MAT 1339 A Assignment 1 (Due THU. Sept. 30th, 11:30) Student Number:
Name:

Problem 1: Using the definition of a derivative find $f^{\prime}(x)$ if $f(x)=x^{3}-2 x+2010$.
Work:

Problem 2: Using the rules of differentiation find the derivative of $g(x)=2 x^{2010}-\frac{1}{2} x^{2000}+\frac{10}{x^{6}}$. Work:

Problem 3: If $g(x)=2 x^{6}-12 x^{3}$ and $f(x)=12 x^{3}+4 x^{4}$ find the derivative of $\frac{f(x)}{g(x)}$.
Work:

Problem 4: If $f(x)=2 x-x^{2010}$ and $g(x)=x^{23}-2010+x^{22}$ find the derivative of $f(x) g(x)$. Work:

Problem 5: If $f(x)= \begin{cases}x+2010, & \text { if } x<3 \\ -2013, & \text { if } x=3 \\ x^{2}+2004, & \text { if } x>3\end{cases}$
(a) find $\lim _{x \rightarrow 3^{-}} f(x), \lim _{x \rightarrow 3^{+}} f(x), \lim _{x \rightarrow 3} f(x)$;
(b) is f continuous at 3 ?

Work: (a)
(b)

Problem 6: Suppose that $a_{1}=1$ and that $a_{n}=\frac{a_{n-1}}{n}$ for $n \geq 2$.
(i) Find a_{5}.
$a_{5}=$
(ii) What statement (circle only one) is true about the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$?
(a) $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing
(b) $\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing
(c) $\left\{a_{n}\right\}_{n=1}^{\infty}$ is neither decreasing nor increasing
(iii) Why does the limit: $\lim _{n \rightarrow \infty} a_{n}$ exist? Give a 1 line answer!
(iv) What is $\lim _{n \rightarrow \infty} a_{n}$?

$$
\lim _{n \rightarrow \infty} a_{n}=
$$

Problem 7: Find the equation of the tangent line to the graph of $f(x)=\frac{x}{x+2}$ at the point $\left(1, \frac{1}{3}\right)$. Hint: Recall that such an equation has the form $y=m x+n$. What is the meaning of m ? Find m and n.

