Page 1

University of Ottawa Department of Mathematics and Statistics

MAT 1341D: Introduction to Linear Algebra Instructor: Catalin Rada

Assignment 2: due Feb. 26, 2009, 11:30 in the classroom

Family name (CAPITALS)

First name (CAPITALS) \qquad

Signature

Student number

Please read these instructions carefully:

- The table below is for the TA. Do not write in it.
- The assignment has to be submitted with the two cover pages.
- For privacy reasons, this page of the assignment will be detached, and you will only get back the remaining pages. Therefore, fill in your name on both pages and your student number on this page only.

Question	1	2	3	4	5	6	7	Total
Score								
Max. score	2	3	2	2	4	5	4	22

University of Ottawa

 Department of Mathematics and StatisticsMAT 1341D: Introduction to Linear Algebra
Assignment 2: due Feb. 26, 2009, 11:30 in the classroom

Family name (CAPITALS)

First name (CAPITALS)

Good luck! Bonne chance !
(1) (2 pts) Calculate the determinant
$\left|\begin{array}{rrrrrr}1 & 1 & 2 & 8 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 0 \\ 13 & -8 & 2 & 2 & 1 & 7 \\ 5 & 5 & -5 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 3 & 1 & 4 & 3 & 0 & 0\end{array}\right|$
without using any elementary operation by choosing at each step an appropriate column or row. Show your calculations.

Solution: We use cofactor expansion along the 5 th row (the only non-zero entry has position 54 , hence the sign $(-1)^{5+4}=-1$), second row (the only non-zero entry has position 22 , hence the sign is 1), 3rd column (the sign is $(-1)^{2+3}=-1$), third column (sign is -1)

$$
\begin{aligned}
\left.\begin{array}{rrrrrr}
1 & 1 & 2 & 8 & 0 & 0 \\
0 & 1 & 0 & -3 & 0 & 0 \\
13 & -8 & 2 & 2 & 1 & 7 \\
5 & 5 & -5 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
3 & 1 & 4 & 3 & 0 & 0
\end{array} \right\rvert\, & =-\left|\begin{array}{rrrrr}
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
13 & -8 & 2 & 1 & 7 \\
5 & 5 & -5 & 0 & 1 \\
3 & 1 & 4 & 0 & 0
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
13 & 2 & 1 & 7 \\
5 & -5 & 0 & 1 \\
3 & 4 & 0 & 0
\end{array}\right| \\
& =\left|\begin{array}{rrr}
1 & 2 & 0 \\
5 & -5 & 1 \\
3 & 4 & 0
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 0 \\
5 & -5 & 1 \\
3 & 4 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=4-6=-2
\end{aligned}
$$

(2) (3pts) Calculate the determinant $\left|\begin{array}{rrrr}2 & -3 & 1 & 4 \\ 12 & -5 & 11 & 3 \\ 7 & 6 & -9 & 4 \\ 2 & -7 & 6 & 9\end{array}\right|$.

Any correct method is allowed. Show all details.
Solution: Perform $R_{4}-R_{1}, R_{3}-R_{1}, R_{2}-6 R_{1}$ on the matrix

$$
A=\left[\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
12 & -5 & 11 & 3 \\
7 & 6 & -9 & 4 \\
2 & -7 & 6 & 9
\end{array}\right] \quad \text { and get the matrix } \quad B=\left[\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
0 & 13 & 5 & -21 \\
5 & 9 & -10 & 0 \\
0 & -4 & 5 & 5
\end{array}\right] .
$$

We note (by a theorem from the course) that $\operatorname{det}(A)=\operatorname{det}(B)$. We expand across the first column of B and get

$$
\begin{aligned}
\operatorname{det}(B)= & 2(-1)^{1+1} \operatorname{det}\left[\begin{array}{rrr}
13 & 5 & -21 \\
9 & -10 & 0 \\
-4 & 5 & 5
\end{array}\right]+5(-1)^{3+1} \operatorname{det}\left[\begin{array}{rrr}
-3 & 1 & 4 \\
13 & 5 & -21 \\
-4 & 5 & 5
\end{array}\right] \\
= & 2\left\{(-21)(-1)^{3+1} \operatorname{det}\left[\begin{array}{rr}
9 & -10 \\
-4 & 5
\end{array}\right]+5(-1)^{3+3} \operatorname{det}\left[\begin{array}{rr}
13 & 5 \\
9 & -10
\end{array}\right]\right\} \\
& +5\left\{(-3)(-1)^{1+1} \operatorname{det}\left[\begin{array}{rr}
5 & -21 \\
5 & 5
\end{array}\right]+13(-1)^{2+1} \operatorname{det}\left[\begin{array}{rr}
1 & 4 \\
5 & 5
\end{array}\right]+(-4)(-1)^{3+1} \operatorname{det}\left[\begin{array}{rr}
1 & 4 \\
5 & -21
\end{array}\right]\right\} \\
= & 2\{(-21)(45-40)+5(-130-45)\}+5\{(-3)(25+105)-13(5-20)-4(-21-20)\} \\
= & 2\{-105-875\}+5\{-390+195+164\}=-2115
\end{aligned}
$$

Second solution: Perform $R_{4}-R_{1}, R_{3}-R_{1}, R_{2}-6 R_{1}$ on the matrix

$$
A=\left[\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
12 & -5 & 11 & 3 \\
7 & 6 & -9 & 4 \\
2 & -7 & 6 & 9
\end{array}\right] \quad \text { and get the matrix } \quad B=\left[\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
0 & 13 & 5 & -21 \\
5 & 9 & -10 & 0 \\
0 & -4 & 5 & 5
\end{array}\right] .
$$

We note (by a theorem from the course) that $\operatorname{det}(A)=\operatorname{det}(B)$. We expand across the first column of B and get

$$
\operatorname{det}(B)=2(-1)^{1+1} \operatorname{det}\left[\begin{array}{rrr}
13 & 5 & -21 \\
9 & -10 & 0 \\
-4 & 5 & 5
\end{array}\right]+5(-1)^{3+1} \operatorname{det}\left[\begin{array}{rrr}
-3 & 1 & 4 \\
13 & 5 & -21 \\
-4 & 5 & 5
\end{array}\right] .
$$

Perform on $\left[\begin{array}{rrr}13 & 5 & -21 \\ 9 & -10 & 0 \\ -4 & 5 & 5\end{array}\right]$ the following operation: subtract row 1 from R_{3}. We get the following matrix $\left[\begin{array}{rrr}13 & 5 & -21 \\ 9 & -10 & 0 \\ -17 & 0 & 26\end{array}\right]$ with the same determinant: $(-21)(-1)^{1+3} \operatorname{det}\left[\begin{array}{rr}9 & -10 \\ -17 & 0\end{array}\right]+$ $(26)(-1)^{3+3} \operatorname{det}\left[\begin{array}{rr}13 & 5 \\ 9 & -10\end{array}\right]=(-21)(-170)+26(-130-45)=-980$. Next we note that if we subtract from R_{3} row 2, the matrix $\left[\begin{array}{rrr}-3 & 1 & 4 \\ 13 & 5 & -21 \\ -4 & 5 & 5\end{array}\right]$ is transformed into the matrix $\left[\begin{array}{rrr}-3 & 1 & 4 \\ 13 & 5 & -21 \\ -17 & 0 & 26\end{array}\right]$. If from R_{2} we subtract 5 times row 1 we get the matrix $\left[\begin{array}{rrr}-3 & 1 & 4 \\ 28 & 0 & -41 \\ -17 & 0 & 26\end{array}\right]$ with the same determinant: $1(-1)^{1+2} \operatorname{det}\left[\begin{array}{rr}28 & -41 \\ -17 & 26\end{array}\right]=-(728-697)=-31$. Hence the determinant of the original matrix is given by: $2(-980)+5(-31)=-2115$.

Third solution: Add $-11 R_{1}$ to $R_{2}, 9 R_{1}$ to R_{3} and $-6 R_{1}$ to R_{4} (these operations do not change the determinant. Then expand along the their column:

$$
\left|\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
12 & -5 & 11 & 3 \\
7 & 6 & -9 & 4 \\
2 & -7 & 6 & 9
\end{array}\right| \xlongequal{ }\left|\begin{array}{rrrr}
2 & -3 & 1 & 4 \\
-10 & 28 & 0 & -41 \\
25 & -21 & 0 & 40 \\
-10 & 11 & 0 & -15
\end{array}\right| \xlongequal{ }\left|\begin{array}{rrr}
-10 & 28 & -41 \\
25 & -21 & 40 \\
-10 & 11 & -15
\end{array}\right|=5\left|\begin{array}{rrr}
-2 & 28 & -41 \\
5 & -21 & 40 \\
-2 & 11 & -15
\end{array}\right| .
$$

Now we add $2 R_{3}$ to $R_{2}, 2 R_{2}$ to R_{1} and $2 R_{2}$ to R_{3} and expand along the first column:

$$
5\left|\begin{array}{rrr}
-2 & 28 & -41 \\
5 & -21 & 40 \\
-2 & 11 & -15
\end{array}\right|=5\left|\begin{array}{rrr}
-2 & 28 & -41 \\
1 & 1 & 10 \\
-2 & 11 & -15
\end{array}\right|=5\left|\begin{array}{rrr}
0 & 30 & -21 \\
1 & 1 & 10 \\
0 & 13 & 5
\end{array}\right|=5\left|\begin{array}{rr}
30 & -21 \\
13 & 5
\end{array}\right| .
$$

Now we can calculate $\operatorname{det}(A)=-5(30 \cdot 5+21 \cdot 13)=-2115$.
(3) (2 pts) If A is a square matrix such that $\operatorname{det}(A)=5$ and $\operatorname{det}(-2 A)=80$, what is the size of A ?

Solution: If A has size $n \times n$, then $80=\operatorname{det}(-2 A)=(-2)^{n} \operatorname{det}(A)=(-2)^{n} \cdot 5$. Hence $(-2)^{n}=80 / 5=16$, whence $n=4$.
(4) $(2 \mathrm{pts}) \mathrm{A}$ student performs the following row operations on a 4×4 matrix A :

$$
A=\left(\frac{R_{1}}{\frac{R_{2}}{R_{3}}} \frac{R_{4}}{\frac{R_{4}}{R_{2}}}\right) \rightsquigarrow\left(\frac{\frac{R_{1}-3 R_{2}}{2 R_{3}}}{\frac{R_{2}}{\prime}}\right)=A^{\prime}
$$

If $\operatorname{det}\left(A^{\prime}\right)=5$, what is $\operatorname{det}(A) ?$ Show all details.
2.5

My answer:
(5) (4 pts) Let A and B be two square matrices of the same size such that

$$
\operatorname{det}\left(A^{2} B^{T}\right)=250 \quad \text { and } \quad \operatorname{det}\left(A^{T} B^{2}\right)=-1 / 2
$$

What are the determinants of A and B ? Show your calculations.
Solution: Let $a=\operatorname{det}(A)$ and $b=\operatorname{det}(B)$. Then $\operatorname{det}\left(A^{2} B^{T}\right)=\operatorname{det}(A) \operatorname{det}(A) \operatorname{det}\left(B^{T}\right)=$ $\operatorname{det}(A) \operatorname{det}(A) \operatorname{det}(B)=a^{2} b$, and similarly $\operatorname{det}\left(A^{T} B^{2}\right)=a b^{2}$. Hence

$$
a^{2} b=250 \quad \text { and } \quad a b^{2}=-1 / 2
$$

Therefore $250(-1 / 2)=\left(a^{2} b\right)\left(a b^{2}\right)=a^{3} b^{3}=(a b)^{3}$, hence $(a b)^{3}=-125$, and then $a b=-5$. Finally,

$$
a=\frac{a^{2} b}{a b}=\frac{250}{-5}=-50, \quad b=\frac{a b^{2}}{a b}=\frac{(-1 / 2)}{-5}=\frac{1}{10}
$$

(6) (5 pts) Which of the following are subspaces? Support your answer with details. (a) $U_{1}=\left\{X \in \mathbb{R}^{n}: A X=3 X\right\}$.

Solution: This is a subspace. There are two ways to see this. First, notice that $A X=$ $3 X \Longleftrightarrow\left(A-3 I_{n}\right) X=0$. Hence $U_{1}=\left\{X \in \mathbb{R}^{n}:\left(A-3 I_{n}\right) X=0\right\}=\left(A-3 I_{n}\right)$. As a null space of a matrix, U_{1} is a subspace.

Second solution: Check the 3 conditions of the subspace test. (1) The zero vector 0 lies in U_{1} since $A 0=0=3 X$. (2) If $X_{1} \in U_{1}$ and $X_{2} \in U_{1}$, then also $X_{1}+X_{2} \in U_{1}$ since $A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2}=3 X_{1}+3 X_{2}=3\left(X_{1}+X_{2}\right)$ using that $A X_{1}=3 X_{1}$ and $A X_{2}=3 X_{2}$. (3) If $X \in U_{1}$, then also $s X \in U$ for any scalar $s \in \mathbb{R}: A(s X)=s(A X)=s(3 X)=3(s X)$.

Marking: 2 points
(b) $U_{2}=\left\{X=\left[\begin{array}{lll}x & y & z\end{array}\right]^{T} \in \mathbb{R}^{3}: x+2 y+3 z=\alpha\right\}$, where α is the last digit of your student number.

Solution: If $\alpha=0$ then U_{2} is the null space of the matrix $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, hence a subspace. The second solution is to check the 3 conditions of the subspace test.

On the other side, if $\alpha \neq 0$ then U_{2} is not a subspace since the zero vector $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ does not lie in U_{2}.
Marking: 1 point
(c) We fix a vector $d \in \mathbb{R}^{3}$, and define $U_{3}=\left\{X \in \mathbb{R}^{3}: \operatorname{proj}_{d}(X)=0\right\}$, where $\operatorname{proj}_{d}(X)$ is the projection of X onto d.

Solution: This is a subspace. This can be seen by checking the 3 conditions of the subspace test. (1) The zero vector lies in U_{3} since $\operatorname{proj}_{d}(0)=(0 \cdot d) /(d \cdot d) d=0$. (2) If $X_{1} \in U_{3}$ and $X_{2} \in U_{3}$, then also $X_{1}+X_{2} \in U_{1}$: Indeed, by assumption $\operatorname{proj}_{s}\left(X_{1}\right)=0=\operatorname{proj}_{d}\left(X_{2}\right)$. Hence $\operatorname{proj}_{d}\left(X_{1}+X_{2}\right)=\left(\left(X_{1}+X_{2}\right) \cdot d\right) /(d \cdot d) d=\left(X_{1} \cdot d\right) /(d \cdot d) d+\left(X_{2} \cdot d\right) /(d \cdot d) d=\operatorname{proj}_{d}\left(X_{1}\right)+$ $\operatorname{proj}_{d}\left(X_{2}\right)=0+0=0$. (3) If $X \in U_{1}$, then also $s X \in U$ for any scalar $s \in \mathbb{R}: \operatorname{proj}_{d}(s X)=$ $((s X) \cdot d) /(d \cdot d) d=s((X \cdot d) /(d \cdot d) d)=s \operatorname{proj}(X)=s 0=0$.
Marking: 2 points
(7) (6 pts) Suppose that X_{1}, X_{2}, X_{3} are vectors in \mathbb{R}^{67}. If $Y=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}$ where $a_{1} \neq 0$, show that $\operatorname{span}\left\{X_{1}, X_{2}, X_{3}\right\}=\operatorname{span}\left\{Y, X_{2}, X_{3}\right\}$.

Solution: I) Note that $X_{1}=\frac{1}{a_{1}} Y-\frac{a_{2}}{a_{1}} X_{2}-\frac{a_{3}}{a_{1}} X_{3}$. Letting Z be an arbitrary element in $\operatorname{span}\left\{X_{1}, X_{2}, X_{3}\right\}$, we know that $Z=t_{1} X_{1}+t_{2} X_{2}+t_{3} X_{3}$ for some scalars t_{1}, t_{2}, t_{3}. So $Z=$ $t_{1}\left(\frac{1}{a_{1}} Y-\frac{a_{2}}{a_{1}} X_{2}-\frac{a_{3}}{a_{1}} X_{3}\right)+t_{2} X_{2}+t_{3} X_{3}=\frac{t_{1}}{a_{1}} Y+\left(t_{2}-\frac{t_{1} a_{2}}{a_{1}}\right) X_{2}+\left(t_{3}-\frac{t_{1} a_{3}}{a_{1}}\right) X_{3}$, hence Z is in $\operatorname{span}\left\{Y, X_{2}, X_{3}\right\}$ 。
II) Letting W be an arbitrary element in $\operatorname{span}\left\{Y, X_{2}, X_{3}\right\}$, we know that $W=s_{1} X_{1}+s_{2} X_{2}+$ $s_{3} X_{3}$ for some scalars s_{1}, s_{2}, s_{3}. So $W=s_{1}\left(a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}\right)+s_{2} X_{2}+s_{3} X_{3}=s_{1} a_{1} X_{1}+$ $\left(s_{1} a_{2}+s_{2}\right) X_{2}+\left(s_{1} a_{3}+s_{3}\right) X_{3}$. We got that W is in $\operatorname{span}\left\{X_{1}, X_{2}, X_{3}\right\}$.
Marking: each part 3 points

