MAT 1339 AAssignment 1(Due THU. Sept. 30th, 11:30)Student Number:Name:

Problem 1: Using the definition of a derivative find f'(x) if $f(x) = x^3 - 2x + 2010$. Work:

Problem 2: Using the rules of differentiation find the derivative of $g(x) = 2x^{2010} - \frac{1}{2}x^{2000} + \frac{10}{x^6}$. Work: **Problem 3:** If $g(x) = 2x^6 - 12x^3$ and $f(x) = 12x^3 + 4x^4$ find the derivative of $\frac{f(x)}{g(x)}$. Work:

Problem 4: If $f(x) = 2x - x^{2010}$ and $g(x) = x^{23} - 2010 + x^{22}$ find the derivative of f(x)g(x). Work: $\begin{array}{ll} \textbf{Problem 5:} & \text{If } f(x) = \begin{cases} x+2010, & \text{if } x<3\\ -2013, & \text{if } x=3\\ x^2+2004, & \text{if } x>3 \end{cases} \\ (a) \ \text{find } \lim_{x \to 3^-} f(x), \ \lim_{x \to 3^+} f(x), \ \lim_{x \to 3} f(x); \end{array}$

(b) is f continuous at 3?

Work: (a)

Problem 6: Suppose that $a_1 = 1$ and that $a_n = \frac{a_{n-1}}{n}$ for $n \ge 2$.

(i) Find a_5 .

 $a_5 =$

- (ii) What statement (circle only one) is true about the sequence $\{a_n\}_{n=1}^{\infty}$?
- (a) $\{a_n\}_{n=1}^{\infty}$ is increasing
- (b) $\{a_n\}_{n=1}^{\infty}$ is decreasing
- (c) $\{a_n\}_{n=1}^{\infty}$ is neither decreasing nor increasing
- (iii) Why does the limit: $\lim_{n \to \infty} a_n$ exist? Give a 1 line answer!

(iv) What is $\lim_{n \to \infty} a_n$?

 $\lim_{n \to \infty} a_n =$

Problem 7: Find the equation of the tangent line to the graph of $f(x) = \frac{x}{x+2}$ at the point $(1, \frac{1}{3})$. Hint: Recall that such an equation has the form y = mx + n. What is the meaning of m? Find m and n.