Question 1

Simplify as much as possible the expression $\frac{(x^3y^{1/2})^{1/3}}{y^{1/3}}$. Answer : $xy^{-1/6}$ 1 point

Question 2

1 point Simplify
$$\frac{x-3}{x-2} + \frac{x-3}{x+3} + \frac{-3x+11}{x^2+x-6}$$
. Answer : $\frac{2(x-2)}{(x+3)}$

Question 3

1 point If
$$y = \sqrt[3]{\frac{2x+5}{7}}$$
, write x as a function of y. Answer : $x = (7y^3 - 5)/2$

Question 4

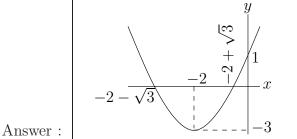
Using long division, write $\frac{x^3 + 3x^2 - 3}{x+2}$ in the form p(x) + r(x)/q(x) with the degree of r smaller 1 point than the degree of q. Answer : $x^2 + x - 2 + \frac{1}{x+2}$

Question 5

Find the roots of the polynomial $x^2 + 4x + 1$ (i.e. solve $x^2 + 4x + 1 = 0$). 1 point Answer : $\left|-2 \pm \sqrt{3}\right|$

Question 6

Sketch the graph of $y = x^2 + 4x + 1$. Don't forget to indicate the intersection with the axes. 1 point



Question 7

Find the value of c in the polynomial $4x^2 - 20x + c$ such that the roots are equal. 1 point Answer : c = 25

Question 8

Find the values of x such that $x^2 - 7x + 10 < 0$. Answer : 2 < x < 51 point

Question 9

Find the values of x such that $\frac{2}{x-1} > \frac{1}{x+3}$. Answer : $\boxed{-7 < x < -3 \text{ and } x > 1}$ 1 point

Question 10

1 point Find the domain of the function
$$y = f(x) = \left(\frac{4x-5}{3}\right)^{-1/2}$$
.

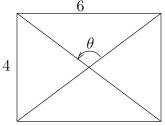
Answer; x > 5/4

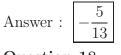
Question 11

Find the range of the function $y = f(x) = 8 - 2x - x^2$. Answer : $x \le 9$ 1 point

1 point	Question 12 Find the simplest form of $(f \circ g)(x)$, where $f(x) = \sqrt{x^2 - 2}$ and $g(x) = \sqrt{x^2 + 2}$. Answer : $(f \circ g)(x) = x $
	Question 13
1 point	Find the value of x such that $ x^2 - 5 = 5$. Answer : 0 or $\pm \sqrt{10}$
	Question 14
1 point	Find the values of x such that $\log_7(49^x) = 5$. Answer : $5/2$
	Question 15
1 point	Find the values of x such that $e^x + 5e^{-x} = 6$. Answer : $x = 0$ and $x = \ln(5)$
	Question 16
1 point	Find the values of x such that $\ln(4) - \ln(x) = \ln(5-x)$. Answer : $x = 1$ and $x = 4$
	Question 17

1 point — Find the cosinus of the angle θ in the following figure.





Question 18

1 point If $tan(\theta) = -1$, find all possible values of $sin(\theta)$. Answer :

Question 19

1 point If $\sin(\theta) = x$, find $\tan(\theta)$. Answer : $\left[\pm \frac{x}{\sqrt{1 - x^2}} \right]$

Question 20

1 point Find the slope of the line 5x - 3y + 5 = 0. Answer : $\frac{5}{3}$

Question 21

1 point If 3x + y = 2 and x - 2y = 1, find x and y. Answer

$$x = \frac{5}{7} \text{ and } y = -\frac{1}{7}$$

 $\frac{\sqrt{2}}{2}$

 \pm