MAT 1339 A Assignment 2 (Due TUE. NOV. 2nd, 11:30) Student Number:

Name:

Problem 1: Find the equation of the tangent line to the graph of $f(x)=x^{2} \sin (2 x)$ at $x=\pi$.
Work: Compute $f^{\prime}(x)=2 x \sin (2 x)+x^{2} \cos (2 x) 2$ by product rule (and chain rule). Plug in and get $f^{\prime}(\pi)=0+2 \pi^{2}=2 \pi^{2}$. Let $y=m x+n$ be the equation of the tangent line. Then $m=f^{\prime}(\pi)=2 \pi^{2}$. Thus $y=2 \pi^{2} x+n$.

Note that $f(\pi)=0$, hence $0=2 \pi^{2} \pi+n$. Hence $n=-2 \pi^{3}$. We got $y=2 \pi^{2} x-2 \pi^{3}$

Problem 2: Using the rules of differentiation find the derivative of $g(x)=\frac{\cos (2 x)+x-2}{\sin (2 x)}$.
Work: By quotient rule and chain rule one has that $g^{\prime}(x)=\frac{\{-\sin (2 x) 2+1\} \sin (2 x)-\{\cos (2 x)+x-2\} \cos (2 x) 2}{\sin ^{2}(2 x)}$.

No need for simplifications!

Problem 3: If $g(x)=5 \sin (4 \cos (3 x))$ find the derivative of $g(x)$.
Work: Using 2 times chain rule one gets: $g^{\prime}(x)=5 \cos (4 \cos (3 x)) 4(-\sin (3 x)) 3=-60 \cos (4 \cos (3 x)) \sin (3 x)$.

Problem 4: If $f(x)=a x^{3}+b x^{2}+c x+d$ find the values of a, b, c, d such that:
$(0,1)$ is a point of inflection for f;
$(2,6)$ is a local maximum.
Work: From $f(0)=1$ one gets that $d=f(0)=1$. Hence $f(x)=a x^{3}+b x^{2}+c x+1$. Next compute $f^{\prime}(x)=3 a x^{2}+2 b x+c$. From $f^{\prime}(2)=0$, one gets that $12 a+4 b+c=0$. Compute now $f^{\prime \prime}(x)=6 a x+2 b$. From $f^{\prime \prime}(0)=0$ one gets $b=0$.

Hence $12 a+c=0$. FROM $f(2)=6$ one gets $8 a+2 c+1=6$, i.e., $8 a+2 c=5$.
Hence $24 a+2 c=0$ AND $8 a+2 c=5$. SUB and get
$16 a=-5$, hence $a=\frac{-5}{16}$. Thus we got $c=-12 a=\frac{15}{4}$.

Problem 5: If $f(x)=6 x^{2}-11 x-x^{3}$ find the critical numbers. Then find the absolute maximum and minimum values on the interval $0 \leq x \leq 4$.

Work: Compute $f^{\prime}(x)=12 x-11-3 x^{2}$. For critical numbers solve: $f^{\prime}(x)=0$, i.e., $-3 x^{2}+12 x-11=0$. Using the quadratic formula one has:
$x_{1}=\frac{-12-\sqrt{144-4(-3)(-11)}}{-6}=\frac{6+\sqrt{3}}{3}$, and hence by symmetry $x_{2}=\frac{6-\sqrt{3}}{3}$.
Now note that $f(0)=0$ and $f(4)=-12$.
Plug in and get $f\left(\frac{6+\sqrt{3}}{3}\right) \simeq-5.615$ and $f\left(\frac{6-\sqrt{3}}{3}\right) \simeq-6.385$.
Hence the absolute maximum value is 0 , and the absolute minimum value is -12 .

Problem 6: Let $g(x)=\frac{7 x-3}{9-6 x+x^{2}}$. Find all vertical asymptotes, horizontal asymptotes (if any).
Work: VA: Note that $9-6 x+x^{2}=(3-x)^{2}$, hence we compute $\lim _{x \rightarrow 3^{-}} \frac{7 x-3}{9-6 x+x^{2}}=+\infty$, and $\lim _{x \rightarrow 3^{+}} \frac{7 x-3}{9-6 x+x^{2}}=$ $+\infty$.

Conclusion: $x=3$ is a vertical asymptote!
HA: We compute $\lim _{x \rightarrow \infty} \frac{7 x-3}{9-6 x+x^{2}}=\lim _{x \rightarrow \infty} \frac{7-\frac{3}{x}}{\frac{9}{x}-6+x}=0$ and $\lim _{x \rightarrow-\infty} \frac{7 x-3}{9-6 x+x^{2}}=\lim _{x \rightarrow-\infty} \frac{7-\frac{3}{x}}{\frac{9}{x}-6+x}=0$.
Conclusion: $y=0$ is a horizontal asymptote!

