MATH 2377, SUMMER 2009
 ASSIGNMENT 6

Q1; 5 points. Assume $n=5$, and consider the following data associated to a simple linear regression model:

x	y
-2	0
-1	0
0	1
1	1
2	3

a) Compute the values $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$;
b) If σ^{2} is the variance of the random error, compute the variances of the estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$;
c) Compute an estimation for σ.

Solution: a) Note that $n=5, \sum_{i=1}^{5} x_{i}=0, \sum_{i=1}^{5} y_{i}=5 ; \sum_{i=1}^{5} x_{i} y_{i}=7, \sum_{i=1}^{5} x_{i}^{2}=10$, then one may obtain $\bar{x}=0$ and $\bar{y}=1$. So we may compute the following point estimates: $\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{7-5 \times 0 \times 1}{10-5 \times 0^{2}}=7 / 10=0.7$ and $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \times \bar{x}=1$.
b) So we need $\operatorname{Var}\left(\hat{\beta}_{0}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{1}\right)$. We do have the following computations: $\operatorname{Var}\left(\hat{\beta}_{1}\right)=$ $\frac{\sigma^{2}}{S_{x x}}=\frac{\sigma^{2}}{10}$ by a). Note that $\operatorname{Var}\left(\hat{\beta}_{0}\right)=\left(\sigma^{2}\right) \times\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right]=\left(\sigma^{2}\right) \times\left\{\frac{1}{5}+0\right\}=\frac{\sigma^{2}}{5}$.
c) Note that $\hat{\sigma}^{2}=\frac{S S_{E}}{n-2}=\frac{S S_{E}}{3}=\frac{S_{y y}-\hat{\beta}_{1} \times S_{x y}}{3}=\frac{\left(\sum y_{i}^{2}-n \bar{y}^{2}\right)-(0.7) \times 7}{3}=\frac{\left(11-5 \times 1^{2}\right)-0.7 \times 7}{3}=$ 0.366666666 , hence an estimation for σ is 0.60553007 .

Marking scheme: a) 1 point for $\hat{\beta}_{1}$, and 1 point for $\hat{\beta}_{0} ;$ b) 1 point for each variance; c) 1 point.
Q2; 3 points. Do problem 11-22: for part a) test only for signifiance; b) estimate the standard errors of the slope and intercept.
a) We have $H_{0}: \beta_{1}=0, H_{1}: \beta_{1} \neq 0$. We compute the observed value as follows: $t_{0}=\frac{\hat{\beta}_{1}-0}{\sqrt{\hat{\sigma}^{2} / S_{x x}}}=\frac{0.00416}{\sqrt{\frac{0.0797}{143215.8-(1478)^{2} / 20}}}=\frac{0.00416}{0.000484755}=8.58165465$, and w eget that $t_{\alpha / 2, n-2}=$ $t_{0.025,18}=2.101$. Since $t_{0}>t_{0.025,18}$ we reject H_{0} and acept H_{1}. We used data/results from lecture on June 23, 2009, page 11.
b) Note that $\sqrt{\hat{\sigma}^{2} / S_{x x}}$ has already appeared above in a), and we get that it equals to $\sqrt{\frac{0.00797}{33916.6}}=0.000484755$. Note that the other estimated standard error is given by $\sqrt{\hat{\sigma}^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right]}=\sqrt{0.00797\left[\frac{1}{20}+\frac{(1478 / 20)^{2}}{33916.6}\right]} \cong 0.04$.

Marking scheme: a) 1 point or nothing; b) 1 point for each estimated standard error. Q3; 4 points. Do problem 11-38 on page 415.

Sol: $\mathbf{a}, \mathbf{b})$ For the slope: the interval is given by $\hat{\beta}_{1} \pm t_{\alpha / 2, n-2} \hat{\sigma}_{\widehat{\beta}_{1}}=0.00416 \pm t_{0.005,18} \times \hat{\sigma}_{\hat{\beta}_{1}}=$ $0.00416 \pm(2.878) \times(0.000484)=[0.00276,0.00555]$.

For the intercept: the interval is given by $\hat{\beta}_{0} \pm t_{\alpha / 2, n-2} \sqrt{\hat{\sigma}^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right]}=0.32999 \pm(2.878) \times$ $(0.04)=[0.21,0.44]$.
c) Note that $x_{0}=85$, and so $\hat{\mu}_{Y \mid x_{0}}=\hat{\beta}_{0}+\hat{\beta}_{1} \times x_{0}=0.32999+0.00416 \times 85=$ 0.68359. So the interval is given by: $\hat{\mu}_{Y \mid x_{0}} \pm t_{\alpha / 2, n-2} \sqrt{\hat{\sigma}^{2}\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right]}=0.68359 \pm(2.878) \times$ $\sqrt{0.00797\left[\frac{1}{20}+\frac{(85-73.9)^{2}}{33991.6}\right]}=[0.624,0.743]$.
d) Note that $x_{0}=90$, and that $\hat{y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} \times x_{0}=0.32999+0.00416 \times 90=$ 0.70439. So the interval is given by: $\hat{y}_{0} \pm t_{\alpha / 2, n-2} \sqrt{\hat{\sigma}^{2}\left[1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right]}=0.70439 \pm(2.878) \times$ $\sqrt{0.00797\left[1+\frac{1}{20}+\frac{(85-73.9)^{2}}{33991.6}\right]}=[0.440,0.968]$.

Marking scheme: 1 point for each of a),b)c),d)
Q4, 3 points. Do problem 11-64 a) and no p-value on page 425.
Sol: We see that $n=20, \alpha=0.05$, so $\alpha / 2=0.025$, moreover $H_{0}: \rho=0, H_{1}: \rho \neq 0$. The observed value of the test statistics is $t_{0}=\frac{0.8 \times \sqrt{n-2}}{\sqrt{1-0.8^{2}}}=5.656854$. From the table we get that $t_{\alpha / 2, n-2}=t_{0.025,18}=2.101$. Since $\left|t_{0}\right|>t_{\alpha / 2, n-2}$ we reject H_{0}.

Marking scheme: 1 point for $t_{0}, 1$ point for $t_{\alpha / 2, n-2}, 1$ point for the right conclusion.

