MAT 1339 A Fall 2010 October 14th, 11:30 Prof. C. Rada

TEST #1

Max = 20

Student Number: _____

• Time: 80 min.

• Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.

• Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.

• Write *only* in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.

• Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [2 points] Find two integers with sum 40 and whose product is a maximum.

Solution 1: Let x and y be two integers such that x + y = 40. The product xy of two integers is x(40 - x) by substitution. Let f(x) = x(40 - x). This function has a maximum at the critical point, because the coefficient of the term x^2 of f(x) is negative. As f'(x) = 40 - 2x, x = 20 is the critical point and hence x = y = 20 give a maximum of the product of x and y.

Solution 2: As the product of a negative number and a positive number is negative, we may assume that two integers x and y are positive (of course, sum of negative numbers cannot be 40) such that x + y = 40. As

$$\frac{x+y}{2} \ge \sqrt{xy} \text{ and the equality holds if and only if } x = y, \tag{1}$$

we have x = y = 20 to maximize their product.

The inequality (??) is true, because $\frac{x+y}{2} \ge \sqrt{xy} \iff (\frac{x+y}{2})^2 \ge (\sqrt{xy})^2 \iff (\frac{x-y}{2})^2 \ge 0$ and the equality of the last inequality holds if and only if x = y.

2. [2 points] Assume that f(x) = g(h(x)) and that h(7) = 19, h'(7) = -1, g(19) = -1, g'(19) = 1. Find f'(7).

Solution: By the chain rule, we have $f'(x) = g'(h(x)) \cdot h'(x)$, hence

$$f'(7) = g'(h(7)) \cdot h'(7) = g'(19) \cdot (-1) = 1 \cdot (-1) = -1$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x) = x^3 + x^2 + x - 1$ at (1, 2) = (1, f(1)).

Solution: As $f'(x) = 3x^2 + 2x + 1$, the slope of the tangent line at x = 1 is

$$f'(1) = 3 \cdot 1^2 + 2 \cdot 1 + 1 = 6.$$

Let y = 6x + n be the tangent line for some constant n. As the tangent line passes through (1, 2), we get $2 = 6 \cdot 1 + n$, so n = -4. Therefore, the equation of the tangent line is y = 6x - 4.

4. [7 points] **Graph** the function $f(x) = \frac{x^2 + x - 2}{x^2}$ by following the steps:

— Calculate f'(x) and find critical numbers. When is f increasing? When is f decreasing? Find local maximums and local minimums (if any). Find absolute maximums and absolute minimums (if any).

— Calculate f''(x) and find inflection points. When is f concave up? When is f concave down?

— Find the vertical and horizontal asymptotes (if any).

Solution:

$$f'(x) = \frac{(x^2 + x - 2)'x^2 - (x^2 + x - 2)(x^2)'}{x^4} = \frac{(2x + 1)x^2 - (x^2 + x - 2) \cdot 2x}{x^4} = \frac{-x(x - 4)}{x^4}$$

As the denominator x^4 cannot be 0, f'(x) = 0 has the root x = 4, which is the critical point.

$$f''(x) = \frac{(-x^2 + 4x)'(x^4) - (-x^2 + 4x)(x^4)'}{(x^4)^2} = \frac{(-2x + 4)x^4 - (-x^2 + 4x)(4x^3)}{x^8} = \frac{2x^4(x - 6)}{x^8}.$$

As the denominator x^8 cannot be 0, f''(x) = 0 has the root x = 6, which is a candidate for the inflection point. As

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(1 + \frac{1}{x} - \frac{2}{x^2}\right) = \lim_{x \to 0} \left(1 + \frac{1}{x}\left(1 - \frac{2}{x}\right)\right) = -\infty,$$

x = 0 (or y-axis) is the vertical asymptote. As

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} (1 + \frac{1}{x} - \frac{2}{x^2}) = 1,$$

y = 1 (yellow line in the picture below) is the horizontal asymptote.

We divide the real line into intervals with respect to x = 0, x = 4 and x = 6. Then we have the following table:

Interval	$(-\infty, 0)$	(0,4)	(4,6)	$(6,\infty)$
Sign of $f'(x)$	_	+	—	—
Sign of $f''(x)$	—	_	—	+
Shape of curve	DU(Red)	IU(Blue)	DU(Gray)	DD(Green)

where DU:=Decreasing and concave Up, IU:=Increasing and concave Up, and DD:=Decreasing and concave Down.

According to the table or the graph, x = 6 is the inflection point, (0, 4) is the interval of increasing ($\mathbb{R} \setminus (0, 4)$ is the union of the intervals of decreasing), $(6, \infty)$ is the interval of concave up ($\mathbb{R} \setminus (6, \infty)$) is the union of the intervals of concave down), and (4, f(4)) = (4, 9/8) is both local maximum and absolute maximum. There are no local minimum and absolute minimum for this this function.

Graph of f(x):

As f(x) = 0 has roots x = -2 and x = 1, x-intercepts are (-2, 0) and (1, 0).

5. [3 points] Use the definition of the derivative to find f'(x) if $f(x) = -x^2 - x^3$. And then use the Power Rule to verify your answer.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{-(x+h)^2 - (x+h)^3 - [-x^2 - x^3]}{h}$$

=
$$\lim_{h \to 0} \frac{-2xh - h^2 - 3x^2h - 3xh^2 - h^3}{h}$$

=
$$\lim_{h \to 0} -2x - h - 3x^2 - 3xh - h^2$$

=
$$-2x - 3x^2.$$

By the power rule, $f'(x) = -2x - 3x^2$.

6. [2 points] Differentiate the following function:

 $h(x) = (x^3 + x^2 + x + 1)^{\frac{1}{2010}}$

Solution: By the chain rule, we have

$$h'(x) = \frac{1}{2010} (x^3 + x^2 + x + 1)^{\frac{1}{2010} - 1} \cdot (x^3 + x^2 + x + 1)'$$

= $\frac{1}{2010} (x^3 + x^2 + x + 1)^{-\frac{2009}{2010}} \cdot (3x^2 + 2x + 1).$

MAT 1339 A Fall 2010. October 14th, 11:30 Prof. C. Rada

TEST #1

Max = 20

Student Number: _____

• Time: 80 min.

• Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.

• Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.

• Write *only* in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.

• Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [2 points] Find two integers with sum 60 and whose product is a maximum.

Solution 1: Let x and y be two integers such that x + y = 60. The product xy of two integers is x(60 - x) by substitution. Let f(x) = x(60 - x). This function has a maximum at the critical point, because the coefficient of the term x^2 of f(x) is negative. As f'(x) = 60 - 2x, x = 30 is the critical point and hence x = y = 30 give a maximum of the product of x and y.

Solution 2: As the product of a negative number and a positive number is negative, we may assume that two integers x and y are positive (of course, sum of negative numbers cannot be 60) such that x + y = 60. As

$$\frac{x+y}{2} \ge \sqrt{xy} \text{ and the equality holds if and only if } x = y, \tag{2}$$

we have x = y = 30 to maximize their product.

The inequality (??) is true, because $\frac{x+y}{2} \ge \sqrt{xy} \iff (\frac{x+y}{2})^2 \ge (\sqrt{xy})^2 \iff (\frac{x-y}{2})^2 \ge 0$ and the equality of the last inequality holds if and only if x = y.

2. [2 points] Assume that f(x) = g(h(x)) and that h(17) = 3, h'(17) = -1, g(3) = -1, g'(3) = 1. Find f'(17).

Solution: By the chain rule, we have $f'(x) = g'(h(x)) \cdot h'(x)$, hence

$$f'(17) = g'(h(17)) \cdot h'(17) = g'(3) \cdot (-1) = 1 \cdot (-1) = -1.$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x) = x^3 - x^2 - x - 1$ at (1, -2) = (1, f(1)).

Solution: As $f'(x) = 3x^2 - 2x - 1$, the slope of the tangent line at x = 1 is

$$f'(1) = 3 \cdot 1^2 - 2 \cdot 1 - 1 = 0.$$

Let y = n be the tangent line for some constant n. As the tangent line passes through (1, -2), we get n = -2. Therefore, the equation of the tangent line is y = -2.

4. [7 points] **Graph** the function $f(x) = \frac{-x^2 - x + 2}{x^2}$ by following the steps:

— Calculate f'(x) and find critical numbers. When is f increasing? When is f decreasing? Find local maximums and local minimums (if any). Find absolute maximums and absolute minimums (if any).

— Calculate f''(x) and find inflection points. When is f concave up? When is f concave down?

— Find the vertical and horizontal asymptotes (if any).

Solution:

$$f'(x) = \frac{(-x^2 - x + 2)'x^2 - (-x^2 - x + 2)(x^2)'}{x^4} = \frac{(-2x - 1)x^2 - (-x^2 - x + 2) \cdot 2x}{x^4} = \frac{x(x - 4)}{x^4}.$$

As the denominator x^4 cannot be 0, f'(x) = 0 has the root x = 4, which is the critical point.

$$f''(x) = \frac{(x^2 - 4x)'(x^4) - (x^2 - 4x)(x^4)'}{(x^4)^2} = \frac{(2x - 4)x^4 - (x^2 - 4x)(4x^3)}{x^8} = \frac{-2x^4(x - 6)}{x^8}.$$

As the denominator x^8 cannot be 0, f''(x) = 0 has the root x = 6, which is a candidate for the inflection point. As

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(-1 - \frac{1}{x} + \frac{2}{x^2} \right) = \lim_{x \to 0} \left(-1 + \frac{1}{x} \left(\frac{2}{x} - 1 \right) \right) = \infty$$

x = 0 (or y-axis) is the vertical asymptote. As

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} (-1 - \frac{1}{x} + \frac{2}{x^2}) = -1,$$

y = -1 (yellow line in the picture below) is the horizontal asymptote.

We divide the real line into intervals with respect to x = 0, x = 4 and x = 6. Then we have the following table:

Interval	$(-\infty,0)$	(0,4)	(4,6)	$(6,\infty)$
Sign of $f'(x)$	+	_	+	+
Sign of $f''(x)$	+	+	+	—
Shape of curve	IU(Red)	DU(Blue)	IU(Gray)	ID(Green)

where IU:=Increasing and concave Up, DU:=Decreasing and concave Up, and ID:=Increasing and concave Down.

According to the table or the graph, x = 6 is the inflection point, (0, 4) is the interval of decreasing $(\mathbb{R} \setminus (0, 4)$ is the union of the intervals of increasing), $(6, \infty)$ is the interval of concave down $(\mathbb{R} \setminus (6, \infty)$ is the union of the intervals of concave up), and (4, f(4)) = (4, -9/8) is both local minimum and absolute minimum. There are no local maximum and absolute maximum for this this function.

Graph of f(x):

As f(x) = 0 has roots x = -2 and x = 1, x-intercepts are (-2, 0) and (1, 0).

5. [3 points] Use the definition of the derivative to find f'(x) if $f(x) = x^3 - x$. And then use the Power Rule to verify your answer.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^3 - (x+h) - [x^3 - x]}{h}$$

=
$$\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$$

=
$$\lim_{h \to 0} 3x^2 + 3xh + h^2 - 1$$

=
$$3x^2 - 1.$$

By the power rule, $f'(x) = 3x^2 - 1$.

6. [2 points] Differentiate the following function:

 $h(x) = (x^3 + x^2 - x - 1)^{\frac{1}{2011}}$

Solution: By the chain rule, we have

$$h'(x) = \frac{1}{2011} (x^3 + x^2 - x - 1)^{\frac{1}{2011} - 1} \cdot (x^3 + x^2 - x - 1)'$$

= $\frac{1}{2011} (x^3 + x^2 - x - 1)^{-\frac{2010}{2011}} \cdot (3x^2 + 2x - 1).$