MATH 2377, SUMMER 2009 ASSIGNMENT 2

3-72. (2 points) a) Set Y to be the rv: the $\#$ of questions that are answered corectly! From the statement we learn that $Y \sim B(25,0.25)$, (since there are 4 answers). We need to compute $P(Y \geq 20)=P(Y=20)+P(Y=21)+P(Y=22)+P(Y=23)+P(Y=24)+P(Y=$ 25) $=\binom{25}{20}(0.25)^{20}(0.75)^{5}+\binom{25}{21}(0.25)^{21}(0.75)^{4}+\binom{25}{22}(0.25)^{22}(0.75)^{3}+\binom{25}{23}(0.25)^{23}(0.75)^{2}+$ $\binom{25}{24}(0.25)^{24}(0.75)^{1}+\binom{25}{25}(0.25)^{25}(0.75)^{0}=\frac{9.677}{10^{10}}$.

For part b) we need to compute $P(Y<5)=P(Y=0)+P(Y=1)+P(Y=2)+$ $P(Y=3)+P(Y=4)=\binom{25}{0}(0.25)^{0}(0.75)^{25}+\binom{25}{1}(0.25)^{1}(0.75)^{24}+\binom{25}{2}(0.25)^{2}(0.75)^{23}+$ $\binom{25}{3}(0.25)^{3}(0.75)^{22}+\binom{25}{4}(0.25)^{4}(0.75)^{21}=0.2137$

Marking scheme: 1 point for a) and 1 point for b).
3-110. (4 points) a) Set Y to be the rv : the \# of calls in 1 hour! From the statement we learn that $Y \sim$ Poisson with a rate $\lambda=10$; We need to compute $P(Y=5)=\frac{e^{-10} \times 10^{5}}{5!}=$ 0.0378;
b) We have $P(Y \leq 3)=P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=e^{-10}\left\{1+\frac{10}{1!}+\right.$ $\left.\frac{10^{2}}{2!}+\frac{10^{3}}{3!}\right\}=0.0103$;
c) For 2 hours the rate is 20 , so we need to compute $P(X=15)$, where X is the rv : the \# of calls in 2 hours! Hence $P(X=15)=e^{-20} \times \frac{20^{15}}{15!}=0.0516$;
d) For 30 minutes the rate is 5 , so we need to compute $P(Z=5)$, where Z is the rv : the \# of calls in 30 minutes! Hence $P(Z=5)=e^{-5} \times \frac{5^{5}}{5!}=0.1755$.

Marking scheme: 1 point for a), 1 point for $b)$, 1 point for c), 1 point for d). 3-16. (4 points) Since $f(x) \geq 0$ for all $x=1,2,3$, and $f(1)+f(2)+f(3)=\frac{8}{7} \times\left\{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right\}=$ $\frac{8}{7} \times \frac{7}{8}=1$ we get that f is indeed a p.m.f.
a) $P(X \leq 1)=P(X=1)=f(1)=0.5714$;
b) $P(X>1)=P(X=2)+P(X=3)=f(2)+f(3)=0.4286$;
c) $P(2<X<6)=P(X=3)=f(3)=1 / 7=0.1429$;
d) $(X \leq 1$ or $X>1)=1$, since that event is the whole sample space.

Marking scheme: 1 point for a), 1 point for b), 1 point for c), 1 point for d). 4-2. (1 point) a) $0.10=P(x<X)=\int_{x}^{\infty} f(z) d z=\int_{x}^{\infty} e^{-z} d z=-\left.e^{-z}\right|_{x} ^{\infty}=e^{-x}$, so $\ln (0.10)=-x$; hence $x=-\ln (0.10)=2.3$;
b) $0.10=P(X \leq x)=\int_{0}^{x} f(z) d z=\int_{0}^{x} e^{-z} d z=-\left.e^{-z}\right|_{0} ^{x}=1-e^{-x}$, so $e^{-x}=0.90$, $-x=\ln (0.90) ; x=-\ln (0.90)=0.1054$;

Marking scheme: 0.5 point for a), 0.5 point for $\mathbf{b})$.
4-8. (3 points) a) $P(X<74.8)=\int_{74.6}^{74.8} f(z) d z=\int_{74.6}^{74.8} 1.25 d z=1.25(74.8-74.6)=1.25 \times$ $0.2=0.25$;
b) $P(X<74.8$ or $X>75.2)=P(X<74.8)+P(X>75.2)$ since we are dealing with mutually exclusive events! Hence $P(X<74.8)+P(X>75.2)=0.25+0.25=0.5$ (use a) for the first integral, the last integral is computed as in a))!
c) We need to compute $P(74.7<X<75.3)=\int_{74.7}^{75.3} f(z) d z=\int_{74.7}^{75.3} 1.25 d z=(75.3-$ $74.7) \times 1.25=0.6 \times 1.25=0.750$.

Marking scheme: 1 point for a), 1 point for b), 1 point for \mathbf{c})
4-28. (1 point) a) Let X be the cable length; $E(X)=\int_{1200}^{1210} x f(x) d x=\int_{1200}^{1210} x(0.1) d x=$ $(0.1) \times\left.\frac{x^{2}}{2}\right|_{1200} ^{1210}=1205 ; \operatorname{Var}(X)=\int_{1200}^{1210}(x-1205)^{2} f(x) d x=\int_{1200}^{1210}(x-1205)^{2}(0.1) d x=$ (0.1) $\left.\frac{(x-1205)^{3}}{3}\right|_{1200} ^{1210}=8.333$, so the standard dev is $\sqrt{8.333}=2.877$.
b) $P(1195<X<1205)=P(1200<X<1205)=\int_{1200}^{1205} f(x) d x=\int_{1200}^{1205} 0.1 d x=$ $(0.1)(1205-1200)=0.5$.

Marking scheme: 0.5 point for $a), 0.5$ point for b)

