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(1) (5 pts) Let x1, x2, . . . xn and y1, y2, . . . yn, n ≥ 2, be arbitrary real numbers.
(a) (4 pts) Calculate the determinant of

A =


1 + x1y1 1 + x1y2 1 + x1y3 · · · 1 + x1yn

1 + x2y1 1 + x2y2 1 + x2y3 · · · 1 + x2yn
...

...
...

...
...

1 + xny1 1 + xny2 1 + xny3 · · · 1 + xnyn

 .
and conclude that A is not invertible if n ≥ 3.
(b) (1 pts) Let n = 2. For which values of x1, x2, y1 and y2 is the matrix A not invertible?

Solution: (a) We have to show that det(A) = 0 for n > 2. To do so we subtract the first
column from the second, the third and so on until the last column. This yields

det(A) =

∣∣∣∣∣∣∣∣∣
1 + x1y1 x1(y2 − y1) x1(y3 − y1) · · · x1(yn − y1)
1 + x2y1 x2(y2 − y1) x2(y3 − y1) · · · x2(yn − y1)

...
...

...
...

...
1 + xny1 xn(y2 − y1) xn(y3 − y1) · · · xn(yn − y1)

∣∣∣∣∣∣∣∣∣
We see that in the second column we always have a factor y2 − y1, in the third column a factor
y3 − y1, etc. in the ith column a factor yi − y1). We can therefore move these factors in front of
the determinant and get

det(A) = (y2 − y1)(y3 − y1) · · · (yn − y1)

∣∣∣∣∣∣∣∣∣
1 + x1y1 x1 x1 · · · x1

1 + x2y1 x2 x2 · · · x2
...

...
...

...
...

1 + xny1 xn xn · · · xn

∣∣∣∣∣∣∣∣∣
If n > 2 then we have at least 2 identical columns. Subtracting for example, the third column
from the second yields

det(A) = (y2 − y1)(y3 − y1) · · · (yn − y1)

∣∣∣∣∣∣∣∣∣
1 + x1y1 0 x1 · · · x1

1 + x2y1 0 x2 · · · x2
...

...
...

...
...

1 + xny1 0 xn · · · xn

∣∣∣∣∣∣∣∣∣
and this is 0 by expanding along the second column.

(b) For n = 2 we get, using the same approach as in (a), that

det(A) = (y2 − y1)
∣∣∣∣ 1 + x1y1 x1

1 + x2y1 x2

∣∣∣∣ = (y2 − y1)
(
(1 + x1y1)x2 − (1 + x2y1)x1

)
= (y2 − y1)(x2 + x1y1x2 − x1 − x2y1x1) = (y2 − y1)(x2 − x1)

We therefore see that A is not invertible exactly when x1 = x2 or y1 = y2.
Marking: (a) The solution in (a) most be for a general n×n matrix. Doing it for n = 3 or n = 4
only gives half points.
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(2) (7 pts) Let S be the vector space of (forward) signals, i.e., S consists of signals = infinite sequences
s = (sn)n∈N = (s0, s1, · · · ) and that addition and scalar multiplication is done as for vectors in
Rn (see exercise 33 in §5.2 of the textbook).

(a) (3 pts) “Blips” are special signals. They have value 1 at exactly one n and are silent
otherwise. Thus, the ith blip is the signal b(i) = (b(i)n )n∈N for which b

(i)
n = 0 if i 6= n and b

(i)
i = 1.

Show that every finite collection of blips is linearly independent. (To simplify the notation,
you can show that for every natural number N the set of blips {b(1), b(2), . . . , b(N)} is linearly
independent.)

(b) (2 pts) Your receiver cuts off a signal s = (sn) at s1000. Hence it acts like the function
R : S→ R1000 given by R(s) = (sn)0≤n≤999. Show that R is a linear map.

(c) (2 pts) The completely lost signals are the signals s = (sn) for which sn = 0 for 0 ≤ n ≤ 999.
Show that your receiver is loosing a lot, i.e., show that the set of completely lost signals is an
infinite dimensional subspace of S.

Solution: a) Suppose that a1b
(1) + a2b

(2) + . . . aNb
(N) = 0. Then a1(1, 0, 0, 0, 0, . . . , ) +

a2(0, 1, 0, 0, 0, . . . , ) + · · · + aN (0, 0, 0, 0, 0, . . . , 1, 0, 0, . . . ) = 0, so (a1, a2, . . . , aN , 0, 0, 0, 0, . . . ) =
(0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ), hence a1 = 0, a2 = 0, . . . , aN = 0.

b) The definition of our function is R(s0, s1, . . . ) = (s0, s1, . . . , s999). If t = (t0, t1, . . . ) is in S,
then R(s+ t) = R((s0 + t0, s1 + t1, . . . )) = (s0 + t0, s1 + t1, . . . , s999 + t999) = (s0, s1, . . . , s999) +
(t0, t1, . . . , t999) = R(s) +R(t) where s = (s0, s1, . . . ). If c is a scalar, then cs = (cs0, cs1, . . . ), so
we do have R(cs) = R((cs0, cs1, . . . )) = (cs0, cs1, . . . , cs999) = c(s0, s1, . . . , s999) = cR(s).

c) Suppose to the contrary that H, the set of completely lost signals, is a finite dimensional
subspace of S. Then let ∞ > k = dimH. So any basis of H contains exactly k elements! By a)
there are subsets of H that are linearly independent and arbitrarly large (from point of view of
cardinality). This is a contradiction (since linearly independent subsets can be enlarged to basis
of H). So, our assumption is false, therefore we proved c). Examples of linearly independent
subsets of H are: Am = {b(1000), b(1001), . . . , b(m)}, where m is any positive integer greater or
equal than 1000.
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(3) (7 pts) + (2 bonus pts) A function f : R → R is called even (respectively odd) if f(−x) = f(x)
(respectively f(−x) = −f(x)) for all x ∈ R. Let E be the set of even functions in F[R] and let O
be the set of odd functions in F[R].
(a) (2 pts) Let T : F[R] → F[R] be defined by assigning to the function f : R → R the function
T (f) defined by (T (f))(x) = f(x) + f(−x) for x ∈ R. This is a linear map – you do not need to
prove this, but see (e) below. Find the kernel and the image of T .
(b) (1 point) Prove that E and O are subspaces of F[R]. (Hint: you can use (a).)
(c) (3 pts) We fix a positive natural number n. Find a basis of the subspace even polynomials in
Pn, and determine its dimension.
(d) (1 point) Determine the dimension of the subspace of odd polynomials in Pn.
(e) (2 bonus pts) Show that T is a linear map.

Solution: a) KerT = {f ∈ F[R]|T (f) = 0 − the zero function } = {f ∈ F[R]|T (f)(x) =
0 for all x ∈ R} = {f ∈ F[R]|f(x)+f(−x) = 0 for all x ∈ R} = {f ∈ F[R]|f(x) = −f(−x) for all x ∈
R} = O and imT = {g ∈ F[R]|g = T (f) for some f ∈ F[R]} = {g ∈ F[R]| for all x one has g(x) =
f(x) + f(−x) for some f ∈ F[R]} = E since g(−x) = f(−x) + f(−(−x)) = f(−x) + f(x) = g(x).

b) Since the image and kernel of any linear transformation are subspaces it follows by a) that
E and O are subspaces of F[R].

c) Let K be the set of all even polinomyals in Pn. Let m be the biggest positive odd integer less
or equal than n, (so m is n if n is odd; m is n−1 if n is even). If p(x) = a0 +a1x+a2x

2 + . . . anx
n

is in K, then p(x) = p(−x), hence a0 + a1x+ a2x
2 + . . . anx

n = a0 − a1x+ a2x
2 − . . . (−1)nanx

n.
It follows that a1 = 0, a3 = 0, . . . , am = 0. So p(x) = a0 + a2x

2 + . . . aqx
q, where q is the biggest

positive even integer less or equal than n. We just got that K = span{1, x2, . . . , xq}. Since the
degree of the spanning elements (polynomials) are different, we get that they form a linearly
independent set! Therefore a basis (for K) is {1, x2, . . . , xq}. The dimension is q

2 + 1.
d) Consider the following linear (see a)) transformation T |Pn : Pn 7→ Pn, T |Pn(f)(x) = f(x) +

f(−x). Then dim Pn = dim Ker(T |Pn) + dim Ker(T |Pn), so n + 1 = dim Ker(T |Pn) + q
2 + 1. We

get by a) that the dimension of the subspace of odd polynomials in Pn is n− q
2 .

e) Note that for all x in R one has that (T (f + g))(x) = (f + g)(x) + (f + g)(−x) = f(x) +
g(x) + f(−x) + g(−x) = (by the definition of T )

= (f(x) + f(−x)) + (g(x) + g(−x)) = T (f)(x) + T (g)(x) = (T (f) + T (g))(x). So T (f + g) =
T (f) + T (g), were f, g are arbitrary taken from F[R]. Letting r be an arbitrary scalar, we get
for all x in R that (T (rf))(x) = (rf)(x) + (rf)(−x) = rf(x) + rf(−x) = r{f(x) + f(−x)} =
r(T (f)(x)) = (rT (f))(x), so T (rf) = rT (f) for an arbitrary f in F[R].
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(4) (7 pts) For the matrix

A =

 5 30 −48
3 14 −24
3 15 −25


(a) (3 pts) determine all eigenvalues, and
(b) (4 pts) for each eigenvalue find a basis of the corresponding eigenspace and determine its
dimension.

Solution: (a) We first find the characteristic polynomial

cA(x) = det(λE3 −A) =

∣∣∣∣∣∣
λ− 5 −30 48
−3 λ− 14 24
−3 −15 λ+ 25

∣∣∣∣∣∣ =

∣∣∣∣∣∣
λ− 5 −30 48
−3 λ− 14 24
0 −1− λ λ+ 1

∣∣∣∣∣∣
where in the last step we subtracted row 2 from row 3. We can now pull out a factor λ+ 1 from
the last row and expand along the last row:∣∣∣∣∣∣

λ− 5 −30 48
−3 λ− 14 24
0 −1− λ λ+ 1

∣∣∣∣∣∣ = (λ+ 1)

∣∣∣∣∣∣
λ− 5 −30 48
−3 λ− 14 24
0 −1 1

∣∣∣∣∣∣
= (λ+ 1)

∣∣∣∣ λ− 5 48
−3 24

∣∣∣∣+ (λ+ 1)
∣∣∣∣ λ− 5 −30
−3 λ− 14

∣∣∣∣
= (λ+ 1)

(
24(λ− 5) + 3 · 48 + (λ− 5)(λ− 14)− 3 · 30

)
= (λ+ 1)(24λ− 120 + 144 + λ2 − 19λ+ 70− 90)

= (λ+ 1)(λ2 + 5λ+ 4) = (λ+ 1)(λ+ 1)(λ+ 4)

The eigenvalues are the roots of cA(λ). Therefore they are λ = −1 and λ = −4.
(b) For λ = −1 the corresponding eigenvectors are the solutions of the homogeneous linear

system ((−1)E + 3−A)X = 0. We row-reduce the coefficient matrix (subtract 2 row 2 from row
1, row 2 from row 1, interchange row 1 and row 2, and divide row 1 by −3)

−E3 −A =

 −6 −30 48
−3 −15 24
−3 −15 24

 ∼
 0 0 0
−3 −15 24
0 0 0

 ∼
 1 5 −8

0 0 0
0 0 0


Thus the corresponding linear system is x+ 5y− 8z = 0, i.e., x = −5y+ 8z. The general solution
with arbitrary s, t ∈ R is x

y
z

 =

 −5s+ 8t
s
t

 = s

 −5
1
0

+ t

 8
0
1


which we have written as a linear combination of the basic solutions which are a basis of the
eigenspace E−1(A): [

−5 1 0
]T
,
[

8 0 1
]

Its dimension is therefore dimE−1(A) = 2.
For λ = −4 we proceed as above. We divide all rows by −3, interchange rows 1 and 3, and

then subtract multiples of rows 1 from the rows below:

−4E3 −A =

 −9 −30 48
−3 −18 24
−3 −15 21

 ∼
 1 5 −7

1 6 −8
3 10 −16

 ∼
 1 5 −7

0 1 −1
0 −5 5


∼

 1 5 −7
0 1 −1
0 0 0

 ∼
 1 0 −2

0 1 −1
0 0 0


The corresponding homogeneous linear system is x1 = 2x3 and x2 = x3. Its general solution is[

x1 x2 x3

]T =
[

2s s s
]T = s

[
2 1 1

]T
.

Thus, the eigenspace E−4(A) has
[

2 1 1
]T as basis and is therefore 1-dimensional.
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(c) Additional problem (not required): Decide if A is diagonalizable. If yes, give an
invertible matrix P and a diagonal matrix D such that P−1AP = D. If no, justify why not.

Answer: Since the multiplicity of each eigenvalue equals the number of basic eigenvectors for
this eigenvalue, the matrix A is diagonalizable. The matrices P and D are:

P =

 5 8 2
1 0 1
0 1 1

 and D =

 −1 0 0
0 −1 0
0 0 −4


Marking: (a) 3 points,(b) 4 points (2 points for each eigenvalue).


