Calculus for the Life Science I MAT1330A , MAT1330B, MAT1330E Assignment 1

Due date: Sept. 23

Instructor (circle one): Jing Li , Catalin Rada , Frithjof Lutscher
DGD (circle one): 1 , 2 , 3 , 4
Student Name (printed):
Student ID Number:
Question 1 The size of a bird population on an island located close to the cost of Newfoundland depends on the local growth rate (birth minus death) and the migration between the island and New- foundland. A discrete dynamical system modelling this population is
$x_{n+1} = 0.85x_n + 75$, $n = 0, 1, 2, 3, \dots$
where x_n is the size of the bird population on the island after n years. 0.85 is the local growth rate and 75 is the yearly increase due to migration.
a) If $x_0 = 200$, then
$x_1 = $, $x_2 = $, $x_3 = $
b) Give the updating function f of the dynamical system. $f(x) =$
c) Find the equilibrium point x^* of the dynamical system. $x^* =$
d) Give the solution of the dynamical system with $x_0 = 200$.
$x_n =$
e) Draw the solution of the dynamical system with $x_0 = 200$ (four points are enough).

f) Draw the cobweb diagram of the dynamical system with $x_0 = 200$ (four iterations are enough).

 ${\bf g})~$ Determine the stability of the equilibrium point using the cobweb diagram.

The equilibrium point is

Question 2

The dynamical system

$$x_{n+1} = \frac{\alpha x_n}{1 + \beta x_n}$$
, $n = 0, 1, 2, 3, \dots$

plays a role in the analysis of nonlinear models of gene and neural networks. α and β are positive parameters. Suppose that $\alpha = 2$ and $\beta = 1$,

a) If
$$x_0 = 2.5$$
, then

 $x_1 =$, $x_2 =$, $x_3 =$

b) Find the equilibrium points x^* of the dynamical system. $x^* =$