Comments on lecture 1

1.5 DISCRETE-TIME DYNAMICAL SYSTEMS

The source for this comments is your textbook!!!!
Part I.
DEF: - A discrete-time dynamical system describes the relation between a quantity measured at the beginning and at the end of an experiment OR a time interval;

- If the measurement is represented (or denoted) by (the variable m), then m_{t} denotes the measurement at the beginning of the experiment and m_{t+1} denotes the measurement at the end of the experiment;
- The relation between m_{t} and m_{t+1} is given by the DISCRETE-TIME DYNAMICAL SYSTEM: $m_{t+1}=f\left(m_{t}\right)$, where f is called the UPDATING FUNCTION.

Example 0.0.1. Bacterial population: Read example 1.5.1/page 53
Example 0.0.2. Tree Growth: Read example 1.5.2/page 54
Example 0.0.3. Medication concentration: Read example 1.5.4/page 55
Part II.
Dealing with Updating Functions (from the point of view of Algebra)
a) Consider the DTDS: $m_{t+1}=f\left(m_{t}\right)$.

Question: What does the COMPOSITION $f \circ f$ mean?
This: $(f \circ f)\left(m_{t}\right)=f\left(f\left(m_{t}\right)\right)=f\left(m_{t+1}\right)=m_{t+2}$, SO: the COMPOSITION of an Updating Function with itself corresponds to a 2 -step updating function.

Example 0.0.4. Bacterial population: Consider the bacterial population; we have ($f \circ$ $f)\left(b_{t}\right)=f\left(f\left(b_{t}\right)\right)=f\left(2 b_{t}\right)=2 \times\left(2 b_{t}\right)=4 b_{t}$, i.e., after 2 hours the beautiful population is 4 times BIGGER!
b) What other parts of Algebra may we use? INVERSEs! Consider the DTDS: $m_{t+1}=$ $f\left(m_{t}\right)$.

Question: What does the inverse f^{-1} mean?
THIS: applying f^{-1} to our relation one gets: $f^{-1}\left(m_{t+1}\right)=m_{t}$, that can be viewed as: $m_{t}=f^{-1}\left(m_{t+1}\right)$, SO, the INVERSE of an Updating Function corresponds to an

UPDATING Function
that goes backwards in time!
Example 0.0.5. Bacterial population: Consider the bacterial population; we do have: $b_{t+1}=2 b_{t}=f\left(b_{t}\right)$. Solve for the inverse:
$f\left(b_{t}\right)=y$ implies that $2 b_{t}=y$, which in turn implies that $b_{t}=\frac{y}{2}$, hence $f^{-1}\left(b_{t}\right)=\frac{b_{t}}{2}$. We have a new DTDS $b_{t}=f^{-1}\left(b_{t+1}\right)$, that can be written as: $b_{t}=\frac{b_{t+1}}{2}$.

Part III. Solutions

- Recall that a DTDS describes some quantity at the end of an experiment/process/measurement as a function of the same quantity at the beginning!
- Question: What if we were to continue the process/experiment? Think about the bacterial population! The population will double again, again, and again.....
- To describe a process that is repeated many times we let:
- $m_{0}=$ measurement at the beginning;
- $m_{1}=$ measurement after one time step;
- $m_{2}=$ measurement after 2 time steps;
- ...
- $m_{t}=$ measurement after t seconds/years/hours/days (or whatever unit one may use) after the beginning of the process/experiment
- DEFINITION The SOLUTION of the DTDS: $m_{t+1}=f\left(m_{t}\right)$ is the sequence of values of m_{t} for $t=0,1,2,3, \ldots$, STARTING from the INITIAL CONDITION m_{0}.

NB: We know where we started the process!

- The GRAPH of a Solution is a discrete set of points: the time t on the x-axis; m_{t} on the y-axis:
$\left(0, m_{0}\right),\left(1, m_{1}\right),\left(2, m_{2}\right), \ldots$
- Example Consider the bacterial population: $b_{t+1}=2 b_{t}$ WITH $b_{0}=1.0$ (in millions).

We do have: $b_{1}=2 b_{0}=2 \times 1=2 ; b_{2}=2 b_{1}=2 \times 2=4, b_{3}=2 b_{2}=2 \times 4=8$, etc...
BUT: $b_{1}=2 b_{0} ; b_{2}=2 b_{1}=2 \times 2 \times b_{0}=2^{2} b_{0}, b_{3}=2 b_{2}=2 \times 2^{2} \times b_{0}=2^{3} b_{0}$, so $b_{t+1}=2^{t+1} b_{0}$ - the population after $t+1$ hours; of course the population after t hours is $b_{t}=2^{t} b_{0}$

Graph it!

Do: 14, 24, 20 on 64-65!
THE LOCATION and DATE OF DIAGNOSTIC TEST Were CHANGED!
GO TO THE WEB PAGE AND READ THE PIECES OF INFORMATION GIVEN THERE!

Did you do 14, 24, 20 on 64-65? Please attend the dgds!
Comments on lecture 2
Comments on lecture 3

