University of Ottawa MAT 1330B Euler Method Problem

December 1, 2009 Instructor: Catalin Rada

Question 1. Apply Euler Method to the following differential equation to estimate the solution at $t=1$ starting from the given initial condition. Use $\Delta t=0.25$:
$\frac{d x}{d t}=e^{t}+t+2009, x(0)=1$.
Solution: Note that $x(0)=1$. Next we get $x(0+0.25)=x(0.25) \cong \widehat{x}(0.25)=x(0)+$ $x^{\prime}(0) \Delta t=1+\left(e^{0}+0+2009\right)(0.25)=1+2010(0.25)=503.5$.

Now: $x(0.25+0.25)=x(0.50) \cong \widehat{x}(0.50)=x(0.25)+x^{\prime}(0.25)(0.25) \cong 503.5+\left(e^{0.25}+\right.$ $0.25+2009)(0.25)=1006.133506$.

So: $x(0.50+0.25)=x(0.75) \cong \widehat{x}(0.75)=x(0.50)+x^{\prime}(0.50)(0.25) \cong 1006.133506+\left(e^{0.50}+\right.$ $0.50+2009)(0.25)=1508.920686$

Thus $x(0.75+0.25)=x(1) \cong \widehat{x}(1)=x(0.75)+x^{\prime}(0.75)(0.25) \cong 1508.920686+\left(e^{0.75}+\right.$ $0.75+2009)(0.25)=2011.887436$.

Compare with the true value that is obtained by plugging 1 in $x(t)=e^{t}+\frac{t^{2}}{2}+2009 t+C$. Since $x(0)=1$ one gets $C=0$, so $x(1)=e+\frac{1}{2}+2009=2012.218282$.

