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University of Ottawa
Department of Mathematics and Statistics

MAT 1341D: Introduction to Linear Algebra

Test 2

Family name (CAPITALS)

First name (CAPITALS)

Please read these instructions carefully:

• Read each question carefully, and answer all questions in the space provided after each question.
For questions 5, 6, 7, 8 you may use the back of pages if necessary, but be sure to indicate to the
marker that you have done so.

• No part marks will be given for questions 1 – 4. However, you must show some work to obtain
the point. Simply writing the correct answer will earn you 0.

• Question 8 is a bonus proof question. You can get 2 extra points.

• No books or notes are allowed. Calculators are not permitted.

Good luck! Bonne chance !
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(1) (3 pts) Let U be a subspace of R7 which is spanned by 6 vectors. Are the following claims true
or false? Answer with T for “true” or F for “false”.

(a) dim U ≤ 6.

My answer:

(b) Any set of dim U vectors in U is linearly independent.

My answer:

(c) Every spanning set of U has at most 6 vectors.

My answer:

Solution: (a) = T: Theorem 3(3) in §4.3. (b) = F since there are no specifications about the
set; for example, if dim U = 3 and 0 6= X ∈ U then {X, 2X, 3X} is a set of 3 vectors in U which
is not linearly independent. (c)= F: For example, if U is spanned by {X1, X2, . . . , X6} then U is
also spanned by the set {X1, X2, . . . , X6, Y } of 7 vectors where Y is any vector in U which is not
contained in {X1, . . . , X6}.

(2) (3 pts) Let A be a 4× 9 matrix. Are the following claims true or false? Answer with T for “true”
or F for “false”.

(a) If A has rank 4, then the columns of AT are linearly independent.

My answer:

(b) If A has rank 3, the null space of A is a subspace of R6.

My answer:

(c) If A has rank 4, then every set of 4 columns of A is linearly independent.

My answer:

Solution: (a)=T since the columns of AT are the rows of A and the 4 rows of A are linearly
independent because of rank (A) = 4.

(b)= F: The null space is a subspace of R9 (recall that the corresponding linear system AX = 0
has 9 variables); the null space has dimension 9 − 3 = 6 but this does not mean that the null
space is a subspace of R6.

(c)= F: For instance A =
(

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

)
is of rank 4 but the set consisting of its first four

columns is linearly dependant.
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(3) (3 pts) (a) The dimension of the vector space M34 of 3× 4-matrices is

My answer:

(b) The dimension of the vector space P5 of polynomials of degree ≤ 5 is

My answer:

(c) Give a basis of M22 consisting of non-invertible matrices:

Solution: dim M34 = 3 · 4 = 12, dim P5 = 6. (c) There are many possible answer. For example,
the standard basis of M22 is such a basis:[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
.

(4) (3 pts) Are the following subsets U subspaces of the indicated vector spaces V ? Answer with Y
for “yes” or N for “no”.

(a) U = {f ∈ V : f(0) = 0 = f(1)} in V = F[0, 3].

My answer:

(b) U = {A ∈ V : AT = A} in V = M2,2.

My answer:

(c) U = {p ∈ V : p(0) = 0, p(1) = 1} in V = P3.

My answer:

Solution: (a)=Y: One verifies the conditions of the subspace test.
(b) = Y: A 2× 2-matrix A lies in U if and only if A has the form

A =
[

a b
b d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
where there are no conditions on a, b and d. Hence U is the span of the three indicated matrices
and is therefore a subspace of V .

(c)= N since the zero vector of P3, which is the zero polynomial = zero function, does not lie
in U : It does not satisfy p(1) = 1.
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(5) (5 pts) Find all x ∈ R such that

x + 7 2 −3
−4 x + 1 3
−3 3 x + 1

 is NOT invertible.

Solution: Let A be the matrix in the problem. If we add row 1 row 2 we get a matrix, say B,
with the same determinant. Hence

det A = det B = det

x + 7 2 −3
x + 3 x + 3 0
−3 3 x + 1

 = (x + 3) det

x + 7 2 −3
1 1 0
−3 3 x + 1


where in the last step we ”pulled out” a factor (x + 3 from the second row. We now subtract
column 2 from column 1 (observe that this does not change the determinant) and then expand
along the second row:

(x + 3) det

x + 7 2 −3
1 1 0
−3 3 x + 1

 = (x + 3) det

x + 5 2 −3
0 1 0
−6 3 x + 1


= (x + 3) det

[
x + 5 −3
−6 x + 1

]
= (x + 3)

(
(x + 5)(x + 1)− (−6)(−3)

)
= (x + 3)(x2 + 6x− 13)

Instead of the column operation above, we can also calculate the determinant by “brute force”:
Expanding across the second row (and using properties of determinants) we get:

det A = (x + 3){1(−1)2+1 det
[
2 −3
3 x + 1

]
+ 1(−1)2+2 det

[
x + 7 −3
−3 x + 1

]
}

= (x + 3){−(2x + 2 + 9) + (x + 7)(x + 1)− 9}
= (x + 3){−2x− 2− 9 + x2 + 8x + 7− 9}
= (x + 3)(x2 + 6x− 13).

In any case, the result is (of course) the same. We now use the result that the matrix A is not
invertible if and only if det(A) = 0. Since the roots of x2 + 6x− 13 are −3±

√
22, the matrix is

not invertible when either x = −3, x = −3−
√

22, or x = −3 +
√

22.
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(6) (5 pts) Consider the subspace U of R4 spanned by {v1, v2, v3, v4, v5} where:

v1 =


1
−4

7
−4

 , v2 =


−2
−4

5
1

 , v3 =


3
0
2
−5

 , v4 =


5
4
−3
−6

 , v5 =


3
−2
−7

6

 .

Find a basis of U and give the dimension of U .

Solution: We notice that U = Col A where A is the matrix whose columns are the given 5
vectors:

A =


1 −2 3 5 3
−4 −4 0 4 −2
7 5 2 −3 −7
−4 1 −5 −6 6

 .

The problem is therefore reduced to finding a basis for Col A. To do so, we row-reduce:
1 −2 3 5 3
−4 −4 0 4 −2
7 5 2 −3 −7
−4 1 −5 −6 6

 R2+4R1,R3−7R1,R4+4R1→


1 −2 3 5 3
0 −12 12 24 10
0 19 −19 −38 −28
0 −7 7 14 18


−1
12

R2, 1
19

R3,−1
7

R4→


1 −2 3 5 3
0 1 −1 −2 −5/6
0 1 −1 −2 −28/19
0 1 −1 −2 −18/7

 R4−R2,R3−R2→


1 −2 3 5 3
0 1 −1 −2 −5/6
0 0 0 0 −53/114
0 0 0 0 −73/42


−42
73

R4,−114
53

R3→


1 −2 3 5 3
0 1 −1 −2 −5/6
0 0 0 0 1
0 0 0 0 1

 R4−R3→

[ 1 −2 3 5 3
0 1 −1 −2 −5/6
0 0 0 0 1
0 0 0 0 0

]
.

Hence Column 1, Column 2 and Column 5 of A form a basis, and so {v1, v2, v5} is a basis of the
subspace spanned by the given 5 vectors.
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(7) (5 pts) Show that
U = {p ∈ P2 : p(2) = 0}

is a subspace of P2, find a basis of U and determine its dimension.

Solution: The polynomials p in P2 has the form p(x) = a0 + a1x + a2x
2 for unique ai ∈ R.

Since p(2) = a0 + 2a1 + 4a2 a polynomial p ∈ P2 lies in U if and only if p can be written in the
form p(x) = a0 + a1x + a2x

2 with a0 = −2a1 − 4a2, i.e.,

p(x) = (−2a1 − 4a2) + a1x + a2x
2 = a1(x− 1) + a2(x2 − 4)

for arbitrary a1, a2 ∈ R. This equation says that U = Span {p1, p2} where

p1(x) = x− 1 and p2(x) = x2 − 4.

In particular, U is a subspace since it can be written as a span.
Since the polynomials p1 and p2 have different degrees, they are linearly independent (seen in

class). Therefore {p1, p2} is a basis of U and dim U = 2.

My answer for basis:

My answer for the dimension:
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(8) (2 bonus points) (a) Give the definition of a basis of an arbitrary vector space V .
(b) Find a basis for Pn where n is a positive integer. (Show that your subset of elements of Pn is
indeed a basis!)

Solution: (a) A basis of a vector space V is a finite subset {v1, . . . , vn} of V which has the
following two properties:

(i) {v1, . . . , vn} is linearly independent, and
(ii) Span {v1, . . . , vn} = V .
(b) A basis is given by {1, x, x2, ..., xn}. The spanning condition is satisfied since any polynomial

in Pn has the form a0 + a1x + ... + anxn = a01 + a1x + ...anxn. Linear independence follows from
the definition:

If t01 + t1x + ... + tnxn = 0 - the zero polynomial, then t0 = 0, t1 = 0, ... tn = 0.


