MAT 1339 A Fall 2010 November 3rd Instructor Catalin Rada

TEST \#2

$$
\operatorname{Max}=20
$$

Student Number:

\qquad

- Time: 80 min .
- Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.
- Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.
- Write only in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.
- Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [3 points] Find the derivative of the function $f(x)=\tan (3 x)+\cos (2 x)-\sin (x)$. Hint: recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.
Solution: $f(x)=\frac{\sin (3 x)}{\cos (3 x)}+\cos (2 x)-\sin (x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3 \cos ^{2}(3 x)+3 \sin ^{2}(3 x)}{\cos ^{2}(3 x)}-2 \sin (2 x)-\cos (x) \\
& =\frac{3}{\cos ^{2}(3 x)}-2 \sin (2 x)-\cos (x) \quad, \text { as } \cos ^{2}(3 x)+\sin ^{2}(3 x)=1
\end{aligned}
$$

2. [3 points] Find the derivative of $h(x)=\frac{e^{7 x}}{\cos (7 x)}$.

Solution:

$$
h^{\prime}(x)=\frac{7 e^{7 x} \cos (7 x)+7 e^{7 x} \sin (7 x)}{\cos ^{2}(7 x)}
$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x)=\sin (\sin (x))+1$ at $(0,1)=(0, f(0))$.

Solution:

$f^{\prime}(x)=\cos (\sin (x)) \cdot \cos (x)$.
The slope of the tangent line is $f^{\prime}(0)=\cos (\sin (0)) \cdot \cos (0)=1$.
The equation of tangent line is $y-1=x$ or $y=x+1$.
4. [7 points] (i) Solve the equation $e^{7 x+2}=2$, i.e., you must find x;
(ii) Solve the equation $\ln (4 x)=3$, i.e., you must find x;
(iii) Find $f^{\prime}(3)$ if $f(x)=\cos \left(\frac{\pi}{2} e^{x-3}\right)$.

Solution:

(i)

$$
7 x+2=\ln 2 . \text { Hence, } x=\frac{\ln 2-2}{7} .
$$

(ii)

$$
4 x=e^{3} . \text { Hence, } x=\frac{e^{3}}{4} .
$$

(iii)

$$
\begin{gathered}
f^{\prime}(x)=-\sin \left(\frac{\pi}{2} \cdot e^{x-3}\right)\left(\frac{\pi}{2} \cdot e^{x-3}\right) \\
f^{\prime}(3)=-\sin \left(\frac{\pi}{2}\right) \cdot\left(\frac{\pi}{2}\right) \\
=-\frac{\pi}{2}
\end{gathered}
$$

5. [5 points] Find (if any) the inflection point(s) of $f(x)=e^{x}\left(x^{2}+1\right)$. When is f concave up? When is f concave down? Hint: construct a table including $x, f(x), f^{\prime \prime}(x)$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}\left(x^{2}+1\right)+2 x e^{x} . \\
f^{\prime \prime}(x) & =e^{x}\left(x^{2}+1\right)+2 x e^{x}+2 e^{x}+2 x e^{x} \\
& =e^{x}\left(x^{2}+1+2 x+2+2 x\right) \\
& =e^{x}(x+1)(x+3)
\end{aligned}
$$

As $e^{x}>0, f^{\prime \prime}(x)=0$ if and only if $x=-1,-3$.

Interval	$(-\infty,-3)$	$(-3,-1)$	$(-1, \infty)$
Sign of $f^{\prime \prime}(x)$	+	-	+

Inflection points : $x=-1$ and $x=-3$.
Concave up : $(-\infty,-3) \cup(-1, \infty)$
Concave down : $(-3,-1)$

MAT 1339 A Fall 2010. November 3rd, Instructor Catalin Rada

TEST \#2

$$
\operatorname{Max}=20
$$

Student Number:

- Time: 80 min .
- Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.
- Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.
- Write only in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.
- Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [3 points] Find the derivative of the function $f(x)=\tan (4 x)+\cos (3 x)+\sin (x)$. Hint: recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.
Solution: $f(x)=\frac{\sin (4 x)}{\cos (4 x)}+\cos (3 x)+\sin (x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{4 \cos ^{2}(4 x)+4 \sin ^{2}(4 x)}{\cos ^{2}(4 x)}-3 \sin (3 x)+\cos (x) \\
& =\frac{4}{\cos ^{2}(4 x)}-3 \sin (3 x)+\cos (x) \quad, \text { as } \cos ^{2}(4 x)+\sin ^{2}(4 x)=1
\end{aligned}
$$

2. [3 points] Find the derivative of $h(x)=\frac{e^{7 x}}{\sin (7 x)}$.

Solution:

$$
h^{\prime}(x)=\frac{7 e^{7 x} \sin (7 x)-7 e^{7 x} \cos (7 x)}{\sin ^{2}(7 x)}
$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x)=\cos (\sin (x))+x$ at $(0,1)=(0, f(0))$.

Solution:

$f^{\prime}(x)=-\sin (\sin (x)) \cdot \cos (x)+1$.
The slope of the tangent line is $f^{\prime}(0)=\sin (\sin (0)) \cdot \cos (0)+1=1$.
The equation of tangent line is $y-1=x$ or $y=x+1$.
4. [7 points] (i) Solve the equation $e^{7 x+1}=4$, i.e., you must find x;
(ii) Solve the equation $\ln (3 x)=2$, i.e., you must find x;
(iii) Find $f^{\prime}(2)$ if $f(x)=\cos \left(\frac{\pi}{2} e^{x-2}\right)$.

Solution:

(i)

$$
7 x+1=\ln 4 . \text { Hence, } x=\frac{\ln 4-1}{7} .
$$

(ii)

$$
3 x=e^{2} . \text { Hence, } x=\frac{e^{2}}{3} \text {. }
$$

(iii)

$$
\begin{gathered}
f^{\prime}(x)=-\sin \left(\frac{\pi}{2} \cdot e^{x-2}\right)\left(\frac{\pi}{2} \cdot e^{x-2}\right) \\
f^{\prime}(2)=-\sin \left(\frac{\pi}{2}\right) \cdot\left(\frac{\pi}{2}\right) \\
=-\frac{\pi}{2}
\end{gathered}
$$

5. [5 points] Find (if any) the inflection point(s) of $f(x)=e^{x}\left(x^{2}-1\right)$. When is f concave up? When is f concave down? Hint: construct a table including $x, f(x), f^{\prime \prime}(x)$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}\left(x^{2}-1\right)+2 x e^{x} . \\
f^{\prime \prime}(x)= & e^{x}\left(x^{2}-1\right)+2 x e^{x}+2 e^{x}+2 x e^{x} \\
= & e^{x}\left(x^{2}-1+2 x+2+2 x\right) \\
= & e^{x}\left(x^{2}+4 x+1\right) \\
= & e^{x}(x-(-2+\sqrt{3}))(x-(-2-\sqrt{3}))
\end{aligned}
$$

As $e^{x}>0, f^{\prime \prime}(x)=0$ if and only if $x=-2+\sqrt{3},-2-\sqrt{3}$.

Interval	$(-\infty,-2-\sqrt{3})$	$(-2-\sqrt{3},-2+\sqrt{3})$	$(-2+\sqrt{3}, \infty)$
Sign of $f^{\prime \prime}(x)$	+	-	+

Inflection points : $x=-2-\sqrt{3}$ and $x=-2+\sqrt{3}$.
Concave up : $(-\infty,-2-\sqrt{3}) \cup(-2+\sqrt{3}, \infty)$
Concave down : $(-2-\sqrt{3},-2+\sqrt{3})$

