Calculus for the Life Science I
 MAT1330A, MAT1330B, MAT1330E
 Assignment 2

Due date: Sept. 30
Instructor (circle one): Jing Li , Catalin Rada , Frithjof Lutscher
DGD (circle one): $1 \quad, \quad 2 \quad, \quad 3 \quad, 4$
Student Name (printed): \qquad
Student ID Number:

Question 1

A model for the change in population size of the zooplankton species Daphnia galeata mendota in Base Line Lake in Michigan is given by $N(t)=N_{0} e^{r t}$, where $N(t)$ is the population size at time t, N_{0} is the initial size of the population and r is the intrinsic rate of growth.
a) If the initial size of the population is 200 and the size of the population after one week is 250 , find the intrinsic rate of growth of this population.
$r=\square$
b) If the size of the population is 2.5 times its initial size after 2 weeks, find the intrinsic rate of growth of this population.
$r=\square$
c) If the intrinsic rate of growth is 0.95 , what was the size of the initial population if the size of the population is 200 after 3 weeks? $N_{0}=\square$

Question 2

A sinusoidal function f has the following graph.

Give a formula to define f.
$f(x)=\square$

Question 3

The activity level of mosquitoes over a swamp is measured by the number of mosquitoes by cubic meter. It is governed by a sinusoidal function. The maximum level of activity is a $19: 00$ when there are about 10 mosquitoes by cubic meter and the lowest level is at $7: 00$ when there are no mosquitoes by cubic meter.
a) Find the function f that governs the activity level of the population of mosquitoes as a function of the time t during the day.
$f(t)=\square$
b) Draw the graph of the activity level of the population of mosquitoes as a function of the time.

