.

Simplifying these two equations give a system of linear equations called the
normal equations:

n β̂0 + β̂1

n∑
i=1

xi =
n∑
i=1

yi

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

yi xi

The solutions of the normal equations are called the least-squares estimates.

The least-squares estimate of the slope and intercept are (respectively)

β̂1 =
Sxy
Sxx

and β̂0 = y − β̂1 x,

and so the fitted or estimated regression line is

ŷ = β̂0 + β̂1 x.

Notation :

x =
n∑
i=1

xi
n

and y =
n∑
i=1

yi
n

Sxx =
n∑
i=1

(xi − x)2 =

(
n∑
i=1

x2
i

)
− nx2 =

(
n∑
i=1

x2
i

)
− (
∑n

i=1 xi)
2

n

Sxy =
n∑
i=1

yi (xi − x) =
n∑
i=1

(yi − ȳ) (xi − x) =

(
n∑
i=1

xi yi

)
− nx y =

=

(
n∑
i=1

xi yi

)
− (
∑n

i=1 xi) (
∑n

i=1 yi)

n
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Example 2: Consider the data from Example 1. The n = 11 observations
yielded∑
xi = 2000,

∑
yi = 8.35,∑

x2
i = 532, 000.0,

∑
y2
i = 9.1097, and∑

xi yi = 2175.4.

Suppose that the simple linear regression model is appropriate.

a) Determine the estimated regression line.

b) Estimate the mean evaporation coefficient when the air velocity is x = 140.
Sol: a) since ŷ = β̂0 + β̂1 x, we compute first β1 = Sxy

Sxx
as follows:

Sxy = (
∑11

i=1 xiyi) − nx̄ȳ = 2175.4 − 11 × 2000
11

8.35
11

= 2175.4 − 1518.18 =
657.22;

Sxx = (
∑11

i=1 x
2
i )−nx̄2 = 532000.0−11×(2000

11
)2 = 532000.0−363636.36 =

168363.64.
Hence β̂1 = 657.22

168363.64
= 0.0039(∼= 0.004). To get the other parameter we

compute:
β̂0 = y − β̂1 x = 8.35

11
− 0.0039× 2000

11
= 0.05. We get ŷ = 0.05 + 0.0039x.

b) Just plug in x = 140 (see page 3 Interpretation of the model) and get
ŷ = 0.05+0.0039×140 = 0.596. SEE THE PICTURE on page 2 and compare!!

NOTE: These ESTIMATES are subject to error!
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Estimating the variance of the random error.

Let (xi, yi) be the ith pair of observed values in the sample.

We denote the evaluation of the estimated regression line at x = xi, as

ŷi = β̂0 + β̂1 xi.

Note: ŷi is called the ith fitted value.

The difference between yi and ŷi is called the ith residual.

Notation:
ei = yi − ŷi.

Consider the sum of the squared residuals, that is

SSE =
n∑
i=1

ei
2 =

n∑
i=1

(yi − ŷi)2,

which is often called the error sum of squares.

It can be shown that E(SSE) = (n− 2)σ2, which implies that

σ̂2 =
SSE
n− 2

is unbiased for estimating σ2.

Note: It is not necessary to compute each residual since there exist an
alternate computational formula for SSE.
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Computational formula for SSE :

SSE = SST − β̂1 Sxy.

where

SST = Syy =
n∑
i=1

(yi − y)2 =

(
n∑
i=1

y2
i

)
− n y2 =

(
n∑
i=1

y2
i

)
− (
∑n

i=1 yi)
2

n
.

Remark: We sometimes call SSy the total variation, since it measures the
variation among the responses y1, . . . , yn.

§11.3 Properties of the least-squares estimators:
When the values of x are fixed, β̂0 and β̂1 depend on the observed y’s.
The least-squares estimators for the slope and the intercept are respectively

β̂1 =
1

Sxx

n∑
i=1

(xi − x)Yi and β̂0 = Y − β̂1 x.

Remark: Both estimators are linear combinations of the independent random
variables

Y1, . . . , Yn.

Thus, we can compute their expectation and variation.

Expectation:
E[β̂1] = β1 and E[β̂0] = β0

Variance:

V [β̂1] =
σ2

Sxx
and V [β̂0] = σ2

[
1

n
+

x2

Sxx

]
.
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Remarks:

• The estimators β̂1 and β̂0 are unbiased estimators of β1 and β0, respectively.

• The standard deviation of the estimator (that we call standard error) allows
us to measure the error in estimation:

σβ̂1
=

√
V [β̂1] =

√
σ2

Sxx

and

σβ̂0
=

√
V [β̂0] =

√
σ2

[
1

n
+

x2

Sxx

]
.

• Since we do not know the true value of σ2, we can estimate it with

σ̂2 =
SSE
n− 2

.

Estimated standard errors:

σ̂β̂1
=

√
σ̂2

Sxx
.

σ̂β̂0
=

√
σ̂2

[
1

n
+

x2

Sxx

]
.

Recall:

σ̂2 =
SSE
n− 2

=
Syy − β̂1 Sxy

n− 2
.
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Exemple 3: Refer to Example 1 and Example 2.

(a) Compute the 2nd residual.
Recall: x2 = 60 and y2 = 0.37.

(b) Give a point estimate for σ2.

(c) Give the estimated standard error for the estimation of the intercept and
also for the estimation of the slope.

Sol: a) The 2nd residual is e2 = y2−ŷ2 = 0.37−(0.05+0.0039×60) = 0.086;

b) We compute: σ̂2 = SSE

n−2
= SSE

11−2
= Syy−β̂1Sxy

9
=

(
∑11

i=1 y
2
i )−ny2−β̂1Sxy

9
=

=
9.1097−11× 8.352

112
−0.0039×657.22

9
= 0.0231; (see page 7 for the partial computa-

tions you need in this example!)

c) We compute: i) σ̂β̂1
=
√

σ̂2

Sxx
=
√

0.0231
168363.64

= 0.000370,

ii) σ̂β̂0
=

√
σ̂2
[

1
n

+ x2

Sxx

]
=

√
(0.0231)

[
1
11

+ 0.1963
]
∼= 0.081453.

Do 11-2 on page 399.
a) So they are asking for ŷ. We have

i) β̂1 =

∑
xiyi − (

∑
xi)(

∑
i yi)

n

(
∑

i x
2
i )−

(
∑

i xi)2

n

=

=
1083.67− (1478)(12.75)

20

(143215.8)− (1478)2

20

= 0.00416

ii) β̂0 = y − β̂1x = 12.75
20
− 0.00416× 1478

20
= 0.32999, so ŷ = β̂0 + β̂1x =

0.32999 + 0.00416x.
Note that Sxy =

∑
i xiyi −

(
∑

i xi)(
∑

i yi)

n
= 1083.67− 1478×12.75

20
= 141.445.

Moreover, σ̂2 = SSE

n−2
=

(
∑

i y
2
i )− (

∑
i yi)

2

20
−β̂1Sxy

18
=

8.86− 12.752

20
−0.00416×141.445

18
=

8.86−8.128125−0.5884112
18

= 0.00797, and do the graph....
b) ŷ = 0.32999 + 0.00416× 85 = 0.6836;
c) ŷ = 0.32999 + 0.00416× 90 = 0.7044;

d) THE SLOPE (think about the derivative...) is β̂1 = 0.00416. In other

words: do you remember the approximation: f(x+1)−f(x)
x+1−x

∼= f ′(x)? What is the
derivative of a linear function? The slope!
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