MAT 1339 A Fall 2010 October 14th, 11:30 Prof. C. Rada

TEST \#1

$$
\operatorname{Max}=20
$$

Student Number:

- Time: 80 min .
- Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.
- Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.
- Write only in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.
- Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [2 points] Find two integers with sum 40 and whose product is a maximum.

Solution 1: Let x and y be two integers such that $x+y=40$. The product $x y$ of two integers is $x(40-x)$ by substitution. Let $f(x)=x(40-x)$. This function has a maximum at the critical point, because the coefficient of the term x^{2} of $f(x)$ is negative. As $f^{\prime}(x)=40-2 x, x=20$ is the critical point and hence $x=y=20$ give a maximum of the product of x and y.

Solution 2: As the product of a negative number and a positive number is negative, we may assume that two integers x and y are positive (of course, sum of negative numbers cannot be 40) such that $x+y=40$. As

$$
\begin{equation*}
\frac{x+y}{2} \geq \sqrt{x y} \text { and the equality holds if and only if } x=y \tag{1}
\end{equation*}
$$

we have $x=y=20$ to maximize their product.
The inequality (??) is true, because $\frac{x+y}{2} \geq \sqrt{x y} \Longleftrightarrow\left(\frac{x+y}{2}\right)^{2} \geq(\sqrt{x y})^{2} \Longleftrightarrow\left(\frac{x-y}{2}\right)^{2} \geq 0$ and the equality of the last inequality holds if and only if $x=y$.
2. [2 points] Assume that $f(x)=g(h(x))$ and that $h(7)=19, h^{\prime}(7)=-1, g(19)=-1$, $g^{\prime}(19)=1$. Find $f^{\prime}(7)$.

Solution: By the chain rule, we have $f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x)$, hence

$$
f^{\prime}(7)=g^{\prime}(h(7)) \cdot h^{\prime}(7)=g^{\prime}(19) \cdot(-1)=1 \cdot(-1)=-1 .
$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x)=x^{3}+x^{2}+x-1$ at $(1,2)=(1, f(1))$.
Solution: As $f^{\prime}(x)=3 x^{2}+2 x+1$, the slope of the tangent line at $x=1$ is

$$
f^{\prime}(1)=3 \cdot 1^{2}+2 \cdot 1+1=6
$$

Let $y=6 x+n$ be the tangent line for some constant n. As the tangent line passes through $(1,2)$, we get $2=6 \cdot 1+n$, so $n=-4$. Therefore, the equation of the tangent line is $y=6 x-4$.
4. [7 points] Graph the function $f(x)=\frac{x^{2}+x-2}{x^{2}}$ by following the steps:

- Calculate $f^{\prime}(x)$ and find critical numbers. When is f increasing? When is f decreasing? Find local maximums and local minimums (if any). Find absolute maximums and absolute minimums (if any).
- Calculate $f^{\prime \prime}(x)$ and find inflection points. When is f concave up? When is f concave down?
- Find the vertical and horizontal asymptotes (if any).

Solution:

$f^{\prime}(x)=\frac{\left(x^{2}+x-2\right)^{\prime} x^{2}-\left(x^{2}+x-2\right)\left(x^{2}\right)^{\prime}}{x^{4}}=\frac{(2 x+1) x^{2}-\left(x^{2}+x-2\right) \cdot 2 x}{x^{4}}=\frac{-x(x-4)}{x^{4}}$.
As the denominator x^{4} cannot be $0, f^{\prime}(x)=0$ has the root $x=4$, which is the critical point.
$f^{\prime \prime}(x)=\frac{\left(-x^{2}+4 x\right)^{\prime}\left(x^{4}\right)-\left(-x^{2}+4 x\right)\left(x^{4}\right)^{\prime}}{\left(x^{4}\right)^{2}}=\frac{(-2 x+4) x^{4}-\left(-x^{2}+4 x\right)\left(4 x^{3}\right)}{x^{8}}=\frac{2 x^{4}(x-6)}{x^{8}}$.
As the denominator x^{8} cannot be $0, f^{\prime \prime}(x)=0$ has the root $x=6$, which is a candidate for the inflection point. As

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(1+\frac{1}{x}-\frac{2}{x^{2}}\right)=\lim _{x \rightarrow 0}\left(1+\frac{1}{x}\left(1-\frac{2}{x}\right)\right)=-\infty
$$

$x=0$ (or y-axis) is the vertical asymptote. As

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}\left(1+\frac{1}{x}-\frac{2}{x^{2}}\right)=1
$$

$y=1$ (yellow line in the picture below) is the horizontal asymptote.
We divide the real line into intervals with respect to $x=0, x=4$ and $x=6$. Then we have the following table:

Interval	$(-\infty, 0)$	$(0,4)$	$(4,6)$	$(6, \infty)$
Sign of $f^{\prime}(x)$	-	+	-	-
Sign of $f^{\prime \prime}(x)$	-	-	-	+
Shape of curve	DU(Red)	IU(Blue)	DU(Gray)	DD(Green)

where DU:=Decreasing and concave Up, IU:=Increasing and concave Up, and DD:=Decreasing and concave Down.

According to the table or the graph, $x=6$ is the inflection point, $(0,4)$ is the interval of increasing $(\mathbb{R} \backslash(0,4)$ is the union of the intervals of decreasing $),(6, \infty)$ is the interval of concave up $(\mathbb{R} \backslash(6, \infty)$ is the union of the intervals of concave down), and $(4, f(4))=$ $(4,9 / 8)$ is both local maximum and absolute maximum. There are no local minimum and absolute minimum for this this function.

Graph of $f(x)$:
As $f(x)=0$ has roots $x=-2$ and $x=1, x$-intercepts are $(-2,0)$ and $(1,0)$.

5. [3 points] Use the definition of the derivative to find $f^{\prime}(x)$ if $f(x)=-x^{2}-x^{3}$. And then use the Power Rule to verify your answer.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)^{2}-(x+h)^{3}-\left[-x^{2}-x^{3}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0}-2 x-h-3 x^{2}-3 x h-h^{2} \\
& =-2 x-3 x^{2} .
\end{aligned}
$$

By the power rule, $f^{\prime}(x)=-2 x-3 x^{2}$.
6. [2 points] Differentiate the following function:
$h(x)=\left(x^{3}+x^{2}+x+1\right)^{\frac{1}{2010}}$
Solution: By the chain rule, we have

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{2010}\left(x^{3}+x^{2}+x+1\right)^{\frac{1}{2010}-1} \cdot\left(x^{3}+x^{2}+x+1\right)^{\prime} \\
& =\frac{1}{2010}\left(x^{3}+x^{2}+x+1\right)^{-\frac{2009}{2010}} \cdot\left(3 x^{2}+2 x+1\right) .
\end{aligned}
$$

MAT 1339 A Fall 2010. October 14th, 11:30 Prof. C. Rada

TEST \#1

$$
\operatorname{Max}=20
$$

Student Number:

- Time: 80 min .
- Only basic scientific calculators are permitted: non-programmable, non-graphing, no differentiation or integration capability. Notes or books are not permitted.
- Work all problems in the space provided. Use the backs of the pages for rough work if necessary. Do not use any other paper.
- Write only in non-erasable ink (ball-point or pen), not in pencil. Cross out, if necessary, but do not erase or overwrite. Graphs and sketches may be drawn in pencil.
- Problems require complete and clearly presented solutions and carry part marks if there is substantial correct work toward the solution.

1. [2 points] Find two integers with sum 60 and whose product is a maximum.

Solution 1: Let x and y be two integers such that $x+y=60$. The product $x y$ of two integers is $x(60-x)$ by substitution. Let $f(x)=x(60-x)$. This function has a maximum at the critical point, because the coefficient of the term x^{2} of $f(x)$ is negative. As $f^{\prime}(x)=60-2 x, x=30$ is the critical point and hence $x=y=30$ give a maximum of the product of x and y.

Solution 2: As the product of a negative number and a positive number is negative, we may assume that two integers x and y are positive (of course, sum of negative numbers cannot be 60) such that $x+y=60$. As

$$
\begin{equation*}
\frac{x+y}{2} \geq \sqrt{x y} \text { and the equality holds if and only if } x=y \tag{2}
\end{equation*}
$$

we have $x=y=30$ to maximize their product.
The inequality (??) is true, because $\frac{x+y}{2} \geq \sqrt{x y} \Longleftrightarrow\left(\frac{x+y}{2}\right)^{2} \geq(\sqrt{x y})^{2} \Longleftrightarrow\left(\frac{x-y}{2}\right)^{2} \geq 0$ and the equality of the last inequality holds if and only if $x=y$.
2. [2 points] Assume that $f(x)=g(h(x))$ and that $h(17)=3, h^{\prime}(17)=-1, g(3)=-1$, $g^{\prime}(3)=1$. Find $f^{\prime}(17)$.

Solution: By the chain rule, we have $f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x)$, hence

$$
f^{\prime}(17)=g^{\prime}(h(17)) \cdot h^{\prime}(17)=g^{\prime}(3) \cdot(-1)=1 \cdot(-1)=-1 .
$$

3. [2 points] Find the equation of the tangent line to the graph of $f(x)=x^{3}-x^{2}-x-1$ at $(1,-2)=(1, f(1))$.
Solution: As $f^{\prime}(x)=3 x^{2}-2 x-1$, the slope of the tangent line at $x=1$ is

$$
f^{\prime}(1)=3 \cdot 1^{2}-2 \cdot 1-1=0 .
$$

Let $y=n$ be the tangent line for some constant n. As the tangent line passes through $(1,-2)$, we get $n=-2$. Therefore, the equation of the tangent line is $y=-2$.
4. [7 points] Graph the function $f(x)=\frac{-x^{2}-x+2}{x^{2}}$ by following the steps:

- Calculate $f^{\prime}(x)$ and find critical numbers. When is f increasing? When is f decreasing? Find local maximums and local minimums (if any). Find absolute maximums and absolute minimums (if any).
- Calculate $f^{\prime \prime}(x)$ and find inflection points. When is f concave up? When is f concave down?
- Find the vertical and horizontal asymptotes (if any).

Solution:

$f^{\prime}(x)=\frac{\left(-x^{2}-x+2\right)^{\prime} x^{2}-\left(-x^{2}-x+2\right)\left(x^{2}\right)^{\prime}}{x^{4}}=\frac{(-2 x-1) x^{2}-\left(-x^{2}-x+2\right) \cdot 2 x}{x^{4}}=\frac{x(x-4)}{x^{4}}$.
As the denominator x^{4} cannot be $0, f^{\prime}(x)=0$ has the root $x=4$, which is the critical point.

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}-4 x\right)^{\prime}\left(x^{4}\right)-\left(x^{2}-4 x\right)\left(x^{4}\right)^{\prime}}{\left(x^{4}\right)^{2}}=\frac{(2 x-4) x^{4}-\left(x^{2}-4 x\right)\left(4 x^{3}\right)}{x^{8}}=\frac{-2 x^{4}(x-6)}{x^{8}} .
$$

As the denominator x^{8} cannot be $0, f^{\prime \prime}(x)=0$ has the root $x=6$, which is a candidate for the inflection point. As

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(-1-\frac{1}{x}+\frac{2}{x^{2}}\right)=\lim _{x \rightarrow 0}\left(-1+\frac{1}{x}\left(\frac{2}{x}-1\right)\right)=\infty,
$$

$x=0$ (or y-axis) is the vertical asymptote. As

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}\left(-1-\frac{1}{x}+\frac{2}{x^{2}}\right)=-1
$$

$y=-1$ (yellow line in the picture below) is the horizontal asymptote.
We divide the real line into intervals with respect to $x=0, x=4$ and $x=6$. Then we have the following table:

Interval	$(-\infty, 0)$	$(0,4)$	$(4,6)$	$(6, \infty)$
Sign of $f^{\prime}(x)$	+	-	+	+
Sign of $f^{\prime \prime}(x)$	+	+	+	-
Shape of curve	$\mathrm{IU}($ Red $)$	DU (Blue)	IU (Gray)	ID (Green)

where IU:=Increasing and concave Up, DU:=Decreasing and concave Up, and ID:=Increasing and concave Down.

According to the table or the graph, $x=6$ is the inflection point, $(0,4)$ is the interval of decreasing ($\mathbb{R} \backslash(0,4)$ is the union of the intervals of increasing), $(6, \infty)$ is the interval of concave down $(\mathbb{R} \backslash(6, \infty)$ is the union of the intervals of concave up), and $(4, f(4))=$ $(4,-9 / 8)$ is both local minimum and absolute minimum. There are no local maximum and absolute maximum for this this function.

Graph of $f(x)$:
As $f(x)=0$ has roots $x=-2$ and $x=1, x$-intercepts are $(-2,0)$ and $(1,0)$.

5. [3 points] Use the definition of the derivative to find $f^{\prime}(x)$ if $f(x)=x^{3}-x$. And then use the Power Rule to verify your answer.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-(x+h)-\left[x^{3}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1 \\
& =3 x^{2}-1 .
\end{aligned}
$$

By the power rule, $f^{\prime}(x)=3 x^{2}-1$.
6. [2 points] Differentiate the following function:
$h(x)=\left(x^{3}+x^{2}-x-1\right)^{\frac{1}{2011}}$
Solution: By the chain rule, we have

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{2011}\left(x^{3}+x^{2}-x-1\right)^{\frac{1}{2011}-1} \cdot\left(x^{3}+x^{2}-x-1\right)^{\prime} \\
& =\frac{1}{2011}\left(x^{3}+x^{2}-x-1\right)^{-\frac{2010}{2011}} \cdot\left(3 x^{2}+2 x-1\right) .
\end{aligned}
$$

