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Point estimation

Statistical inference consists of methods used to make conclusions about
a population based on a random sample. What is a random sample?

DEF: The rv X1, X2, . . . , Xn is called a random sample if the
X1, X2, . . . , Xn are independent rv, AND each Xi has the same p.d.f.
Terminology: independent and identically distributed (i.i.d.)

In particular, we want to estimate an unknown parameter, say θ, using
a single number called point estimate. Examples of such parameters are:

— the mean µ of a population;

— the variance σ2 of a population;

Catalin Rada 1



MAT2377 Probability and Statistics for Engineers Lecture Covering 7-1; 7-2; 7-3

— the proportion p of items in a population that belong a certain class
of interest.

This point estimate is obtained using a statistic, which is simply a
function of a random sample (Θ̂ = h(X1, . . . , Xn)). An example: Suppose
that from a population we selected a random sample X1, X2, X3, X4. Then
a statistic is h(X1, X2, X3, X4) = X2+X3

67 .

Any statistic is a rv! The observed value of the rv Θ̂ is θ̂ =
h(x1, x2, . . . , xn) and it is called a point estimate. (The statistic Θ̂ is
called point estimator.)

The probability distribution of a statistics is called a sampling
distribution.

Example: If we want to estimate parameter µ (the population mean), we

may take sample X1, . . . , Xn and compute a statistic X = X1+X2+···+Xn
n .
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— X is a point estimator of the mean µ of population;

— the observed value of X (denoted by x) is a point estimate of µ.

NOTE: If we consider another random sample, we may get different
values for X1, X2, . . . , Xn, and X may change from sample to sample!

EXP: Given the following numbers (representing the life time of CDs
exposed to gas): 4, 87, 134, 45, 59 find a point estimate of the mean
of lifetime of CDs exposed to gas! SOL: We just need to compute
x = 4+87+134+45+59

5 = 65.8.

Another statistic: sample variance is given by S2 =
∑n
i=1(Xi−X)2

n−1 =
(
∑n
i=1X

2
i )−nX2

n−1 .

— S2 is a point estimator of the variance σ2 of population;
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— the observed value of S2 (denoted by s2) is a point estimate of σ2.

One more statistic: the sample proportion P̂ = X
n , where X is the

number of items in the sample X1, X2, . . . , Xn that belong to a certain
class of interest.

— P̂ = X
n is a point estimator of the proportion p of items in population

that belong a certain class of interest;

— the observed value of xn (denoted by p̂) is a point estimate of p.
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Central Limit Theorem

If X1, X2, . . . , Xn is a random sample of size n taken from a population
with mean µ and finite variance σ2 let X be the sample mean. Then the

limiting form of the distribution of the rv Zn = X−µ
σ√
n

, as n → ∞ is the

standard normal distribution.

In other words: limn→∞FZn(x) = Φ(x). For us n > 30 it is sufficiently
large!!! So we can apply the theorem (it is an approximation theorem).

Applications: 1 The records of the Ministry of Health from planet
MathematiX show that the mean of medical expenses of a student during
2089 is 5000 dollars, and the standard deviation is 800 dollars. Compute
the probability that the mean of medical expenses of 64 students picked at
random is:
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i) more than 4820 dollars; ii) between 4800 and 5120 dolars.

Sol: i) So µ = 5000, σ = 800, n = 64 > 30. We need to
compute P (X > 4820). By the CLT we get: P (X > 4820) =
P (X−µσ√

64

> 4820−5000
800√

64

) = P (Z > −1.8) = 1−P (Z ≤ −1.8)∼=1−Φ(−1.8) =

1− 0.035930 = 0.96407;

ii) We need to compute P (4800 < X < 5120) = P (4800−5000
800√

64

<

X−5000
800√

64

< 5120−5000
800√

64

) = P (−2 < Z < 1.2)∼=Φ(1.2)− Φ(−2) = 0.884930−
0.022750 = 0.86218.

2 Suppose that the amount of time a student spends watching soccer is a
random variable with mean 8.2 minutes and standard deviation 1.5 minutes.
Assume a random sample of n = 49 students is observed. Compute the
probability that the average time of soccer watching for these students is:
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a) less than 10 minutes; b) between 5 and 10 minutes; c) less than 6
minutes.

Sol: a) The mean is 8.2, the standard deviation is 1.5, and n = 49 > 30.

So again CLT! We compute P (X < 10) = P (X−µ1.5√
49

< 10−8.2
1.5√
49

) = P (Z <

1.8
0.2143) = P (Z < 8.4) = Φ(8.4) = 1 (look in the tables, 8.4 is not there...)

b) We need to compute P (5 < X < 10) = P (5−8.2
σ√
49

< X−8.2
σ√
49

< 10−8.2
σ√
49

) =

P ( −3.2
0.2143 < Z < 1.8

0.2143)∼=Φ(8.4)−Φ(−14.93) = 1−0 (again -14.93 is not in

the table!); c) We need P (X < 6) = P (X−µ1.5√
49

< 6−8.2
1.5√
49

) = P (Z < −2.2
0.2143) =

P (Z < −10.26598)∼=Φ(−10.26598) = 0.

Question: What if we have 2 independent populations? Say that the
mean of the first population is µ1, and the variance of the first population is
σ2

1, and say that the mean of the second population is µ2, and the variance
of the second population is σ2

2. Pick a random sample (of size n1) from the
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first population, and pick a random sample (of size n2) from the second
population.

Then X1 and X2 follow normal distributions (by CLT!). So, the
distribution of X1 −X2 is approximately normal with mean and variance:

µX1−X2
= µX1

− µX2
= µ1 − µ2;

σ2
X1−X2

= σ2
X1

+ σ2
X2

= σ2
1
n1

+ σ2
2
n2

. In other words: X1−X2−(µ1−µ2)√
σ2

1
n1

+
σ2

2
n2

is

approximately standard normal (if the conditions in CLT apply, i.e., n1 and
n2 are greater than 30) In the case the 2 populations are normal, then Z is
exactly standard normal! (of course: as we have seen — if the 2 populations
are normal, then X1 and X2 are normal)

EXC: Suppose that the amount of time a boy spends watching soccer is
normaly distributed with mean 5000 hours and with standard deviation 40
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hours. Suppose that the amount of time a girl spends watching soccer is
normaly distributed with mean 5050 hours and with standard deviation 30
hours. Let X1 be the average of time spent by 20 boys watching soccer,
Let X2 be the average of time spent by 15 girls watching soccer. Compute
P (X1 −X2 < −10).

Sol: P (X1 − X2 < −10) = P (X1−X2−(µ1−µ2)√
402
20 +302

15

) < −10−(µ1−µ2)√
402
20 +302

15

) =

P (Z < 40√
140

) = P (Z < 3.38) = 0.999638.
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Bias of an Estimator

The point estimator Θ̂ of θ is unbiased if

E[Θ̂] = θ.

The bias is E[Θ̂]− θ. When the estimator is unbiased, the bias is zero.

Example: A sample mean X is an unbiased estimator of the population

mean µ, since E[X] = µ.

EXC/Example: Show that the sample variance S2 =
∑n
i=1(Xi−X)2

n−1 =

(
∑n
i=1X

2
i )−nX2

n−1 is an unbiased estimator of the variance of population σ2.
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Sol: E(S2) = E((
∑n
i=1X

2
i )−nX2

n−1 ) = 1
n−1{

∑n
i=1E(X2

i ) − nE(X
2
)} =

1
n−1{n(σ2 + µ2)− n(µ2 + σ2/n)} = σ2.
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Variance of an estimator and standard error
Example: If data X1, . . . , Xn come from a population with unknown

mean µ and known variance σ2, then Var(X) = σ2/n. Thus

Standard error : σX =
σ√
n
.

If the variance is unknown σ2, then

Estimated Standard error : σ̂X =
S√
n
,

where S2 is sample variance:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.
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The mean squared error

MSE(Θ̂) = E(Θ̂− θ)2.

We have

E(Θ̂− θ)2 = E(Θ̂− E(Θ̂))2 + (θ − E(Θ̂))2

= Var(Θ̂) + (bias)2.

The mean squared error is an important tool to check, which estimator
is more efficient. If MSE(Θ̂1) and MSE(Θ̂2) are mean squared errors of
estimators Θ̂1 and Θ̂2 (of the same parameter θ), then the relative efficiency
is

MSE(Θ̂1)
MSE(Θ̂2)

.
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If this is less than 1, we can conclude that Θ̂1 is more efficient. In particular,
if we consider unbiased estimators only, computing the relative frequency
is equivalent to comparison of variances. WHAT ESTIMATOR IS MORE
EFFECTIVE?

Typically, there are many unbiased estimators. If we have two
unbiased estimators, we choose the one with a smaller variance. WHAT
ESTIMATOR IS BETTER? DEF: If we consider all unbiased estimators
of a parameter θ, the one with the smallest variance is called MINIMUM
VARIANCE UNBIASED ESTIMATOR (MVUE). As an example: if the rv
X1, X2, . . . , Xn form a random sample of size n from normal distribution
(mean µ and variance σ2), then X is the MVUE for µ.

EXC: 7-15; 7-16 (answer: Θ̂2); 7-17 (try it home) PLAN: 1)
DECIDE WHAT ARE THE BIASED ESTIMATORS AND WHAT ARE THE
UNBIASED ESTIMATORS; 2) COMPUTE THE BIAS (IF APPLICABLE);
3) FOR UNBIASEDNESS: CHOOSE THE UNBIASED ESTIMATOR WITH
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THE SMALLEST VARIANCE — SO YOU’LL GET the better ESTIMATOR;
4) COMPUTE Relative Efficiencies AND THEN DECIDE THEN WHICH
ONE IS THE MOST EFFICIENT (among all of them)!

EXC 15. a) E(Θ̂1) = E(X) = 1
7E(X1 + · · · + X7) = 1

7{E(X1) +
· · · + E(X7)} = 1

7{µ + · · · + µ} = µ, so Θ̂1 is unbiased. Now we

have E(Θ̂2) = E(2X1−X6+X4
2 ) = E(X1 − (1/2)X6 + (1/2)X4) = 1 × µ +

(−1/2)×µ+(1/2)×µ = µ, so Θ̂2 is unbiased. b) We just need to compute
the variances (since bias = 0 for both of them): V ar(Θ̂1) = V ar(X) =
V ar(1

7X1 + · · ·+ 1
7X7) = (1

7)2×σ2 + · · ·+(1
7)2×σ2 = 7

72×σ2 = σ2

7 . For the

other estimator we do have: V ar(Θ̂2) = V ar(X1+(−1/2)X6+(1/2)X4) =
12×σ2+(−1/2)2×σ2+(1/2)2×σ2 = σ2{1+ 1

4 + 1
4} = σ23

2. Since σ23
2 >

σ2

7

we decide that Θ̂1 is a better estimator!

EXC 16. Since 4 < 10 we say Θ̂2 is better than Θ̂1. We use only
the variance when the estimators are unbiased (see the Plan)! Of course
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MSE(Θ̂1)

MSE(Θ̂2)
= 10

4 = 2.5 > 1.

EXC 17. Since Θ̂2 is biased and Θ̂1 is unbiased we use the relative

efficiency. So we compute MSE(Θ̂1)

MSE(Θ̂2)
= Var(Θ̂1)+(bias)2

Var(Θ̂2)+(bias)2 = Var(Θ̂1)+0

Var(Θ̂2)+(bias)2 =
10

4+(bias)2, where (bias)2 = (θ2 − θ)
2 = θ2

4 ; hence MSE(Θ̂1)

MSE(Θ̂2)
= 10

4+θ2
4

. This

fraction is ≤ 1 if and only if θ ∈ (−∞,−
√

24] ∪ [
√

24,∞). So, in this
case Θ̂1 is more effective! Of course if θ ∈ (−

√
24,
√

24), then Θ̂2 is more
effective!
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