MATH 2377, SUMMER 2009 ASSIGNMENT 5

9-6. (3 points) a) So $n=16$, the critical region is $\bar{x}<11.5, \sigma=0.5$. Since we are computing α, we take into account H_{0} is true, i.e., $\mu=12$. Hence $\alpha=P(\bar{X}<11.5, \mu=12)=P\left(\frac{\bar{X}-12}{\sigma / \sqrt{n}}<\right.$ $\left.\frac{11.5-12}{\sigma / \sqrt{n}}\right)=P(Z<-4)=0$ (by the table!) b) We compute (recall the acceptance region) $\beta=P(\bar{X} \geq 11.5 ; \mu=11.25)=P\left(\frac{\bar{X}-11.25}{\sigma / \sqrt{n}} \geq \frac{11.5-11.25}{\sigma / \sqrt{n}}\right)=P\left(Z \geq \frac{0.25}{0.5 / \sqrt{16}}\right)=1-P(Z<$ 2) $=1-0.977250=0.02275$; с) We compute $\beta=P(\bar{X} \geq 11.5 ; \mu=11.5)=P\left(\frac{\bar{X}-11.5}{\sigma / \sqrt{n}} \geq\right.$ $\left.\frac{11.5-11.5}{\sigma / \sqrt{n}}\right)=P(Z \geq 0)=1-P(Z<0)=1-0.5=0.5$.
Marking scheme: 1 point for $a)$, 1 point for $b)$, 1 point for c)
9-36. (4 points) a) $\alpha=0.05, H_{0}: \mu=100, H_{1}: \mu>100$, the observed value is $z_{0}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$ where $\bar{x}=98, \sigma=2$, and $n=9$. Hence $z_{0}=\frac{98-100}{2 / \sqrt{9}}=-3$. Since z_{0} is not bigger than $z_{0.05}=1.645$, we fail to reject H_{0}, in other words: the temperature is not significantly different greater than 100 at the level $\alpha=0.05 ; \mathrm{b}$) the p-value is computed (see page 15 of our lecture notes) as follows $1-\Phi(-3)=1-0.001350=0.99865$; c) We need to get β (read the statement). Use page 17 of our lecture notes (but the 1 -sided version!), set $\delta=\mu_{1}-\mu_{0}=104-100$ and get $\beta=P\left(\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}-\frac{\delta \sqrt{n}}{\sigma} \leq z_{\alpha}-\frac{\delta \sqrt{n}}{\sigma}\right)=P\left(Z \leq z_{\alpha}-\frac{\delta \sqrt{n}}{\sigma}\right)=$ $P\left(Z \leq 1.645-\frac{4 \times 3}{2}\right)=P(Z \leq-4.355)=0$ by the table.
Marking scheme: 1 point for a), 1 point for b), 2 points for c)
9-50. (1 point) a) We do have: $H_{0}: \mu=22.5, H_{1}: \mu \neq 22.5, \alpha=0.05, t_{0}=\frac{\bar{x}-\mu}{s / \sqrt{n}}=$ $\frac{22.496-22.5}{0.378 / \sqrt{5}}=\frac{-0.004}{0.378 / \sqrt{5}}=-0.00237$. Since $t_{\alpha / 2, n-1}>t_{0}=-0.00237>-t_{0.025,4}=-2.776 \mathrm{we}$ fail to reject H_{0}.
Marking scheme: 1 point for a)
9-78. (1 point) a) From the statement we get $H_{0}: p=0.05, H_{1}: p \neq 0.05, \alpha=0.05$, $x=13, n=300, \hat{p}=13 / 300=0.043, z_{0}=\frac{x-n p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right)}}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=-0.53$. Since $z_{0}=-0.53>-1.65=z_{\alpha / 2}$ we fail to reject H_{0}.
Marking scheme: 1 point for a)
5-34. (2 points) Note that $E(X)=\sum_{x} x f_{X Y}(x, y)=(-1) \frac{1}{8}+(-0.5) \frac{1}{4}+(0.5) \frac{1}{2}+(1) \frac{1}{8}=$ $0.125, E(Y)=\sum_{y} y f_{X Y}(x, y)=(-2) \frac{1}{8}+(-1) \frac{1}{4}+(1) \frac{1}{2}+(2) \frac{1}{8}=0.25, E(X Y)=\sum_{x, y} x y f_{X Y}(x, y)=$ $(-1)(-2) \frac{1}{8}+(-0.5)(-1) \frac{1}{4}+(0.5)(1) \frac{1}{2}+(1)(2) \frac{1}{8}=0.875$; Next note that $E\left(X^{2}\right)=\frac{1}{8}+(0.5)^{2} \frac{1}{4}+$ $(0.5)^{2} \frac{1}{2}+\frac{1}{8}=0.4375$, so $\operatorname{Var}(X)=0.4375-0.125^{2} \cong 0.4219$, similarly $\operatorname{Var}(Y)=1.6875$. It follows that $\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y}=0.875-(0.125) \times(0.25)=0.84375 \cong 0.8438$. We get $\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0.8438}{\sqrt{0.4219} \sqrt{1.6875}}=1$.
Marking scheme: 1 point for $\rho_{X Y}$, 1 point for $\sigma_{X Y}$
5-18. (4 points) From $1=c \int_{0}^{3} \int_{x}^{x+2}(x+y) d y d x=\left.c \int_{0}^{3}\left(x y+\frac{y^{2}}{2}\right)\right|_{x} ^{x+2} d x=c \int_{0}^{3}\{2 x+2 x+$ $\left.2\} d x=c \int_{0}^{3}(4 x+2) d x=\left.c\left\{2 x^{2}+2 x\right)\right|_{0} ^{3}\right\}=c \times 24$ we get $c=1 / 24$.
a) $P(X<1, Y<1)=\left(\frac{1}{24}\right) \int_{0}^{1} \int_{x}^{2}(x+y) d y d x=0.104166666 \approx 0.10417$;
b) $P(1<X<2)=\left(\frac{1}{24}\right) \int_{1}^{2} \int_{x}^{x+2}(x+y) d y d x=1 / 3$;
c) $P(Y>1)=1-P(Y \leq 1)=1-\left(\frac{1}{24}\right) \int_{0}^{1} \int_{x}^{1}(x+y) d y d x=47 / 48 \cong 0.979166666$;
d) $P(X<2, Y<2)=\left(\frac{1}{24}\right) \int_{0}^{2} \int_{x}^{2}(x+y) d y d x=1 / 6$;
e) $E(X)=\left(\frac{1}{24}\right) \int_{0}^{3} \int_{x}^{x+2} x(x+y) d y d x=\left(\frac{1}{24}\right) \int_{0}^{3}\left(4 x^{2}+2 x\right) d x=15 / 8$;
f) $\operatorname{Var}(X)=\left(\frac{1}{24}\right) \int_{0}^{3} \int_{x}^{x+2} x^{2}(x+y) d y d x-\left(\frac{15}{8}\right)^{2}=\left(\frac{1}{24}\right) \int_{0}^{3}\left(4 x^{3}+2 x^{2}\right) d x-\left(\frac{15}{8}\right)^{2}=39 / 64$;
g) $f_{X}(x)=\left(\frac{1}{24}\right) \int_{x}^{x+2}(x+y) d y=\frac{1}{6} x+\frac{1}{12}$ for $0<x<3$.

Marking scheme: 1 point for getting $c, 1$ point for each of a)-g)

