Important identities: $x^{2}-y^{2}=(x-y)(x+y) ;(x+y)^{2}=x^{2}+2 x y+y^{2} ;(x-y)^{2}=$ $x^{2}-2 x y+y^{2} ; x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Exercise 1. Find the equation of the tangent line to the graph of $f(x)=3 x^{2}-x^{3}$ at the point $(1,2)$.

Solution: The equation is $y=m x+n$, and we need to find m (the slope) and n (the y-intercept).

Recall that $m=f^{\prime}(1)$, so we need $f^{\prime}(x)$. Now use Power rule, sum rule and get that $f^{\prime}(x)=6 x-3 x^{2}$. Hence $f^{\prime}(1)=6-3=3$. It follows that $y=3 x+n$. Since the point $(1,2)$ belongs to both the graph and tangent line, one gets that $2=3+n$, thus $n=2-3=-1$. We got the equation: $y=3 x-1$.

Exercise 2. Find the derivatives of the functions: (a) $f(x)=\left\{2010 x^{2010}+3\right\}^{77}$;
(b) $g(x)=\frac{x^{3}-x}{x^{2}+1}$;
(c) $h(x)=\left(1-x+x^{5}\right)\left(2 x^{3}+x\right)$.

State what rules you used!
Hints: (a) By Chain rule and Power rule: $\left(2010 x^{2010}+3\right)^{77-1}\left(2010 \times 2010 x^{2010-1}+0\right)=\ldots$. Please finish the computations!
(b) By Quotient rule: $\frac{\left(3 x^{2}-1\right)\left(x^{2}+1\right)-\left(x^{3}-x\right)(2 x)}{\left(x^{2}+1\right)^{2}}=\ldots$ Please finish the computations!
(c) By Product rule: $\left(0-1+5 x^{4}\right)\left(2 x^{3}+x\right)+\left(1-x+x^{5}\right)\left(6 x^{2}+1\right)=\ldots$ Please finish the computations!

Exercise 3. Find the derivative of $\sqrt[7]{34 x^{3}-x^{2}+23}$.
Solution: Our function is in fact $\left(34 x^{3}-x^{2}+23\right)^{\frac{1}{7}}$, thus by chain rule and power rule one gets $\frac{1}{7}\left(34 x^{3}-x^{2}+23\right)^{\frac{-6}{7}}\left(102 x^{2}-2 x+0\right)$.

Exercise 4. Find the vertical and horizontal asymptotes (if any) of $k(x)=\frac{x-9}{x^{2}-6 x+9}$.
Hint: What limits should you compute? Are you able to compute $\lim _{x \rightarrow 3^{-}} k(x)$? What about $\lim _{x \rightarrow 3^{+}} k(x)$? Does $\lim _{x \rightarrow 3} k(x)$ exist?

What is $\lim _{x \rightarrow-\infty} k(x) ? \lim _{x \rightarrow \infty} k(x)$? Divide top and bottom by x, and then compute the last 2 limits! As we did in class with other functions!

Exercise 5. Did you memorize Chain rule? Are you able to apply chain rule?
Exercise 6. Find the derivative of the function $f(x)=\tan (2010 x)-\cos (89 x)-x \sin (x)$. Hint: recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.

Hint: note that (by Quotient rule and by trig identity) $\{\tan (2010 x)\}^{\prime}=\left\{\frac{\sin (2010 x)}{\cos (2010 x)}\right\}^{\prime}=$ $\frac{2010 \cos (2010 x) \cos (2010 x)-\sin (2010 x)\{-\sin (2010 x) 2010\}}{\cos ^{2}(2010 x)}=\frac{2010}{\cos ^{2}(2010 x)}$; note that $\{-\cos (89 x)\}^{\prime}=-\{-\sin (89 x) 89\}$; note that by product rule one has that $\{-x \sin (x)\}^{\prime}=-\sin (x)-x \cos (x)$. Can you now glue together all pieces (using sum rule)?

Exercise 7. Find the derivative of the function $h(x)=\tan (x)+\cos (2010 x)+\sin (2 x)$. Hint: recall that $\tan (x)=\frac{\sin (x)}{\cos (x)}$.

Exercise 8. Find the derivative of $h(x)=\frac{\cos (7 x)}{e^{7 x}}$.
Hint: Use quotient rule and compute yourself: $\frac{-\sin (7 x) 7 e^{7 x}-\cos (7 x) e^{7 x} 7}{e^{14 x}}$. Of course you must know that 2 times $7=14$.

Exercise 9. Solve the equation $e^{89 x+1}=2$.
Solution: Apply \ln to both sides and get $89 x+1=\ln (2)$. Can you isolate x ?

Exercise 10. Solve the equation $\ln (9 x)=3$.
Solution: Use the laws: $\ln (9)+\ln (x)=3$, thus $\ln (x)=3-\ln (9)$, thus $x=e^{3-\ln (9)}$. Now use your famous calculator!

Exercise 11. Find (if any) the inflection point(s) of $f(x)=e^{2 x}\left(-x^{2}+1\right)$.
Hint: Are you able to compute the first derivative? Did you get by product rule and chain rule and power rule that $f^{\prime}(x)=e^{2 x}\left\{2-2 x^{2}-2 x\right\}$? OK! Are you able to get by the same rules the second derivative (that's what you need!)? Did you get that $f^{\prime \prime}(x)=e^{2 x}\left\{-4 x^{2}-8 x+2\right\}$? Now just use the quadratic formula(do you really know it?) to get the two inflection points! Are you able to find when is f concave down? Concave up?

