MATH 2377, SUMMER 2009 ASSIGNMENT 3

4-54. (1.5 points) a) Note that $X \sim N\left(12.4,(0.1)^{2}\right)$ where X is the rv fill volume! We compute $P(X<12)=P\left(\frac{X-12.4}{0.1}<\frac{12-12.4}{0.1}\right)=P(Z<-4)$, where Z is now standard normal, and so $P(Z<-4)=\Phi(-4)=0$ by the tables. b) We need $P(X<12.1$ or $X>12.6)=$ $P(X<12.1)+P(X>12.6)$ (since the events are m.exclusive!) $=P\left(\frac{X-12.4}{0.1}<\frac{12.1-12.4}{0.1}\right)+$ $P\left(\frac{X-12.4}{0.1}>\frac{12.6-12.4}{0.1}\right)=P(Z<-3)+P(Z>2)=0.001350+1-P(Z \leq 2)=0.001350+$ $1-0.977250=0.0241$ or 2.41%; c) The symmetric specifications about the mean $=12.4$ are $12.4-x$ and $12.4+x$ (of course 12.4 is the midpoint!). We have $0.99=P(12.4-x<$ $\left.X<12.4+x)=P\left(\frac{12.4-x-12.4}{0.1}\right)<\frac{X-12.4}{0.1}<\frac{12.4+x-12.4}{0.1}\right)=P\left(\frac{-x}{0.1}<Z<\frac{x}{0.1}\right)$, where Z is standard normal, $=\Phi\left(\frac{x}{0.1}\right)-\Phi\left(\frac{-x}{0.1}\right)=2 \Phi\left(\frac{x}{0.1}\right)-1$ (see page 20 from the lecture on normal distribution). So $\Phi\left(\frac{x}{0.1}\right)=\frac{1+0.99}{2}$. By tables $\frac{x}{0.1}=2.575$, so $x=(0.1) 2.575=0.2575$ or if you want to round: $\cong 0.258$.

Marking scheme: 0.5 point for a), 0.5 point for $b), 0.5$ point for c)
4-62. (1.5 points) From the statement we get $X \sim N\left(0.002,(0.0004)^{2}\right)$ where X is the diameter! a) $P(X>0.0026)=P\left(\frac{X-0.002}{0.0004}>\frac{0.0026-0.002}{0.0004}\right)=P(Z>1.5)=1-\Phi(1.5)=$ $1-0.933193=0.066807$ (if you want to round you just get؟ $\cong .06681$); b) $P(0.0014<$ $\left.X<0.0026)=P\left(\frac{0.0014-0.002}{0.0004}\right)<\frac{X-0.002}{0.0004}<\frac{0.0026-0.002}{0.0004}\right)=P(-1.5<Z<1.5)=\Phi(1.5)-$ $\Phi(-1.5)=2 \Phi(1.5)-1=2(0.933193)-1=0.866386$; c) We need to find σ such that $\left.0.995=P\left(\frac{0.0014-0.002}{\sigma}\right)<Z<\frac{0.0026-0.002}{\sigma}\right)$, so $\left.0.995=P\left(\frac{-0.0006}{\sigma}\right)<Z<\frac{0.0006}{\sigma}\right)=\Phi\left(\frac{0.0006}{\sigma}\right)-$ $\Phi\left(-\frac{0.0006}{\sigma}\right)=2 \Phi\left(\frac{0.0006}{\sigma}\right)-1$, hence $\Phi\left(\frac{0.0006}{\sigma}\right)=\frac{1.995}{2}=0.9975$. Using the tables we get $\frac{0.0006}{\sigma}=$ 2.805 , so $\sigma=0.0006 / 2.805=0.000213903$ (if you want to round you get $\cong 0.000214$).

Marking scheme: 0.5 point for a), 0.5 point for b), 0.5 point for c) 4-72. (4 points) Set X to be the rv "the no. of erros on site". From the statement we get that $X \sim \operatorname{Binomial}(100,50 / 1000)$. We need $P(X \geq 1)$. Recall that $E(X)=n p=100 \times 0.05=5$, and $\operatorname{Var}(X)=n p(1-p)=5 \times 0.95=4.75$. We approximate as follows: $P(X \geq 1)=P(X \geq$ $1-0.5) \cong P\left(Z \geq \frac{1-0.5-n p}{\sqrt{n p(1-p)}}\right)=P\left(Z \geq \frac{1-0.5-5}{\sqrt{4.75}}\right)=P(Z \geq-2.06)=1-P(Z<-2.06)$ (where Z is standard normal $)=1-0.019699=0.980301(\cong 0.9803)$.

Marking scheme: Binomial(,), expectation and variance 2 points; the approximation 2 points.
4-70. (2 points) a) If X is the rv "the no. of accounts that have an error", then $X \sim$ $\operatorname{Binomial}(0.001,362000)$. $E(X)=n p=362$, and $\operatorname{Var}(X)=n p(1-p)=362 \times 0.999$, so the standard deviation is $19.0167820 \approx 19.0168$; b) $P(X<350)=P(X \leq 349) \cong P(Z \leq$ $\left.\frac{349.5-362}{19.0168}\right)=P(Z \leq-0.66)=0.254627 \cong 0.255$; c) We need x such that $\bar{P}(X>x)=0.05$. We have $1-P(X \leq x)=0.05$, so $P(X \leq x)=0.95$. Using the approximation one gets $0.95=P(X \leq x+0.5) \cong \Phi\left(\frac{x+0.5-n p}{\sqrt{n p(1-p)}}\right)$. We obtain $1.645=\frac{x+0.5-362}{19.0168}$, and so $x=$ $(1.645) \times(19.0168)+(362-0.5) \approx 392.7 ;$ d) We need (since we are dealing with 2 months) $P(X>400$ and $X>400)=P(X>400)^{2}$ because of they are independent events (as stated in the problem). We do have $P(X>400)=1-P(X \leq 400)=1-P(X \leq 400.5) \approx 1-$
$P\left(Z \leq \frac{400.5-362}{19.0168}\right)=1-\Phi(2.0245)=1-\frac{0.978308+0.978822}{2}=1-0.978565=0.021435 \cong 0.0215$.
So the sought probability is $0.0215^{2}=0.00046225$.
Marking scheme: 0.5 point for a), 0.5 point for b), 0.5 point for \mathbf{c}), 0.5 point for d) 4-86. (2 points) a) For Poisson: rate $=$ mean; since we are dealing with exponential here, we get that the expectation is $\left.\frac{1}{2.3}=0.4348 ; \mathrm{b}\right) 3$ months means 0.25 years; so the new λ is $\frac{2.3 \times(1 / 4)}{1}=0.5750$. We compute $P(X=0)$ where X is the rv "the no. of sightings". So $P(X=0)=\frac{e^{-0.5750} \times(0.5750)^{0}}{0!}=1 / 1.777130527=0.5627$; c) Set Y be the rv "time between sightings", then Y us exponential with rate 2.3 . We compute: $P(Y>0.5)=e^{-2.3 \times 0.5} \cong$ 0.316636 ; d) The new λ is $\frac{3 \times 2.3}{1}=6.9$, and we compute (see the def of X) the following probability $P(X=0)$ as follows: $P(X=0)=\frac{e^{-6.9} \times(6.9)^{0}}{0!}=0.001007 \cong 0.001$.
Marking scheme: 0.5 point for a), 0.5 point for $b), 0.5$ point for \mathbf{c}), 0.5 point for \mathbf{d}) 4-102. (4 points) We see that $\lambda=20$; a) When dealing with a Gamma distribution, we know the expectation (read mean) is $\frac{r}{\lambda}$, so we get $\frac{100}{20}=5$ minutes; b) The difference is $\frac{5 \times 80}{100}-\frac{5 \times 50}{100}=1.5$ minutes; c) Set X be the rv "the no. of calls before 15 secs ". Then X is Poisson, and the λ is $\frac{20 \times 15}{60}=5$. We need to compute $P(X \geq 3)$ as follows: $P(X \geq 3)=$ $1-P(X \leq 2)=1-e^{-5}\left\{\frac{5^{0}}{0!}+\frac{5^{1}}{1!}+\frac{5^{2}}{2!}\right\}=0.8753$

Marking scheme: 1 point for a), 1 point for b), 2 points for c)

