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(1) (a) (2 pts) Find the matrix A that satisfies the following equation:

iA−
[
i 0 1
1 1 −i

]T

=

0 i
3 2
i 1

 .
Solution: We get

iA =
[
i 0 1
1 1 −i

]T

+

0 i
3 2
i 1

 =

i 1
0 1
1 −i

+

0 i
3 2
i 1

 =

 i 1 + i
3 3

1 + i −i+ 1


Hence A =

 1 1− i
−3i −3i
1− i −i− 1



(b) (2 pts) Find the rank of the matrix
1 −3 2 −4
−3 9 −1 5
2 −6 4 −3
−4 12 2 7

 .

Solution: (a)

[ 1 −3 2 −4
−3 9 −1 5
2 −6 4 −3
−4 12 2 7

]
R2+3R1,R3−2R1,R4+4R1→

[ 1 −3 2 −4
0 0 5 −7
0 0 0 5
0 0 10 −9

]
R4−2R2,(1/5)R3→

[ 1 −3 2 −4
0 0 5 −7
0 0 0 1
0 0 0 5

]
R4−5R3,(1/5)R2→

[ 1 −3 2 −4
0 0 1 −7

5
0 0 0 1
0 0 0 0

]
. It follows that the rank is 3.
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(2) In each case either show that the statement is true or give an example with concrete numbers
showing that it is false. Assume that a linear system is given with augmented matrix A and
coefficient matrix C.

(a) (1 pts) If the system has a solution then rank(A) = 1 + rank(C).

Solution: False. Consider (
1 2 1
0 0 0

)

(b) (1 pts) If there are more variables than equations, the system is consistent.

Solution: False. Consider
x − 3y + 5z = 7
x − 3y + 5z = 8

(c) (1 pts) If the system is homogeneuos,has 4 equations, 6 variables, and rank(A) =3, there
are 3 parameters.

Solution: True. See a theorem 3 on page 19.

(d) (1 pts) If A is 6× 7 and rank(A) = 6, the system has only the trivial solution.

Solution: False. Consider 
1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
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(3) (6 pts) In this problem, replace α by the last digit of your student number. Your doctor
has asked you to take every day α+8 units of vitamin A, 17+3α units of vitamin B and 7 units of
vitamin C. There are three brands available in your local pharmacy which contain the following
units of vitamins A, B, C as indicated.

vitamin A vitamin B vitamin C
Brand 1 1 2 1
Brand 2 1 3 0
Brand 3 3 7 2

(a) (5 pts) Find all combination of pills that provide you with the exact daily requirement (no
partial pills!).

(b) (1 pts) If all brands cost $1, find the least expensive treatment and its cost.

Solution: (a) Let xi be the number of pills of brand i, i = 1, 2, 3. Then the requirement is
that the xi satisfy the following linear system

x1 + x2 + 3x3 = α+ 8
2x1 + 3x2 + 7x3 = 3α+ 17
x1 + 2x3 = 7

We write down the corresponding augmented matrix and find its reduced row-echelon form: 1 1 3 α+ 8
2 3 7 3α+ 17
1 0 2 7

 ∼(I)

 1 1 3 α+ 8
0 1 1 α+ 1
0 −1 −1 −α− 1


∼(II)

 1 1 3 α+ 8
0 1 1 α+ 1
0 0 0 0

 ∼(III)

 1 0 2 7
0 1 1 α+ 1
0 0 0 0


Elementary row operations in (I): replace rows R2 and R3 by R2− 2R1 and R3−R1; elementary
row operations in (II): replace row R3 by R3 + R2; elementary row operations in (III): replace
row R1 by R1 −R2. The new system

x1 + 2x3 = 7
x2 + x3 = α+ 1

has infinitely many solutions, namely x1

x2

x3

 =

 7− 2t
α+ 1− t

t

 , t ∈ R.

The requirement that x1, x2 and x3 are pills, forces

7− 2t ≥ 0, α+ 1− t ≥ 0, t ≥ 0

From the second and third inequality we get 0 ≤ t ≤ α + 1. Hence, together with the first
inequality:
• If α = 0, then t = 0, 1, i.e.[

x1 x2 x3

]T =
[

7 1 0
]T or

[
5 0 1

]T
• If α = 1 then t = 0, 1, 2, i.e.[

x1 x2 x3

]T =
[

7 2 0
]T
,
[

5 1 1
]T
,
[

3 0 2
]T

• If α ≥ 2 then t = 0, 1, 2, 3, i.e.,[
x1 x2 x3

]T =
[

7 α+ 1 0
]T
,
[

5 α 1
]T
,
[

3 α− 1 2
]T
,
[

1 α− 2 3
]T
.

(b) The cost of the treatment in $ is x1 + x2 + x3 = 8 + α − 2t. It is least expensive for t
maximal, i.e.,
• If α = 0, then t = 1, and the cost is $6.
• If α = 1 then t = 2, and the cost is $5.
• If α ≥ 2 then t = 3, and the cost is $2 + α.
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(4) (6+2 pts) Consider the following system of linear equations:

x − 3y + 5z = 7
x + (a− 3)y + 7z = 8
x − 3y + (a2 + 2a+ 5)z = a+ 7

(a) Determine the values of a for which the system has:
(i) no solution

(ii) infinitely many solutions

(iii) exactly one solution.

(b) In case (ii), describe the solution set of the system.

Solution: The augmented matrix is 1 −3 5 7
1 a− 3 7 15
1 −3 a2 + 2a+ 5 a+ 7


We perform the following operations: Ls  −L1 + L2 and L3  −L1 + L3. This yields

M =

 1 −3 5 7
0 a 2 8
0 0 a(a+ 2) a

 .

Thus, we obtain:
• If a = −2 the last row of M is

(
0 0 0 −2

)
. Hence the system is not solvable.

• If a = 0 then M =
 1 −3 5 7

0 0 2 8

0 0 0 0

 and the reduced row-echelon form of M is

R =

 1 −3 0 −13
0 0 1 4
0 0 0 0

 .

Hence the system has infinitely many solutions.

• If a /∈ {−2, 0} then M =
 1 −3 5 7

0 ∗ 2 8

0 0 ∗ a

 where the stars “∗” are non-zero numbers. It

follows that the system has a unique solution.

The answer to (a) is therefore
(i) The system is not solvable if a = −2.
(ii) The system has infinitely many solutions if a = 0.
(iii) The system is uniquely solvable if a /∈ {0,−2}.

To answer (b) we use the matrix R above. The leading (= non-free) variables are x and z, the
free variable is y. We put y = t (t ∈ R). Then x

y
z

 =

 3t− 13
t
4

 =

 −13
0
4

+ t

 3
1
0

 , (t ∈ R)

are all solutions.


