MATH 2377, SUMMER 2009 **ASSIGNMENT** 4

7-14. (2 points) Note that (using the properties of expectation) $E(\overline{X}_1) = E(\frac{1}{2n}\sum_{i=1}^{2n}X_i) = \frac{1}{2n}E(\sum_{i=1}^{2n}X_i) = \frac{1}{2n}E(\sum_{i=1}^{2n}X_i) = \frac{1}{2n}\{\mu + \dots + \mu\} = \frac{2n\mu}{2n} = \mu$ and $E(\overline{X}_2) = E(\frac{1}{n}\sum_{i=1}^nX_i) = \frac{1}{n}E(\sum_{i=1}^nX_i) = \frac{1}{n}\{\mu + \dots + \mu\} = \frac{n\mu}{n} = \mu$, so both $(\overline{X}_1 \text{ and } \overline{X}_2)$ are unbiased estimators of μ . Using the properties of variance one gets that the variances are $Var(\overline{X}_1) = \frac{1}{4n^2}Var(X_1) + \dots + \frac{1}{4n^2}Var(X_{2n}) = \frac{2n\sigma^2}{4n^2} = \frac{\sigma^2}{2n}$ and $Var(\overline{X}_2) = \frac{1}{n^2}Var(X_1) + \dots + \frac{1}{n^2}Var(X_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$. Since $\frac{\sigma^2}{2n} \leq \frac{\sigma^2}{n}$ we conclude that \overline{X}_1 is the better estimator.

Marking scheme: 1 pt for Es and Vars; 1 point for finding the better estimator 8-10. (2 points) We know from the statement that $\sigma = 0.01$; $\overline{x} = 1.5045$, n = 10, $\alpha = 0.01$, so $\alpha/2 = 0.005$ (since it is 2-sided!), hence $z_{\alpha/2} = 2.58$. So the interval is $\overline{x} - z_{\alpha/2}\sigma/\sqrt{n} \leq 1$ $\mu \leq \overline{x} + z_{\alpha/2}\sigma/\sqrt{n}$, or $1.5045 - 2.58 \times 0.01/\sqrt{10} \leq \mu \leq 1.5045 + 2.58 \times 0.01/\sqrt{10}$ or $1.4963 \le \mu \le 1.5127.$

Marking scheme: all or nothing

8-16. (2 points) From both statements we get E = 15; $\alpha = 0.01$, so $\alpha/2 = 0.005$, hence $z_{\alpha/2} = 2.58$. Moreover $\sigma^2 = 1000$, so $\sigma = 31.62$. Then we require $n = (\frac{z_{\alpha/2}\sigma}{E})^2 = 29.6$. We round up and we require n = 30.

Marking scheme: all or nothing

8-36. (2 points) From the statement we get that n = 25; $\overline{x} = 4.05$, s = 0.08, $\alpha = 0.05$. The interval is $\overline{x} - t_{\alpha,n-1}s/\sqrt{n} \leq \mu$. Since by table V one gets that $t_{\alpha,n-1} = t_{0.05,24} = 1.711$, our interval is in fact $4.05 - 1.711 \times \{0.08/\sqrt{25}\} \le \mu$, or $4.023 \le \mu$. We can say with a high confidence that the true value of the mean is greater than 4.023.

Marking scheme: all or nothing

8-52. (3 points) a) The interval is $[\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}]$, where n = 50, X = 18, $\hat{p} = 18/50 = 0.36, \ \alpha = 0.05, \ \alpha/2 = 0.025, \ z_{\alpha/2} = 1.96.$ We obtain $0.36 - 1.96\sqrt{\frac{0.36 \times 0.64}{50}} \le 0.025$ $p \le 0.36 + 1.96\sqrt{\frac{0.36 \times 0.64}{50}}$, or $0.227 \le p \le 0.493$; b) Using $n = (\frac{z_{\alpha/2}}{E})^2 p(1-p)$ where p = 0.36and E = 0.02 one gets $n = (\frac{1.96}{0.02})^2 (0.36) (0.64) = 2212.76$. Rounding up we get n = 2213; c) Here we use the formula $n = (\frac{z_{\alpha/2}}{E})^2 (0.25) = 2401$. Marking scheme: 1 point for a), 1 point for b), 1 point for c) 8-46. (4 points) a) The interval we are looking for is $[\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}]$, where n = 10,

 $\alpha = 0.01$, so $\alpha/2 = 0.005$. We compute s = 1.913. Thus by table IV one gets $\frac{9 \times (1.913)^2}{23.59} \le \sigma^2 \le \frac{9 \times (1.913)^2}{1.73}$, or $1.396 \le \sigma^2 \le 19.038$; b) The lower bound for σ^2 is $\frac{(n-1)s^2}{\chi^2_{\alpha,n-1}}$. Hence $\frac{9 \times (1.913)^2}{21.67} \le \sigma^2, \text{ or } 1.5199 \le \sigma^2; \text{ c) Now } \alpha = 0.10, \ n = 10, \text{ so } \chi^2_{0.10,9} = 14.68. \text{ So we get}$ $\frac{9 \times (1.913)^2}{14.68} \le \sigma^2, \text{ or } 1.498 \le \sigma; \text{ d) I) The lower confidence bound of the 99\% two-sided interval}$ is less than the one-sided interval; II) the lower confidence bound for the variance (σ^2) in

part (c) is greater because the confidence is lower. Marking scheme: 1 point for a), 1 point for b), 1 point for c), 1 point for d)