MAT2377

Catalin Rada

Version 2009/07/14

Catalin Rada

7 Point Estimation

Definitions

- Random Sample
- Statistic
- Point estimator and point estimation
- We discussed the point estimation of a population mean, population variance and standard deviation and also a population proportion.
- Unbiased estimator

- Variance of an estimator
- Standard error of the estimate.
- Mean Squared error of an estimate: $MSE(\hat{\Theta}) = E(\hat{\Theta} \theta)^2$

8 Confidence Intervals

8-1 Definitions

- confidence interval
- confidence level
- upper confidence limit and lower confidence limit
- precision of the estimate (the length of C.I.)

```
8-2 CI for \mu when \sigma^2 is known
```

- We suppose that the population is normal or that $n \ge 30$.
- C.I. for μ at a $100(1-\alpha)\%$ confidence level is $\bar{x} \pm z_{\alpha/2}\sigma/\sqrt{n}$
- If σ is unknown and $n \ge 40$, then we can use the following large sample approximation: C.I. for μ at a $100(1-\alpha)\%$ confidence level: $\bar{x} \pm z_{\alpha/2} s / \sqrt{n}$, where s is the sample standard deviation.
- For one-sided Confidence Intervals we can obtain a $100(1-\alpha)\%$ lower confidence bound for μ as follows: $\mu \ge z_{\alpha}\sigma/\sqrt{n}$, or a $100(1-\alpha)\%$ upper confidence bound for μ as follows: $\mu \le z_{\alpha}\sigma/\sqrt{n}$;
- The required sample size n such that \overline{X} is less than E units from μ , i.e. $|\overline{X} \mu| \leq E$, with with probability $(1 \alpha)\%$ is $n \geq (\frac{z_{\alpha/2}\sigma}{E})^2$

8-3 C.I. for μ when σ^2 is unknown

- normal population;
- C.I. for μ at a $100(1-\alpha)\%$ level of confidence: $\bar{x} \pm t_{\alpha/2,n-1}s/\sqrt{n}$, where s is the sample standard deviation

8-4 Confidence interval for the variance

The $100(1-\alpha)\%$ C.I. for σ^2 is given by: $\left[\frac{(n-1_s^2)}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1_s^2)}{\chi^2_{1-\alpha/2,n-1}}\right]$. For σ pass to radicals, and for 1-sided bounds go from $\alpha/2$ to α .

9 Hypothesis Testing

9-1 Definitions

- null hypothesis, alternative hypothesis
- test statistics
- critical region
- type I error
- level of significance $\alpha = P(reject \ H_0 \ when \ H_0 \ is \ true) = P(type \ I \ error)$

MAT2377 Probability and Statistics for Engineers Lecture : some important facts from the second part of the semester

- Type II error: $\beta(\theta_1) = P(not \ rejecting \ H_0, \ when \ \theta = \theta_1) = P(type \ II \ error \ when \ \theta = \theta_1)$
- Right-sided, left-sided, two sided tests
- *p*-value is *P* = probability of observing a value as or more extreme as the current observed value of the test statistic in favour of the alternative assuming that the null hypothesis is true.

9-2 Inference concerning μ when σ^2 is known Recall:

- Z_0 , normal or $n \ge 30$
- critical region, the $p\text{-value},\ \alpha,\ \beta$

9-3 Inference concerning μ when σ^2 is unknown

MAT2377 Probability and Statistics for Engineers

Lecture : some important facts from the second part of the semester

- population is normal
- T_0 , see above

9-5 Inference concerning \boldsymbol{p}

- Z_0 that depends on \hat{P} and p_0
- the critical region

5 Joint Distributions

5-1 Discrete Random Variables

- \bullet joint p.m.f. for X and Y
- marginal p.m.f. of X and marginal p.m.f. of Y
- independence of X and Y, expectation...

5-2 Continuous Random Variables

• joint p.d.f. for X and Y

MAT2377 Probability and Statistics for Engineers Lecture : some important facts from the second part of the semester

- \bullet marginal p.d.f. of X and marginal p.d.f. of Y
- independence of X and Y,

5-3 Covariance and Correlation

- expectation of a function of a random vector, i.e. E[h(X, Y)]
- covariance between X and $Y = \sigma_{XY}$
- correlation coefficient between X and $Y = \rho_{XY}$

11 Regression

The simple linear regression model: $Y = \beta_0 + \beta_1 x + \epsilon$. We assume that $E[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$. Hence, $\mu_{Y|x} = E[Y|x] = \beta_0 + \beta_1 x$ and $Var(Y|x) = \sigma^2$.

- The point estimates: \hat{eta}_0 , \hat{eta}_1 and $\hat{\sigma}^2$
- estimated standard errors of the estimates
- the estimated regression line

INFERENCE 11.4.1, 11.5, 11.6, 11.8

MAT2377 Probability and Statistics for Engineers Lecture : some important facts from the second part of the semester

• hypothesis testing concerning β_0 and β_1 :

— test statistics;

— critical region;

— significance of the Regression (i.e., test for β_1 and 0)

- C.I. for β_0 and β_1
- C.I. for the mean response $\mu_{Y|x_0}$ at a given $x = x_0$
- prediction interval for Y_0 at $X = x_0$
- Correlation: the sample correlation R and testing that the population correlation coefficient $\rho = 0$, i.e. $H_0: \rho = 0$ against $H_1: \rho \neq 0$.

Catalin Rada

16 Statistical Quality Control

- out of control, in statistical control
- control charts for \overline{X} from R and S, including $\hat{\sigma}$
- Control Chart for S, R
- \bullet Cummulative Sum Control Chart: the condition for Warning of instability, $K,\ H$