Disclaimer: this exercises help you better prep your final exam. They are designed only to make life easier, and to push some students to do a real prep by themselves. Recall that we posted another review. It is appropriate to check that file too. Good Luck!

Important identities: $x^{2}-y^{2}=(x-y)(x+y) ;(x+y)^{2}=x^{2}+2 x y+y^{2} ;(x-y)^{2}=$ $x^{2}-2 x y+y^{2} ; x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$.

1. Solve $\ln (2009 x+2010)=-2011$.

Solution: Composing with the exponential function one gets that $2009 x+2010=e^{-2011}$, thus we isolate x as follows:
$2009 x=e^{-2011}-2010$, hence $x=\frac{e^{-2011}-2010}{2009}$. Hard?
2. Solve $e^{87 x-56}=4$.

Solution: Using the fact the \ln is the inverse function of the exponential one gets that $87 x-56=\ln (4)$. Isolate x as follows:
$87 x=56+\ln (4)$, hence $x=\frac{56+\ln (4)}{87}$. Is it harder than exercise 1 ? Why?
3. Are the following vectors perpendicular? Explain.
$\vec{u}=[3,1,45] \quad \vec{v}=[-15,0,1]$
Solution: Note that $\vec{u} \cdot \vec{v}=3 \times(-15)+1 \times 0+45 \times 1=0$. Thus they are perpendicular. (Recall that 2 vectors are perpendicular if and only if their dot product is 0 .)
4. Find the derivative of $\frac{\cos (2 x)}{e^{2 x}}+e^{\sin (x)}+2^{x}$.
5. Find the equation of the tangent line to the graph of $f(x)=\frac{\sin (2 x)}{e^{2 x}}+e^{\sin (x)}+2^{x}$ at the point (0,2).
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

