Calculus for the Life Science I
 MAT1330A, MAT1330B, MAT1330E
 Assignment 5

Due date: Oct. 28
Instructor (circle one): Jing Li , Catalin Rada , Frithjof Lutscher
DGD (circle one): $1 \quad, \quad 2 \quad, \quad 3 \quad, \quad 4$
Student Name (printed): \qquad
Student ID Number: \qquad

Question 1

Consider the function $f(x)=x^{5 / 3} e^{-x}$.
a) Find the roots of f to complete the following table.

x	
$f(x)$	

b) Compute the derivative of f.

c) Find the critical points of f to complete the following table.

x	
$f^{\prime}(x)$	
description 1	

d) Compute the second derivative of f.

e) Find the inflection points of f to complete the following table.

[^0]| x | |
| :---: | :--- |
| $f^{\prime \prime}(x)$ | |
| description 2 | |

f) Draw the graph of f.

Question 2

Find the global maximum and minimum of $f(x)=\frac{x-1}{x^{2}+8}$ on the interval $[0,6]$.

Question 3

The size of a population as a function of time is given by the fonction

$$
p(t)=5000+\frac{200 t}{10+t^{3}} \quad, \quad t \geq 0 .
$$

Find the global minimum and maximum of this function for $t \geq 0$.
Global maximum of \square at $x=\square$ at
at $x=\square$.

[^1]
[^0]: ${ }^{1}$ Determine where the function is increasing or decreasing, if there are local minimums or local maximums,

[^1]: ${ }^{2}$ Determine if the function is concave up or down, if there are inflection points, ...

