MAT 1339 A Assignment 3 (Due THU. NOV. 11th, 11:30) Student Number:

Name:

Problem 1: Find the equation of the tangent line to the graph of $f(x)=\cos \left(e^{x-5}-1\right)+x$ at the point $(5,6)$. Hint: Recall that such an equation has the form $y=m x+n$. What is the meaning of m ? Find m and n.

Work: Say that the equations is $y=m x+n$. Then $f^{\prime}(x)=\left\{-\sin \left(e^{x-5}-1\right)\right\}\left(e^{x-5}\right)+1$. Thus $m=f^{\prime}(5)=1$. So $y=x+n$.
Since $6=5+n$ we get that $n=6-5=1$. Thus $y=x+1$ is the equation we are looking for.

Problem 2: Using the rules of differentiation find the derivative of (i) $89^{7 x-2010}$;
(ii) $37^{37 x-x^{2}} e^{2 x}$;
(iii) $\frac{88^{2 x}}{38^{4 x}}$.

Hint: do not simplify!
Work: (i) By chain rule one has that the derivative is $\left\{89^{7 x-2010} \ln (89)\right\} \times 7$.
(ii) By product rule and chain rule one sees that the derivative is $\left\{37^{37 x-x^{2}} \ln (37)\right\}(37-2 x) e^{2 x}+$ $37^{37 x-x^{2}} 2 e^{2 x}$.
(iii) By quotient rule one sees that the derivative is $\frac{88^{2 x} \cdot \ln (88) \cdot 2 \cdot 38^{4 x}-88^{2 x} \cdot 38^{4 x} \cdot \ln (38) \cdot 4}{38^{8 x}}$.

Problem 3: Superwoman is pulling a batmobile from a ditch. The tension in the cable is 20000 N at an angle of 40 degrees to the horizontal. Find the magnitudes of the vertical and horizontal components of the force.

Work: (see page 348 for a nice picture!) The computations are as follows:
Say that F_{v} and F_{h} are the 2 rectangular components. In the triangle involving F_{v} and F_{h} and the tension we notes that:
$\left|F_{h}\right|=20000 \cos (40)=15320.8888$
and
$\left|F_{v}\right|=20000 \sin (40)=12855.7521$
We used degrees!

Problem 4: What is the magnitude of $\frac{(3 \vec{v}+\vec{u})-\vec{v}-\vec{v}-\vec{v}}{4|\vec{u}|}$ for any non-zero vectors \vec{u} and \vec{v} ?
Work: Note that our vector is in fact $\frac{3 \vec{v}+\vec{u}-\vec{v}-\vec{v}-\vec{v}}{4|\vec{u}|}=\frac{\vec{u}}{4|\vec{u}|}$ (by using commutativity!)
So its size is $\frac{\vec{u}}{4|\vec{u}|}=1 / 4=0.25$.

Problem 5: In a hexagon $A B C D E F$, opposites sides are equal and parallel, and moreover $2 \overrightarrow{A B}=\overrightarrow{F C}$. Express $\overrightarrow{B F}$ in terms of $\overrightarrow{F A}$ and $\overrightarrow{B A}$. Hint: draw a picture!
Work: Note that $\overrightarrow{B F}=\overrightarrow{B A}+\overrightarrow{A F}=\overrightarrow{B A}-\overrightarrow{F A}$.

