Calculus for the Life Science I
 MAT1330A，MAT1330B，MAT1330E
 Assignment 3

Due date：Oct． 7
Instructor（circle one）：Jing Li ，Catalin Rada ，Frithjof Lutscher
DGD（circle one）： 1 ， $2,3,4$
Student Name（printed）： \qquad
Student ID Number： \qquad

Question 1

To estimate the limit $\lim _{x \rightarrow 0} f(x)$ ，where $f(x)=\frac{e^{x}-1-x}{x^{2}}$ ，one may use sequences of numerical values for x approaching 0 ．
a）Give two sequences to estimate the limit．A few terms for each sequence is enough．

$x_{n}=1 / n$	$f\left(x_{n}\right)$		$x_{n}=-1 / n$	$f\left(x_{n}\right)$
1	0.71828		－1	0.367879
1／2	0.594885		$-1 / 2$	0.426122
$1 / 3$	0.56051		$-1 / 3$	0.448781
$1 / 4$	0.5444		－1／4	0.4608125
！	．	and	！	\vdots
1／1000	0.5001667		$-1 / 100$	0.499833
引	交		！	引
1／10000	0.5000167		－1／1000	0.499983
\downarrow	\downarrow		\downarrow	\downarrow
0	0.5		0	0.5

b）We may conclude that $\lim _{x \rightarrow 0} f(x)=0.5$ ．

Question 2

Does the limit $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ exist？Answer ：no
Justify your answer in one line．
$\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{2-x}{x-2}=-1 \neq \lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=1$ ．

Question 3

What is the value of the limit $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-6 x+5}$ ？Answer ：$-1 / 4$
Justify your answer without using sequences of numerical values for x ．
$\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-6 x+5}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x-5)}=\lim _{x \rightarrow 1} \frac{1}{x-5}=\frac{1}{1-5}=-\frac{1}{4}$ ．
Question 4

We consider the function

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in \mathbb{Q} \\
x^{2} & \text { if } & x \notin \mathbb{Q}
\end{array}\right.
$$

a) Is the function f continuous at $x=0$? Answer: Yes Justify your answer in one line.
For $x \in \mathbb{Q}, f(x)=0 \rightarrow 0=f(0)$ as $x \rightarrow 0$. For $x \notin \mathbb{Q}, f(x)=x^{2} \rightarrow 0=f(0)$ as $x \rightarrow 0$
b) Does the derivative of f exist at $x=0$? Answer: Yes and $f^{\prime}(0)=0$

Justify your answer in one line.
For $x \in \mathbb{Q}, f(x)=0$ and $\frac{f(x)-f(0)}{x-0}=0 \rightarrow 0$ as $x \rightarrow 0$. For $x \notin \mathbb{Q}, f(x)=x^{2}$ and $\frac{f(x)-f(0)}{x-0}=\frac{x^{2}-0}{x-0}=x \rightarrow 0$ as $x \rightarrow 0$.

Note : Try to visualize the graph of f in your mind. Is it a nice continuous curve?

