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University of Ottawa
Department of Mathematics and Statistics

MAT 1341D: Introduction to Linear Algebra

Test 1

Family name (CAPITALS)

First name (CAPITALS)

Please read these instructions carefully:

• Read each question carefully, and answer all questions in the space provided after each question.
For questions 5 and 6 you may use the back of pages if necessary, but be sure to indicate to the
marker that you have done so.

• No part marks will be given for questions 1 – 4. However, you must show some work to obtain
the point. Simply writing the correct answer will earn you 0.

• Question 7 is a bonus proof question. You can get 2 extra points.

• No books or notes are allowed. Calculators are not permitted.

Good luck! Bonne chance !



Test 1 MAT 1341D Feb. 7, 2009 3

(1) (5 pts) In each case give an example of:
(a) (1 pts) An inconsistent linear system of 2 equations in 3 variables.

Solution: There are many possibilities. For example,

x1 + x2 + x3 = 0
x1 + x2 + x3 = 1

(b) (2 pts) A linear system of 2 equations in 2 variables which has a unique solution. Also, give
the solution.

Solution: For example,
x1 + x2 = 0

x2 = 0
has the solutions

x1 = 0, x2 = 0

(c) (2 pts) An example of a linear system with infinitely many solutions. Also, give the solutions.

Solution: For example, the linear system x + y = 1 has infinitely many solutions: y = t,
x = 1− t, t scalar.
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(2) (3 pts) Complete the theorem below by stating 3 conditions which are equivalent to, but not the
same as the condition in (a).

Theorem. For a n× n matrix A the following conditions are equivalent :

(a) A is invertible.

(b)

(c)

(d)

Remarque : The theorem stated in class had more equivalent conditions. But you are only asked
to list 3 of them.

Solution: Any combination of three of the following is correct: :
• The linear system AX = B has a unique solution for every column B.
• The homogeneous linear system AX = 0 has only the trivial solution.
• The reduced row-echelon form of A is the identity matrix In.
• A has rank n.
• The linear system AX = B has a solution for every columns B.
• There exists a n× n matrix C such that AC = In.
• AT is invertible.
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(3) (2 pts) Consider the following matrices :

A =
[

0 0 0 1
0 0 1 0

]
, B =

 1 0 9 2
0 1 0 22
0 0 0 0

 , C =

 1 2 −5 0 3
0 0 1 1 0
0 0 0 0 1

 ,

D =
[

0 0 0
1 0 0

]
, E =


0 1 2 −3 5
0 0 3 0 −2
1 0 1 −6 0
0 0 0 0 1

 , F =

 1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

 .
Which one is or which ones are in reduced row-echelon form?

My answer:

Solution: B and F ; A is not in ref because of columns 3 and 4; C is in ref but not in rref because
of column 5; D and E are not in ref because of column 1.

(4) (2 pts) Let A =

 2 7 1
5 2 0
1 1 1

 and B =

 −1 0 2
0 2 1
3 1 1

. Calculate the matrix B2(AB)−1A.

My answer:

Solution:

B2(AB)−1A = B2(B−1A−1)(A) = (B2B−1)(A−1A) = B I2 = B =

 −1 0 2
0 2 1
3 1 1

 .
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(5) For the system of linear equations

−x −2y + 3z = −4
3x − y + 5z = 2
4x + y + (a2 − 14)z = a+ 2

(a) (6 pts) determine the values of a for which the system has
(i) no solution,

(ii) infinitely many solutions,

(iii) a unique solution.

(b) (2 pts) In case (ii) above describe give all solutions.

Solution: The augmented matrix of the system is −1 −2 3 −4
3 −1 5 2
4 1 a2 − 14 a+ 2


We perform the following operations, where Ri is row i: 3R1 + R2 → R2 and 4R1 + R3 → R3;
R3 −R2 → R2; −R1, −1

7 R2 and obtain :

M =

 1 2 −3 4
0 1 −2 10/7
0 0 a2 − 16 a− 4

 .
Since a2 − 16 = (a− 4)(a+ 4) we get :
• If a = −4, then the last row of M is

[
0 0 0 −8

]
. Hence the system is inconsistent.

• If a = 4 alors M =
 1 2 −3 4

0 1 −2 10/7

0 0 0 0

. Hence the system has infinitely many solutions.

• If a /∈ {−4, 4}, then M =
 1 2 −3 4

0 1 −2 10/7

0 0 ∗ ∗

 where the stars “∗” are non-zero numbers.

Hence the system is uniquely solvable, because there does not exist a free variable.

The answer to question (a) is therefore :
(i) The system in inconsistent if a = −4.
(ii) The system has infinitely many solutions if a = 4.
(iii) The system is uniquely solvable if a /∈ {4,−4}.

To answer (b), let a = 4 in the matrix M above. This yields

M =
 1 2 −3 4

0 1 −2 10/7

0 0 0 0

,
a matrix in row-echelon form. The leading variables are x, y while z is a free variable. Putting
z = t (t ∈ R) gives the following general solution: x

y
z

 =

 8/7− t
2t+ 10/7

t

 =

 8/7
10/7

0

+ t

 −1
2
1


hence the set of solutions is x

y
z

 =

 8/7
10/7

0

+ t

 −1
2
1

 (t ∈ R)
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(6) (8 pts) In the matrix below replace α with the second-last digit of your student number
and find its inverse:

A =

 1 α 0
0 1 3
0 1 4


Check your answer by verifying AA−1 = I3.

Solution: We apply the Inversion Algorithm, i.e., we find the reduced row-echelon form of
[A|I3]:

[A|I3] =

 1 α 0 1 0 0
0 1 3 0 1 0
0 1 4 0 0 1

 ∼
 1 α 0 1 0 0

0 1 3 0 1 0
0 0 1 0 −1 1


∼

 1 α 0 1 0 0
0 1 0 0 4 −3
0 0 1 0 −1 1


∼

 1 0 0 1 −4α 3α
0 1 0 0 4 −3
0 0 1 0 −1 1


Hence the inverse of A is the 3× 3-matrix next to the identity matrix I3 above:

A−1 =

 1 −4α 3α
0 4 −3
0 −1 1

 .
We check

AA−1 =

 1 α 0
0 1 2
0 2 5

  1 −5α 2α
0 5 −2
0 −2 1

 =

 1 + 0 + 0 −4α+ 4α 3α− 3α
0 0 + 4− 3 −3 + 3
0 4− 4 −3 + 4


=

 1 0 0
0 1 0
0 0 1


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(7) (2 bonus points) (a) Give the definition for a n× n matrix A to be invertible.
(b) Show that the inverse of an invertible matrix is unique.

Solution: (a) A n × n matrix A is invertible if there exists a n × n matrix B such that AB =
In = BA, where In is the n× n identity matrix.

(b) Suppose B and B′ satisfy AB = In = BA and AB′ = In = B′A. Then B = BIn =
B(AB′) = (BA)B′ = InB

′ = B′.


