MAT 1339 A Assignment 4 (Due DEC. 2nd, 11:30) Student Number:

Name:

Problem 1: Consider the line $[x, y, z]=[1,2,3]+t[5,6,7]$. (a) Is the point $R(3,2,1)$ on this line?
(b) Write the parametric equation of this line.
(c) Does the line $[x, y, z]=[-1,2,-3]+s[0,1,2]$ intersect the line $[x, y, z]=[1,2,3]+t[5,6,7]$?
(d) Give a vector $[a, b, c]$ in the 3 space that is parallel to the line $[x, y, z]=[1,2,3]+t[5,6,7]$ and such that $a<0, b<0$ and $c<0$.

Work:

Problem 2: Let $\vec{u}=[2,-1,2]$ and $\vec{v}=\left[\frac{\sqrt{7}}{2 \sqrt{5}}, \frac{\sqrt{7}}{\sqrt{5}}, \frac{3}{2}\right]$ be two vectors in three dimensional space.
(i) Find the angle between \vec{u} and \vec{v}.
(ii) Find two unit vectors that are orthogonal to both \vec{u} and \vec{v}.

Work:

Problem 3: Suppose that the volume of the parallelepiped defined by $\vec{u}=[1,2,3], \vec{v}=[2,3,4]$, and $\vec{w}=[5,6, x]$, is 1 . Find all x.

Work:

Problem 4: Find the projection of $\vec{u}=[1,2,4]$ on $\vec{v}=[3,1,2]$.
Work:

Problem 5: Find the distance from the point $P=(1,1,6)$ to the line

$$
x=1+t, \quad y=3-t, \quad z=2 t
$$

Work:

