Calculus for the Life Science I MAT1330A , MAT1330B, MAT1330E Assignment 5

Due date: Oct. 28

Instructor (circle one): Jing Li , Catalin Rada , Frithjof Lutscher DGD (circle one): 1 , 2 , 3 , 4 Student Name (printed): Student ID Number: Question 1

Consider the function $f(x) = x^{5/3}e^{-x}$.

a) Find the roots of f to complete the following table.

b) Compute the derivative of f.

$$f'(x) =$$

c) Find the critical points of f to complete the following table.

d) Compute the second derivative of f.

$$f''(x) =$$

e) Find the inflection points of f to complete the following table.

 $^{^1\}mathrm{Determine}$ where the function is increasing or decreasing, if there are local minimums or local maximums, \ldots

x	
f''(x)	
description ²	

f) Draw the graph of f.

Question 2

Find the global maximum and minimum of $f(x) = \frac{x-1}{x^2+8}$ on the interval [0,6].

Global maximum ofat x =Global minimum ofat x =

Question 3

The size of a population as a function of time is given by the fonction

$$p(t) = 5000 + \frac{200t}{10 + t^3}$$
 , $t \ge 0$.

Find the global minimum and maximum of this function for $t \ge 0$.

Global maximum of	 at $x =$	
Global minimum of	at $x =$	

²Determine if the function is concave up or down, if there are inflection points, \dots