MATH 2377, SUMMER 2009 ASSIGNMENT 1

2-24. (2 points)

The sample space is $S=\{l \mid l=0,1,2, \ldots\}$ and:
a) $A=\{l \in S \mid 675 \leq l \leq 700\}=\{l \in S \mid l=675,676, \ldots, 700\}$ (the unit is $n m$);
b) $B=\{l \in S \mid 450 \leq l \leq 500\}$, or $B=\{l \in S \mid l=450,451, \ldots, 500\}$;
c) $A \cap B=\emptyset$ - the empty set since $500<675$;
d) $A \cup B=\{l \in S \mid 450 \leq l \leq 500$ or $675 \leq l \leq 700\}$, or $A \cup B=\{l \in S \mid l=$ $450,451, \ldots, 500,675,676, \ldots, 700\}$.

Marking scheme: 0.5 for each of a), b), c), d);
2-62. (3 points)
a) $P(A)=\frac{86}{100}$;
b) $P(B)=\frac{79}{100}$;
c) $P\left(A^{\prime}\right)=\frac{14}{100}$;
d) $P(A \cap B)=\frac{70}{100}$;
e) $P(A \cup B)=\frac{95}{100}$;
f) $P\left(A^{\prime} \cup B\right)=\frac{84}{100}$;

Marking scheme: 0.5 for each of a), b), c), d), e), f);
2-66. (3 points)
a) $P\left(A^{\prime}\right)=1-P(A)=1-0.3=0.7$;
b) Using the formula given in class we get: $P(A \cup B)=P(A)+P(B)-P(A \cap B)=$ $0.3+0.2-0.1=0.4$;
c) Since $B=(B \cap A) \cup\left(B \cap A^{\prime}\right)$, we get $P(B)=P(B \cap A)+P\left(B \cap A^{\prime}\right)$, hence we obtain: $P\left(B \cap A^{\prime}\right)=P(B)-P(B \cap A)=0.2-0.1=0.1$;
d) Since $A=(A \cap B) \cup\left(A \cap B^{\prime}\right)$, we get $P(A)=P(A \cap B)+P\left(A \cap B^{\prime}\right)$, hence we obtain: $P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)=0.3-0.1=0.2$;
e) $P\left[(A \cup B)^{\prime}\right]=1-P(A \cup B)=1-0.4=0.6$, (see b));
f) $P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P\left(B \cap A^{\prime}\right)=0.7+0.2-0.1=0.8$, see c).

Marking scheme: 0.5 for each of a), b), c), d), e), f);
2-78. (3 points)
a) $P(A)=\frac{82}{100}$;
b) $P(B)=\frac{90}{100}$;
c) $P(A \mid B)=\frac{A \cap B}{P(B)}=\frac{80}{90}$;
d) $P(B \mid A)=\frac{B \cap A}{P(A)}=\frac{80}{82}$;
e) the probability we are looking for is just $P(B \mid A)=0.9756$;
f) the probability we are looking for is just $P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=0.02 /(1-0.9)=2 / 10=$ 0.2

Marking scheme: 0.5 for each of a), b), c), d), e), f);

2-92. (2 points)

I Denote by FLAW the event: a roll contains a flaw; Denote by COTTON the event: a roll is cotton; Then $P(\mathbf{C O T T O N})=0.7$, and so $P\left((\mathbf{C O T T O N})^{\prime}\right)=0.3$. From the text we get that: $P($ FLAW \mid COTTON $)=0.02$ and $P\left(\right.$ FLAW $\left.\mid(\text { COTTON })^{\prime}\right)=0.03$.
$I I$ By the rule given in class we get: $P($ FLAW $)=P($ FLAW \mid COTTON $) P($ COTTON $)+$ $P\left(\right.$ FLAW $\left.\mid(\text { COTTON })^{\prime}\right) P\left((\mathbf{C O T T O N})^{\prime}\right)=0.02 \times 0.7+0.03 \times 0.3=0.023$.

Marking scheme: 1 point for each I and $I I$.
2-122. (2 points)
Let D be the event: a selected item is defective. Let A be the event: the inspector classify an item as defective. From the statement we have: $P(D)=0.009$, and $P(A \mid D)=0.99$ and $P\left(A \mid D^{\prime}\right)=0.005$.
a) We need to find $P(A)$. We have $P(A)=P(A \mid D) P(D)+P\left(A \mid D^{\prime}\right) P\left(D^{\prime}\right)=0.99 \times$ $0.009+0.005 \times 0.991=0.013865$
b) We need to find $P\left(D^{\prime} \mid A^{\prime}\right)$. We have $P\left(D^{\prime} \mid A^{\prime}\right)=\frac{P\left(D^{\prime} \cap A^{\prime}\right)}{P\left(A^{\prime}\right)}=\frac{P\left(A^{\prime} \mid D^{\prime}\right) P\left(D^{\prime}\right)}{1-P(A)}=\frac{\left[1-P\left(A \mid D^{\prime}\right)\right][1-P(D)]}{1-P(A)}=$ $\frac{[1-0.005][1-0.009]}{1-0.013865}=0.99991$.

Marking scheme: 1 point for each a) and b).

