MATH 2377, SUMMER 2009
 ASSIGNMENT 4

7-14. (2 points) Note that (using the properties of expectation) $E\left(\bar{X}_{1}\right)=E\left(\frac{1}{2 n} \sum_{i=1}^{2 n} X_{i}\right)=$ $\frac{1}{2 n} E\left(\sum_{i=1}^{2 n} X_{i}\right)=\frac{1}{2 n}\{\mu+\cdots+\mu\}=\frac{2 n \mu}{2 n}=\mu$ and $E\left(\bar{X}_{2}\right)=E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} E\left(\sum_{i=1}^{n} X_{i}\right)=$ $\frac{1}{n}\{\mu+\cdots+\mu\}=\frac{n \mu}{n}=\mu$, so both (\bar{X}_{1} and \bar{X}_{2}) are unbiased estimators of μ. Using the properties of variance one gets that the variances are $\operatorname{Var}\left(\bar{X}_{1}\right)=\frac{1}{4 n^{2}} \operatorname{Var}\left(X_{1}\right)+\cdots+$ $\frac{1}{4 n^{2}} \operatorname{Var}\left(X_{2 n}\right)=\frac{2 n \sigma^{2}}{4 n^{2}}=\frac{\sigma^{2}}{2 n}$ and $\operatorname{Var}\left(\bar{X}_{2}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}\right)+\cdots+\frac{1}{n^{2}} \operatorname{Var}\left(X_{n}\right)=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}$. Since $\frac{\sigma^{2}}{2 n} \leq \frac{\sigma^{2}}{n}$ we conclude that \bar{X}_{1} is the better estimator.
Marking scheme: 1 pt for Es and Vars; 1 point for finding the better estimator 8 -10. (2 points) We know from the statement that $\sigma=0.01 ; \bar{x}=1.5045, n=10, \alpha=0.01$, so $\alpha / 2=0.005$ (since it is 2 -sided!), hence $z_{\alpha / 2}=2.58$. So the interval is $\bar{x}-z_{\alpha / 2} \sigma / \sqrt{n} \leq$ $\mu \leq \bar{x}+z_{\alpha / 2} \sigma / \sqrt{n}$, or $1.5045-2.58 \times 0.01 / \sqrt{10} \leq \mu \leq 1.5045+2.58 \times 0.01 / \sqrt{10}$ or $1.4963 \leq \mu \leq 1.5127$.
Marking scheme: all or nothing
8-16. (2 points) From both statements we get $E=15 ; \alpha=0.01$, so $\alpha / 2=0.005$, hence $z_{\alpha / 2}=2.58$. Moreover $\sigma^{2}=1000$, so $\sigma=31.62$. Then we require $n=\left(\frac{z_{\alpha / 2} \sigma}{E}\right)^{2}=29.6$. We round up and we require $n=30$.
Marking scheme: all or nothing
8-36. (2 points) From the statement we get that $n=25 ; \bar{x}=4.05, s=0.08, \alpha=0.05$. The interval is $\bar{x}-t_{\alpha, n-1} s / \sqrt{n} \leq \mu$. Since by table V one gets that $t_{\alpha, n-1}=t_{0.05,24}=1.711$, our interval is in fact $4.05-1.711 \times\{0.08 / \sqrt{25}\} \leq \mu$, or $4.023 \leq \mu$. We can say with a high confidence that the true value of the mean is greater than 4.023.
Marking scheme: all or nothing
8-52. (3 points) a) The interval is $\left[\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$, where $n=50, X=18$, $\hat{p}=18 / 50=0.36, \alpha=0.05, \alpha / 2=0.025, z_{\alpha / 2}=1.96$. We obtain $0.36-1.96 \sqrt{\frac{0.36 \times 0.64}{50}} \leq$ $p \leq 0.36+1.96 \sqrt{\frac{0.36 \times 0.64}{50}}$, or $0.227 \leq p \leq 0.493 ;$ b) Using $n=\left(\frac{z_{\alpha / 2}}{E}\right)^{2} p(1-p)$ where $p=0.36$ and $E=0.02$ one gets $n=\left(\frac{1.96}{0.02}\right)^{2}(0.36)(0.64)=2212.76$. Rounding up we get $n=2213 ;$ c) Here we use the formula $n=\left(\frac{z_{\alpha / 2}}{E}\right)^{2}(0.25)=2401$.
Marking scheme: 1 point for a), 1 point for b), 1 point for c)
8-46. (4 points) a) The interval we are looking for is $\left[\frac{(n-1) s^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) s^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right]$, where $n=10$, $\alpha=0.01$, so $\alpha / 2=0.005$. We compute $s=1.913$. Thus by table IV one gets $\frac{9 \times(1.913)^{2}}{23.59} \leq$ $\sigma^{2} \leq \frac{9 \times(1.913)^{2}}{1.73}$, or $1.396 \leq \sigma^{2} \leq 19.038 ;$ b) The lower bound for σ^{2} is $\frac{(n-1) s^{2}}{\chi_{\alpha, n-1}^{2}}$. Hence $\frac{9 \times(1.913)^{2}}{21.67} \leq \sigma^{2}$, or $1.5199 \leq \sigma^{2}$; c) Now $\alpha=0.10, n=10$, so $\chi_{0.10,9}^{2}=14.68$. So we get $\frac{9 \times(1.913)^{2}}{14.68} \leq \sigma^{2}$, or $1.498 \leq \sigma ;$ d) I) The lower confidence bound of the 99% two-sided interval is less than the one-sided interval; II) the lower confidence bound for the variance (σ^{2}) in
part (c) is greater because the confidence is lower.
Marking scheme: 1 point for a), 1 point for b), 1 point for c), 1 point for d)

